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This paper describes a new pseudostatic limit equilibrium method for the design of cantilevered
retaining walls under seismic actions. The method has been applied in a parametric study of the effects of
the geometry of the wall, considering different excavated and embedded depths, of the strength of the
soil, and of the contact between the soil and the wall. The pseudostatic predictions are in very good
agreement, both in terms of horizontal contact stress and bending moment distributions, with the results
of truly dynamic 2-D finite difference analyses and published experimental data. It is found that for
increasing strengths of the soil-wall system both the critical acceleration and the maximum bending
moment on the wall increase. In other words, a stronger soil-wall system will experience smaller
displacements during the earthquake, but this is paid for by increasing internal forces in the wall.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The seismic design of embedded cantilevered retaining walls is
conventionally carried out using a pseudostatic approach, in which
dynamic actions are represented as static forces proportional to an
equivalent acceleration ap,=k,g, and the performance of the
system is quantified in terms of a static safety factor against an
assumed collapse mechanism. If kj, is the pseudostatic coefficient
related to the design earthquake, this method consists in:
(i) computing the corresponding dynamic increment of the active
soil pressures on the retained side of the wall, (ii) ensuring that the
available reduced soil passive resistance on the excavated side is
sufficient to guarantee the equilibrium of the wall (geotechnical
design) and (iii) that the resulting internal forces on the structure
do not exceed an assigned limit value (structural design). A more
rational approach consists in admitting that limit equilibrium
conditions into the soil may be exceeded during the design
earthquake, and evaluating the performance of the structure in
terms of permanent displacements accumulated by the wall
[4,8,7]. Following this method, permanent displacements may be
computed in a manner similar to the Newmark [17] sliding block
procedure [19,24].

In both simplified approaches, the critical acceleration, a.=k.g,
corresponding to which the strength of the soil is fully mobilised,
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is a key ingredient: in the former method, a. provides an upper
limit value for the maximum internal forces that the wall may ever
experience during an earthquake [4] while in the latter method, a.
is the threshold acceleration adopted in double integration proce-
dures or simplified expressions for the estimate of permanent wall
displacements [21].

The critical acceleration is defined with respect to an assumed
failure mechanism, generally a rigid rotation about a point close to
the toe for cantilevered walls, and depends solely on the geometry
of the system and on the strength of the soil. Three different
methods are proposed in the literature to compute the critical
acceleration of embedded retaining walls, all of them derived from
a limit equilibrium analysis. As far as anchored sheet pile walls are
concerned, Towhata and Islam [22] compute the critical accelera-
tion assuming a translation mechanism of the wall and of the
retained soil wedge, while Neelakantan et al. [16] assume a rigid
rotation of the wall about the anchor system. For cantilevered
walls, Callisto and Soccodato [4] compute the critical acceleration
with the Blum [2] method, assuming a rigid rotation of the wall
about a point close to the toe.

Experimental dynamic tests carried out on reduced scale
models [16,20,5] have confirmed that a Newmark type calculation
may be adopted, at least qualitatively, to interpret the dynamic
behaviour of embedded retaining walls, where the wall can rotate
when a state of limit equilibrium is attained in the adjacent soil.
As far as cantilevered walls are concerned, however, numerical
results also indicate that the bending moments can be substan-
tially larger than those computed with the Blum method in critical
conditions [4,6]. It follows that, for cantilevered walls, standard
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limit equilibrium approaches do not provide reliable nor conser-
vative values of the yield acceleration for a pseudostatic calcula-
tion of the internal forces.

This work is focused on the pseudo-static limit equilibrium design
of embedded cantilevered retaining walls, for which both the
internal forces under dynamic conditions and the critical acceleration
are computed customarily with the Blum method. The main draw-
backs of this method are discussed, and a new limit equilibrium
approach is proposed, based on results from truly dynamic 2-D finite
difference analyses [6]. Also, pseudostatic predictions are compared
with experimental data obtained from dynamic centrifuge tests on a
cantilever wall with dry sand backfill [12].

In the following, ¢ is the soil friction angle, § is the soil-wall
friction angle, y is the unit weight of the soil, h is the excavation
depth, d is the embedded depth, and dj is the location of the pivot
point; the Mononobe-Okabe method [15,18] is used to compute
the dynamic active (Kag) earth pressure coefficient, while passive
static (Kp) and dynamic (Kpg) earth pressure coefficients are
computed using the Lancellotta [10,11] closed form solutions.

