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via di Tor Vergata, 00133 – Roma

Abstract

In recent works by Singer, Douglas and Gopakumar and Gross an application of
results of Voiculescu from non-commutative probability theory to constructions of
the master field for large N matrix field theories have been suggested. In this note
we consider interrelations between the master field and quantum groups. We define
the master field algebra and observe that it is isomorphic to the algebra of functions
on the quantum group SUq(2) for q = 0. The master field becomes a central element
of the quantum group Hopf algebra. The quantum Haar measure on the SUq(2) for
any q gives the Wigner semicircle distribution for the master field. Coherent states
on SUq(2) become coherent states in the master field theory.
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1 Introduction

Recently it has been a reveal of interest in the theory of master field describing the large
N limit of matrix models [1]-[7]. Much of the interest in large N expansions is motivated
by the desire to find reliable methods for analyzing the dynamics of QCD [8]. QCD at
large N provides phenomenologically an appealing picture of strong interactions. In fact
1
N

provides the only known expansion parameter which can be used in calculations of
hadronic properties [9, 10]. Different methods has been proposed for finding the large
N limit of various theories [11]-[18]. However all of them are effective only for low-
dimensional models. Mathematical structures appearing in the large N limit are related
with free independent algebras and so called free or Boltzmannian Fock space [13, 19]
deserve a thorough study. An investigation of these questions have been performed in non-
commutative probability theory [20, 6]. A model of quantum field theory with interaction
in the free Fock space has been considered in [7].

The master field Φ for the Gaussian matrix model is defined by the relation

lim
N→∞

1

ZN

∫ 1

N1+k/2
tr M ke−S(M)dM =< 0|Φk|0 > (1.1)

for k = 1, 2... , where the action S(M) = 1
2
tr M 2 and M is an Hermitian N ×N matrix.

The operator Φ = a + a∗ acts in the so called free or Boltzmannian Fock space with
creation and annihilation operators satisfying the relation

aa∗ = 1 (1.2)

The relations (1.1), (1.2) have been obtained in physical [13] and mathematical [19] works.
It can be interpreted as a central limit theorem in non-commutative probability theory, for
a review see [6]. The basic notion of non-commutative probability theory is an algebraic
probability space, i.e a pair (A, h) where A is an algebra and h is a positive linear functional
on A. An example of the algebraic probability space is given by the algebra of random
matrix with (1.1) being non-commutative central limit theorem. As another example one
can consider quantum groups. Theory of quantum groups have received in the last years
a lot of attention [22]-[25]. In this case A is the Hopf algebra of functions on the quantum
group and h is the quantum Haar measure.

In this note we discuss relations of theory of the master field in the Boltzmannian Fock
space with quantum groups. If one has q-deformed canonical commutation relations (see
for example [26])

aa∗ − qa∗a = 1 (1.3)

then for q = 0 one gets the relation (1.2) in the Boltzmannian Fock space.
We will show that in fact one has more. In Sect.2 we define an algebra describing the

master field (the master field algebra) and show that this algebra is isomorphic to the
algebra of functions on the quantum group SUq(2) for q = 0. In fact the master field
algebra coincides with the algebra of so called central elements of quantum group Hopf
algebra. It is interesting, that the transfer matrix in quantum inverse transform method
[23] is the central element of Yangian Hopf algebra. In this sense the transfer matrix is
an analog of the master field. In Sect.3 we show how the canonical master field algebra is
related with quantum groups. In Sect.4 we demonstrate how the quantum group methods
can be used to perform calculations in the large N limit of matrix models. Namely, the
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quantum Haar measure on the SUq(2) for any q gives the Wigner semicircle distribution
for the master field. Coherent states on SUq(2) become coherent states in the master field
theory.

2 The Master Field Algebra and Fun(SUq(2))

The free (or Boltzmannian) Fock space F over the Hilbert space H is just the tensor
algebra

F = ⊕∞

n=0H
⊗n.

Creation and annihilation operators are defined as

a∗(f)f1 ⊗ ... ⊗ fn = f ⊗ f1 ⊗ ... ⊗ fn

a(f)f1 ⊗ ... ⊗ fn =< f, f1 > ⊗f2 ⊗ ... ⊗ fn

where < f, g > is the inner product in H . We shall consider the simplest case H = C.
One has the vacuum vector |0 >,

a|0 >= 0 (2.1)

and the relations
aa∗ = 1, (2.2)

a∗a = 1 − |0 >< 0|. (2.3)

We shall reformulate equations (2.1), (2.2), (2.3) in the algebraic form. Let us define an
operator

F = eiφ|0 >< 0|, (2.4)

where φ is an arbitrary real number. Then from (2.1), (2.2), (2.3) one has the following
relations:

aF = 0, aF ∗ = 0, FF ∗ = F ∗F,

aa∗ = 1, a∗a + FF ∗ = 1.
(2.5)

