BAND VI

MAI 1971

ETI

HEFT 5

Rank and Reverberations in Neural Networks

L. Acoarpi
Laboratorio di Cibernetica del CNR, Arco Felice, Napoli, Italy

Received October 6, 1970

Summary. In a discrete model of a nenral network, from
a limitation on the rank of the matrix of “coupling coef-
ficients”, an upper bound for the maximum Tength of the
transients is derived, generalizing the analogue result of
Caianiello (19662} for the case of rank one. A counterexample
shows that the limitation found is the best possible involving
only the rank of the matrix.

The equation:
wit+1)=1[4"u(t) — 9] (1)

where A4’ is an N X N real matrix: S a real column
vector; ¢ is an inbeger (usually representing the
“guantized” time); u ({) a vertex of the Boolean cube
[0, 1], and I[-], the Heaviside function, has been
studied by many authors for different purposes.

In Caianiello’s model of neural networks, it rep-
resents the state of the networks at the (¢4 I)-th
second, and through the transformation (Caianiello,
1966a):

v{t)=4"u(t) -8

i+ 1)=A"1v@®] -8
=A4"F (sgno{t) —1) 8 (2}
= Asgn(v(t)) —(41—8)

where A =3 A'; 1 is the N-vector (cohnmn)} with unit
components, and “sgn” is the “signum” function
defined componentwise, for all N-vectors with non-zero
components equation (1) becomes

g+ =sgnda(t) —(41-—-5)

o(t)=sgn(v (1)

. (3)
sgna==-+1 if x>0

sggna= -1 i x<0,

In Eq. (3} the condition A1 — 8 =0 characterizes
the family of “normal” networks which correspond to
self-dual systems in Fqg. (1), and are therefore ruled
by the equation:

a{t+41)=sgn (4o (f)). (4)

“Normal™ networks were introduced by Caianiello
(1966 a) who proved the following remarkable theorem:
“if the matrix 4 has rank one, the network, after an
initial transient state, can perform a single reverbera-
tion (cycle) of length one or two”, and conjectured
{see Caianiello ef al., 1967) that a Hmitation on the
rank of the matrix 4 without the introduction of any
further hypothesis on the matrix, or of any controlling
element, may imply a limitation on the number of
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states which can be veached by the network after an
initial transient state, and therefore on the length of
the reverberations. The following proposition answers
this question affirmatively.

Before enunciating it, we introduce some notations:
@ is the unit cube, symmetric with respect to the
origin, whose vertices denoted o, 7, ..., denote the
possible 2% states of the network,

Proposition. If the matrix 4 of the coupling coef-
ficients has rank K, after an arbitrary inftial transient
the nmber R of admissible states of the network, and
a fortiori the maximum possible reverberation, is such
that:

R=<2¥ __gN-E+14 2 {(5)

Proof. We consider the equation:
x=Ag ogc@¥ (6)

and look for the maximum number of signs which can
be obtained from vectors w satisfying Eq. {3) when ¢
varies in @¥. Since 4 hag rank K it projects Q¥ on
a simplex contained in a K -dimensional linear manifold
through the origin. The vectors @ will therefore satisfy
an equation (27 is the transpose of w):

2T U =0 (7)

where U is some N x (N — K) matrix of rank ¥ — K.
If we set
B

VB (8)

with ¥ of order K (¥ —K) and det B30, Eq. (3)
is equivalent to

el =[—a'TV]a'T] (%

-]

where 2’ is a K-dimensional vector.

For the signs of the components of a' there are
2K possibilities, while for 'V we set:

o, TR (10)

where the T4, 1<{=<N K, are K.dimensional
column vectors. We then define:

2TV =T [V, yo,

I<i<N-—K
20,

T = ggn V&,
Si == j: 1 .

Consider now 2£-1 sjgns of »' which, together with
their opposite, realize all the 2% possible signs. If ¢ is
one of these let A, be the number of the indices ¢
such that ¢ = -L ¥,

x'T:[')’lsl""!ylislf]; (11)
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Obviously it will be:

ho=h_,

0<h <N K .
s (12)
SN h=N—EK.

a=1

But for each of the &, columns such that ¢ =4 79,
the sign of the corresponding component of 2'?'V is
not dependoent on the y;, 1=i =<K and therefore in
correspondence to that sign, at most 25 —F—A signs
of 2TV may be realized.

Adding all the ¢’s we obtain a total of

gF -1
QN -K-+1, ( Z 27.';:,)
a=1
possible signs for . oF-1
We observe now that the sum > 27" has a

maximum for =1
Fogp =N — K
i (13)
h,=0 if g=o*.
This follows on ingpection from the inequality
(2P — 1) (2 —1) =0
which yields
Q—J‘lu _i_ 2—]1\; g 1 + 2A~hu7hv
so that, by iteration:
QE-1
Z gfiznggKflile 27(Nﬁ1{)' (14:)
o=1

Consequently
oN _QN-E+1 9

represents a supremum for the numbers of admissible
states of the network 4 of rank K, after an arbitrary
initial transient state.

Remarks

1. In particular, for K =1, one finds the mentioned
result, Caianiello (1966a), that a normal network of
rank one admits only reverberations of period one
or two affer an eventual initial transient of length one.

This fact has a simple geometric interpretation:
such a matrix projects all the vertices of the symmetrie
unit cube on the two extremities of a segment —a sym-
metry axis for Q¥ —and clearly the only admissible
transformations for these two vertices are the identity
(period 1) and the reflection (period 2). In general, a
normal network of rank K will project the vertices
of @¥ on the vertices of a symmetric polyhedron—in
general, not a cubel-—and the reverberations of such
a network cannot exceed the number of vertices of
this polyhedron (the syrmumetry of the polyhedron is
a direct consequence of the normality of the system).
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2. It is not difficnlt to build a counterexample
which shows that the equality in (14) is actually neces-
sary. If +>2 and 0 <7¢ <% every matrix

t i1 b2
Al )=t t+e 3t1+2¢ {15)
t £ 21t

has rank two and projects, after the first arbitrary
fransient state, all the 2% states of the network into
28 28—+l 1.2 — G of them.

3. One deduces from the preceding result that a
sufficient condition for a normal network 4 to have
trangients is det 4= 0. This condition is, nevertheless,
not necessary; for instance, each element of the two
parameter family of matrices

Blg,0)— €08 0 —cos (0 4 @) cos 04 cos () +p)
P gin ) —sin (0 4 @) sin 0+ sin{ + )
0<0<O0+p<n2

{16)

is such that det B+0 and the network B has the
same evolution as the network:

(17)

2t

0 i

i.e., the two networks present exactly the same se-
gquence of states, whatever the initial state may be.
This behaviour, too, has & geometric explanation:
besides the dimensional degeneration which is con-
nected with the rank of matrix 4, there may appear
another kind of degeneration, which we may call
“guadrant degeneration”, connected with the “sig-
num” function. We barely mention this fact here;
it has profound consequences in this theory, and we
shall discuss it at greater length on a future occasion.
It arises when several independent vertices of Q¥ are
mapped into independent vectors lying in the same
quadrant (this is just the case considered in example
(11)) and therefore the “signum’ operation applied
on these vectors will give rise to the same vertex of @V,
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