2. Dynamic behaviour of cantilevered retaining walls

A number of studies on the dynamic behaviour of cantilevered
retaining walls are reported in the literature, most of them based
on the results of centrifuge tests [25,12,13,5]. A general observa-
tion is that bending moments in the wall increase significantly
during an earthquake, reaching permanent residual values, at the
end of the shaking, significantly higher than those corresponding
to static conditions. Considerable difficulties still exist in the
seismic design of cantilevered retaining walls because of the
complex nature of the dynamic soil-structure interaction, which
can be properly addressed only by numerical modelling.

Conti et al. [6] reported results from 39 plane-strain finite
difference analyses of al6 m wide and 4 m deep rectangular
excavation, retained by a pair of cantilevered retaining walls,
embedded in an ideal layer of dry sand with a thickness of 16 m.
Fig. 1 shows the grid adopted in the numerical analyses, with an
extension of 80 m, consisting of a total of 4838 elements, with a
minimum size of 0.33 m near the walls.

The retaining walls were modelled as elastic beams, with a
stiffness EI=2.7 x 10° kNm?/m, connected to the grid nodes with
elastic-perfectly plastic interfaces with a friction angle §=20°.

The soil was modelled as an elastic-perfectly plastic material
with Mohr-Coulomb failure criterion, with a constant friction
angle ¢=35°, cohesion ¢'=0, and density p=2.04 Mg/m>. A
standard non-associated flow rule was used, with angle of dila-
tancy w=0. Non-linear and hysteretic behaviour was introduced
for stress paths within the yield surface through a hysteretic
model available in the library of FLAC 5.0 [9], consisting in an
extension to general strain conditions of the one-dimensional
non-linear models that make use of the Masing [14] rules to
describe the unloading-reloading behaviour of soil during cyclic
loading. Fig. 2 shows a comparison between the modulus decay
curve and the equivalent damping ratio of the adopted model and
that suggested by Vucetic and Dobry [23].

32m T B + 32m

wgl

BEDROCK
Fig. 1. Finite difference grid.

Vucetic & Dobry(1991)
0.4 —aA—numerical

=
[%la

0.0
0.0001 0.001 0.01 0.1 1
v [%]

Fig. 2. Modulus decay and damping ratio curves for the constitutive soil model.
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Fig. 3. Acceleration time histories and Fourier amplitude spectra of the input
earthquakes.

Three different acceleration time histories (Fig. 3), all registered
on rock outcrop during real earthquakes, were used in the
analyses; the input signals were scaled at maximum accelerations
ranging from 0.05 g to 0.05 g. After the static stage, the horizontal
acceleration time histories were applied to the bottom nodes of
the grid, together with a zero velocity condition in the vertical
direction, while standard periodic constraints [26] were applied to
the lateral boundaries.

Based on the results of these analyses, the main observations
can be summarised as follows:

(i) the passive resistance of the soil in front of the wall is
mobilised progressively during the earthquake, starting from
dredge level downwards: the stronger the applied accelera-
tion, the greater the depth down to which the passive
resistance is fully mobilised;

(ii) in the instant of time when the acceleration behind the wall
reaches its maximum value, the distribution of accelerations
into the soil is not uniform, due to both amplification
phenomena and phase shift between the top and the bottom
of the wall; moreover, the accelerations in the soil below
dredge level are only a small fraction of the maximum value
computed on the retained side, and always lower than about
01g;
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(iii) permanent displacements of the wall correspond to an
approximately rigid rotation around a pivot point located at
a depth of between 0.8 x d and 0.9 x d.

The mechanism by which the soil passive resistance is mobi-
lised below dredge level is the main factor governing the dynamic
behaviour of cantilevered embedded walls, where the structure
can rotate when a state of limit equilibrium is attained in the
adjacent soil. On the other hand, dynamic active earth pressure
distribution behind the walls can be predicted reasonably with the
standard Mononobe-Okabe theory [18,15], provided a suitable
value for the pseudostatic coefficient is adopted, taking into
account amplification phenomena into the soil. Thus, consistently
with other experimental and numerical studies on cantilevered
walls [1], a triangular distribution for the dynamic active contact
stresses can always be assumed in pseudostatic calculations, just
as in the static case.