We call the algebra (2.5) the master field algebra. From equations (2.5) we get

(FF ∗)2 = FF ∗

and the operator FF ∗ is an orthogonal projector.
Now let us recall the definition of algebra of functions Aq = Fun(SUq(2)) on the

quantum group SUq(2). The algebra Aq is the Hopf algebra with generators a, a∗, c, c∗

satisfying the relations

ac∗ = qc∗a, ac = qca, cc∗ = c∗c,

a∗a + cc∗ = 1, aa∗ + q2cc∗ = 1
(2.6)

where 0 < |q| < 1. One can get the relations (2.6) as the unitarity condition

gg∗ = g∗g = 1 (2.7)

for the matrix g = (gi
j) in the following canonical form

g =

(

a −qc∗

c a∗

)

. (2.8)
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Aq is a Hopf algebra with the standard coproduct,

∆ : Aq → Aq ⊗ Aq

∆(gi
j) =

∑

k=0,1

gi
k ⊗ gk

j

i.e.
∆(a) = a ⊗ a − qc∗ ⊗ c,

∆(c) = c ⊗ a + a∗ ⊗ c,

with counit ǫ : Aq → C, ǫ(gi
j) = δi

j , involution * and antipode S : Aq → Aq, Sg = g∗.
Taking q = 0 in (2.6) one gets the relations (2.5) if F = c. Therefore the master field

algebra (2.5) is isomorphic to the algebra A0 of functions on the quantum group SUq(2)
for q = 0.

Let σ denote the flip automorphism of Aq ⊗ Aq:

σ(x ⊗ y) = y ⊗ x

for any x, y ∈ Aq and

Aq ⊗sym Aq = {z ∈ Aq ⊗ Aq : σ(z) = z}.

We say that x is the central element of the bialgebra A if ∆(x) ∈ A ⊗sym A. An element
x ∈ Aq = Fun(SUq(2)) is central if and only if x is a linear combination of characters.

The master field
Φ = a + a∗

is the central element of the Hopf algebra Aq because

∆(Φ) = a ⊗ a + a∗ ⊗ a∗ ∈ Aq ⊗sym Aq.

Notice that for q = 0 one has more central elements in Fun(SUq(2)) than for |q| > 0. For
example a and a∗ are central elements since

∆(a) = a ⊗ a.

The bosonization of the quantum group SUq(2) was considered in [27]. If b and b∗ are
the standard creation and annihilation operators in the Bosonic Fock space,

[b, b∗] = 1, b|0 >= 0,

then

a =

√

1 − q2(N+1)

N + 1
b, c = eiφqN (2.9)

satisfies the relations (2.6). Here N = b∗b, φ is a real number. If q → 0 one gets from
(2.9)

a =
1√

N + 1
b, c = eiφ|0 >< 0|. (2.10)

Therefore the master field takes the form

Φ = b∗
1√

N + 1
+

1√
N + 1

b. (2.11)
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3 Canonical Master Field Algebra

The relations for the master field for D=0 and gφ4 interaction have the form [13, 14]

[π, φ] = −i|0 >< 0| (3.1)

(iπ +
1

2
φ + gφ3)|0 >= 0, (3.2)

where φ and π are Hermitian
φ∗ = φ, π∗ = π (3.3)

One rewrites them as
[π, φ] = −iP, (3.4)

(iπ +
1

2
φ + gφ3)P = 0, (3.5)

P 2 = P, P ∗ = P. (3.6)

Here we discuss only the case without interaction

(iπ +
1

2
φ)P = 0. (3.7)

Let us define

a =
1

2
φ + iπ, a∗ =

1

2
φ − iπ. (3.8)

Then equation (3.4) is equivalent to

[a, a∗] = P (3.9)

and (3.7) is equivalent to
aP = 0. (3.10)

If one has an irreducible representation of (3.4), (3.7) or (3.8), (3.9) such that P is
projector on the cyclic vector | > , then there is a relation

1

4
φ2 + π2 = 1 − 1

2
P, (3.11)

or equivalently,
aa∗ = 1. (3.12)

Indeed, by acting equation (3.9) to the vector |0 > one gets aa∗|0 >= |0 >. Then
aa∗a∗|0 >=(a∗a+P )a∗|0 >=a∗|0 >, etc. Therefore for an irreducible representation with
a cyclic vector one has algebras (3.4), (3.7), (3.11) and equivalently (3.9), (3.10), (3.12).
Let us note that from (3.9) it follows that P ∗ = P , and from (3.9), (3.10), (3.12) it follows
that P 2 = P.