3. Pseudostatic approaches
3.1. Blum method

An extension of the Blum [2] method to dynamic conditions is
generally adopted to compute both the critical acceleration and
the internal forces on the wall for k,<k. (Callisto and Soccodato
[4]). According to this method, the dynamic active pressure, Kag, is
fully mobilised in the retained soil, down to a depth h+dg from
the surface, where dyp=0.8 x d (Fig. 4); a constant fraction of the
dynamic passive pressure, Kpg/F, is mobilised into the soil below
dredge level, while R accounts globally for the distribution of earth
pressures around and below the pivot point. For a given kj, the
safety factor F may be computed from the moment equilibrium
around the pivot point; the maximum value of the pseudostatic
coefficient is k., which corresponds to F=1. The value of 0.8 x d
adopted for dy is necessary to guarantee the force equilibrium for
the assumed earth pressure distribution, not explicitly taken into
account in the method.

As shown by Callisto and Soccodato [4] and Conti et al. [6], the
Blum method does not provide a conservative estimate of the
critical acceleration, in the sense that the pseudo-static values of
M =Mmax(kc)), i.e. the maximum bending moment computed
with the pseudostatic method, are about 50% lower than the
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Fig. 4. Distribution of seismic earth pressures in the method by Blum [2].

values computed by numerical analyses. This arises from two main
factors: in the Blum method (i) the same pseudo-static accelera-
tion is assumed for the soil in front and behind the wall and (ii) the
pivot point is assumed to be at a depth of 0.8 xd from dredge
level. Both assumptions lead to an underestimation of the soil
passive resistance that can be effectively mobilised in front of the
wall during an earthquake.

3.2. Proposed method

For a given kj, < k., the horizontal earth pressure distribution
assumed in the proposed method is shown in Fig. 5 (continuous
line). On the retained side, the soil is in active limit state down to
do, and in passive limit state below the rotation point. On the
excavated side, the passive resistance of the soil is fully mobilised
down to a depth d; the soil is in active limit state below the pivot
point, and the horizontal contact stress decrease linearly with
depth between d and do. To account for the numerical evidence
that the accelerations below dredge level are always much smaller
than those computed on the retained part of the soil, it is assumed
that the passive earth pressure coefficient takes its static value, Kp.
This assumption is clearly conservative from the point of view of
the structural design of the wall, but the difference between Kp
and Kpg(kp=0.1) is lower than 5%.

The force equilibrium of the wall can be established by
considering the force acting on the right hand side (Frys) and on
the left hand side (F ys) of the wall:

1 1
Frus = 57Kap(h+do)” + 5 7Kp(2h+d+do)(d—do) M

1,2 1 - -1
Fiys = ijPd + jY(KPd+KAEdo)(do—d)+ jﬂ<AE(d+do)(d—do) (2)

Similarly, the moment equilibrium can be established by taking
the moment about the toe of the wall, generated by the forces
acting on the right hand side (Mgrys) and on the left hand side
(MLas):

Mygis = %;/KAE(thdO)Z %(h+do)+(d—d0) +%yl<p(3h+d+2do)(d—do)2
3)

dO KPYJ

evdo | Kaev(h+do) Kpy(h+dp)

) L] \

Key(h+d)

Fig. 5. Distribution of seismic earth pressures in the proposed method.
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By equating Frys=F;ys and Mgrys=Mys one obtains a system of
two equations in the two unknowns d and dj.

Fig. 6(a) shows the ratios d/d and dy/d as a function of kj/ke, for
three different values of the ratio h/d (¢=35°, 5=20°, y=20 kN/m>,
h=4 m), while in Fig. 6(b) the same quantities are plotted in a
dimensional form. Both d and dy evolve with increasing kj: in
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Fig. 6. Dependence of d and dy on the pseudostatic coefficient kj, (¢=35°, §=20°,
y=20 kN/m?, h=4 m).
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static conditions (kx/k.=0), the ratio d/d depends strongly on h/d
(and on the mechanical properties of both the soil and the soil-
wall interface), while in critical conditions (ky/k.=1) the passive
resistance of the soil below the excavation is mobilised completely
down to the pivot point, ie. d =dy, with dy about 0.9 x d inde-
pendently on the ratio h/d (and on the mechanical properties of
both soil and soil-wall interface). No further increase in the
pseudostatic coefficient can take place once critical condition in
the system is attained, as no more passive resistance is available in
the soil in front of the wall. In the Blum method (dotted lines) the
depth of the pivot point is a constant fraction of the embedment
depth and does not evolve with the pseudostatic coefficient
applied. As shown in Fig. 6(b), this assumption leads to values of
the critical acceleration which are substantially lower than those
predicted by the proposed method.

Fig. 7 shows (a) the horizontal stress and (b) the bending
moment distributions computed with the proposed limit equili-
brium method for different values of kj, (¢=35°, §=20°, y=20 kN/
m>, h=4 m, d=4 m). When k;, increases, the dynamic active earth
pressures increase in the retained soil and equilibrium of moments
requires a larger fraction of the passive earth pressure to be
mobilised in front of the wall. Only in critical conditions (k,=k.)
the passive earth pressure in front of the wall is fully mobilised
down to the pivot point (d=d,). Redistribution of earth pressures
due to inertia forces into the soil results in increasing bending
moments into the wall.

For comparison, Fig. 8 shows (a) the horizontal stresses and
(b) the bending moment distributions computed with the Blum
method for the same case reported in Fig. 7. This time the critical
acceleration of the wall is a.=0.28 g and, accordingly, the max-
imum internal forces in the wall are much lower than those
predicted by the proposed method. As already discussed, an
increasing, but constant, fraction of the soil dynamic passive
resistance is mobilised below dredge level when k; increases,
reaching the condition F=1 when the critical condition is attained.

Fig. 9 shows the evolution of the normalised maximum bend-
ing moment, Mpax/yh>, as a function of kj, for different values of ¢
and h/d, and for h=4-6 m (6=1/3-2/3 ¢, y=20 KN/m>). Mpax/7h>
increases with ky, until it reaches a limit upper value for k;,=k.. For
a given ky, and ¢, Mmax/vh® depends solely on the ratio h/d, and it
increases with d, i.e. the longer the wall, the larger the bending
moment it has to sustain. Finally, unlike what happens in static
conditions, bending moments increase with increasing soil friction
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100 200 0 100 200 300 400
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- — — - k;,=0.00 (static)
—&— k,=0.10
+
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Fig. 7. Proposed method. Distribution of (a) horizontal stresses and (b) bending moment for different values of k; (¢=35°, 5=20°, y=20 kN/m>, h=4 m).
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Fig. 9. Normalised maximum bending moment, Mp,./vh> as a function of kj, for different values of ¢ and h/d (5=1/3 ¢ and 6=2/3 ¢, y=20 kN/m>).

angle. These observations are more evident by inspection of
Fig. 10, where the critical acceleration, a., and the corresponding
normalised maximum bending moment, M./yh3, are plotted as a
function of h/d, for different values of ¢ (6=1/3-2/3 ¢, y=20 kN/
m?). The stronger the soil-wall system, that is the larger the soil
friction angle and the embedded depth, the larger both a. and M.
In other words, a stronger soil-wall system will experience smaller
displacements during the earthquake, but should be designed to
sustain larger internal forces.

3.3. Comparison between pseudo-static calculations, numerical data
and experimental results

Fig. 11 shows a comparison between numerical results and
limit equilibrium predictions of the earth pressure and the bend-
ing moment distributions on a cantilevered wall subjected to a real
earthquake scaled at four different values of the maximum
acceleration (analyses no. 14 to 17 in Conti et al. [6], see Table 1).
The critical acceleration of the wall is equal to a.=0.28 g, accord-
ing to the Blum method, and a.=0.48 g according to the proposed
method. Numerical data refer to the time instant when the
accelerations behind the wall reach their maximum value, a;ax.

In the pseudostatic calculations, kj is assumed to be equal to the
average value of the accelerations behind the wall, along the first
2 m below the soil surface, if k;, < k., while k,=k. otherwise. The
earth pressure distributions assumed in the Blum method are
completely different from the numerical ones, and the method
provides reliable values for the maximum bending moment in the
wall only for moderate earthquakes (Fig. 11(b-d)). On the contrary,
both horizontal stresses and bending moments computed with the
proposed method are in good agreement with the numerical data,
even if some discrepancies can be still observed (see e.g. Fig. 11
(d)), mainly due to small non-uniformities in the distribution of
the accelerations into the retained soil, not taken into account in
the limit equilibrium calculation.

The prediction capabilities of the proposed method are
assessed also with reference to the experimental data presented
by Madabhushi and Zeng [12,13], obtained from a centrifuge
dynamic test carried out on a cantilevered wall model embedded
in a uniform layer of dry sand. All the data presented in the
following are at prototype scale.

The excavation and the embedded depths of the wall were equal
to h=7.2 m and d="7.2 m respectively. A standard fine silica sand was
used (Leighton Buzzard 52/100), reconstituted at a relative density
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Table 1
Summary of the numerical analyses.

No. Input inp [8] d [m]
14 Tolmezzo 0.05 4
15 Tolmezzo 0.10 4
16 Tolmezzo 0.20 4
17 Tolmezzo 0.35 4

Dr=92% (unit weight y;=16.4 kN/m?), with critical friction angle
¢ev=33°. The model was subjected to three trains of approximately
sinusoidal waves (EQ), with a nominal frequency of about 1.25 Hz,
increasing amplitudes and a constant duration of 10 s. The maximum
applied accelerations were equal to 0.12 g (EQ1), 0.22 g (EQ2) and
0.23 g (EQ3) respectively. For the first and the last earthquake, which
will be discussed in the present paper, no significant amplifications
were observed within the backfill. Fig. 12 shows a comparison
between the bending moments on the wall measured in the test

and the corresponding distributions predicted by the two pseudo-
static approaches; for completeness, the numerical results obtained
by Madabhushi and Zeng [12] are also included in the figure. Table 2
summarises the data adopted in the analyses: the value §=12° for
the soil-wall friction angle was provided by Madabhushi and Zeng
[13], while the mobilised soil friction angle was estimated taking into
account both the dilatancy effects due to the high relative density of
the sand [3] and the progressive shear strain mobilisation during the
dynamic events.

The bending moment distribution predicted by the proposed
method is in good agreement with the experimental data, both in
magnitude and trend. Only for the last earthquake, the method
provides a good estimation of the maximum bending moment, but
at a deeper depth below dredge level. However, a similar trend can
be observed for the numerical results, where the computed bending
moments are lower than the centrifuge measurements, especially in
the upper part of the wall. It is believed that these discrepancies can
be partly due to experimental factors, such as the action exerted on
the model by the electrical connexions from the strain gauges.
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Fig. 12. Bending moment distribution on the wall: comparison between experi-
mental data from centrifuge dynamic tests, numerical results and limit equilibrium
predictions (experimental and numerical data from [12]).

Table 2
Parameters adopted for the pseudostatic analysis of the centrifuge dynamic test.

Event ¢ [°] ky (proposed m.) kp (Blum m.)
static 40 0.000 0.000
EQ1 34 0.120 0.120
EQ3 34 0.230 0.192

On the other hand, in the Blum method the maximum bending
moment is always located at the same depth, about 10 m from the
soil surface, and the predicted values do not match with the
experimental data. Moreover, the method provides a critical
acceleration of a.=0.192 g, that is it predicts no further increase
of the internal forces in the wall for pseudostatic coefficients
higher than k.=0.192.

A final comparison between numerical results and limit equili-
brium calculations is shown in Fig. 13, where the normalised maxi-
mum bending moments on the walls (analyses no. 1 to 36 in Conti
et al. [6]) are plotted against the maximum accelerations computed
behind the walls during the earthquakes. As already observed, the
Blum method provides a reliable estimate of the maximum internal
forces on the wall only for moderate earthquakes, and underestimates
substantially both the critical acceleration and the corresponding
maximum bending moment. On the contrary, the proposed method
is in good agreement with the numerical data and provides always
conservative values of the maximum (critical) bending moment.

4. Conclusions

This work has illustrated a pseudostatic limit equilibrium
method for the design of cantilevered retaining walls under
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Fig. 13. Maximum normalised bending moments on embedded cantilevered walls
subjected to real earthquakes, computed from dynamic numerical simulations and
limit equilibrium ($=35°, §=20, y=20 kN/m>, h=4 m).

seismic actions. The method has been applied in a parametric
study of the effects of the geometry of the wall, considering
different excavated depths, h, and different ratios of the excavated
and embedded depth, h/d, and of the strength of the soil, ¢, and of
the contact of the soil and the wall, 6. The results show that for
increasing strengths of the soil-wall system, that is for increasing
values of the soil and soil-wall friction angles and for increasing
embedded depths, both the critical acceleration, a., and the
maximum bending moment on the wall, M., increase. In other
words, a stronger soil-wall system will experience smaller dis-
placements during the earthquake, but this is paid for by increas-
ing internal forces in the wall.

The proposed limit equilibrium method has been validated
against both the results of an extensive numerical study of the
behaviour of cantilevered walls under seismic actions [6] and the
experimental data of a centrifuge dynamic test on cantilevered
wall embedded in dry sand [13]. In both cases the pseudostatic
predictions have shown good agreement with the numerical and
experimental findings, both in terms of magnitude and trend of
the internal forces in the wall.
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