The coproduct for φ, π, P elements reads

∆(φ) =
1

2
φ ⊗ φ − 2π ⊗ π

∆(π) =
1

2
(φ ⊗ π + π ⊗ φ)

∆(P ) = P ⊗ 1 + 1 ⊗ P − P ⊗ P (3.13)

These elements are central.
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4 The Haar Measure on SUq(2) and the Wigner Semi-

circle Distribution.

The quantum Haar measure h is an invariant state on the algebra A of functions on the
quantum group, i.e. it satisfies the condition

h = (h ⊗ id)∆ = (id ⊗ h)∆. (4.1)

In particular by acting to the element gi
j of the algebra Aq this equality reads

h(gi
j) =

∑

k=0,1

h(gi
k)g

k
j =

∑

k=0,1

gi
kh(gk

j ) (4.2)

The quantum Haar measure on compact quantum groups was constructed by Woronovicz
[24] in the following way. One defines the convolution of two linear functionals ρ and χ

on the Hopf algebra A as

(ρ ∗ χ)(f) = (ρ ⊗ χ)(∆(f)), f ∈ A.

One denotes
ρ∗k = ρ ∗ ρ ∗ ... ∗ ρ

One proves that for any f ∈ A there exists the limit

hρ(f) = lim
N→∞

1

N

N
∑

k=1

ρ∗k(f) (4.3)

that, for the faithful state, does not depend on the state ρ and defines the quantum
Haar measure. One can interpret (4.3) as the central limit theorem in non-commutative
probability theory.

By using the bosonization formula (2.9) for a and c the functional h(f) can be written
as

h(f) =
Tr fe−βH

Tr e−βH
;

where

Tr f =
∞
∑

n=0

1

2π

∫ 2π

0
< n|f |n > dφ,

H = 2N,

and |n > are n-particle oscillator states, N |n >= n|n >. Therefore the quantum Haar
functional is the Gibbsian state. In particular the partition function is

Z = Tr e−βN =
1

1 − e−2β
.

We denote ∫

SUq(2)
fdµ = h(f) (4.4)

Theory of representations of the quantum group SUq(2) [24, 28, 29] is similar to the
theory of representations of the classical group SU(2). An irreducible representation is
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characterized by its dimension 2l + 1, l = 0, 1
2
, 1.... There exists an explicit construction

of (2l+1)x(2l+1) matrix W l
km, k, m = −l, ...l, such that

∆(Wij) =
∑

k

Wik ⊗ Wkj. (4.5)

Operators W l satisfy the following orthogonality relations

< (W j
mn)∗W j′

m′n′ >q= δjj′δmm′δnn′

q−2m

[2j + 1]q
, [n]q =

qn − q−n

q − q−1
. (4.6)

The Hopf algebra A of polynomial on SUq(2)) has an orthogonal decomposition (the
quantum group analog of the Peter-Weyl theorem)

A = ⊕l∈N/2W
l

with respect to the quantum Haar measure where W l is spanned by matrix elements W l
mn.

An element f from A has the Fourier expansion

f =
∑

l∈N/2

[2j + 1]qTrq(f̃
lW l), (4.7)

f̃ l
mn =

∫

SUq(2)
fW l∗

mndµ.

For central functions one has a decomposition over characters

f(a + a∗) =
∑

l∈N/2

f̃ lχl(a + a∗) (4.8)

The characters are related with W as

χl =

√

[2l + 1]q
2l + 1

∑

n=−l,...l

qnW l
nn (4.9)

and there is an explicit formula

χl(t) =
sin((l + 1

2
)t)

sin(1
2
t)

= 1 + 2 cos t + ... + 2 cos lt; (4.10)

where t = 2 arccos a+a∗

2
. Note that the explicit form (4.10) does not depend on the

deformation parameter and coincides with the classical form. There is the recursive
relation

χl+1/2(t) + χl−1/2(t) = χ1/2(t)χl(t) (4.11)

for all q . For q = 0 this relation gives

χl(t)|0 >= (a∗)2l|0 > . (4.12)

The orthogonality condition for characters χl also has the same form as in the classical
case

∫

SUq(2)
χ∗

l (t)χl′(t)dµ = δll′ =
1

π

∫ 2π

0
χ∗

l (τ)χl′(τ)(sin(
τ

2
))2dτ (4.13)
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From (4.8) and (4.13) one notes that to perform the integration of a polynomial
function of the central element a + a∗ over quantum group one can calculate the integral
over classical group of the same polynomial,

∫

SUq(2)
f(t)dµ =

1

π

∫ 2π

0
f(τ)(sin(

τ

2
))2dτ, (4.14)

or
∫

SUq(2)
f(a + a∗)dµ =

1

2π

∫ 2

−2
f(λ)

√
4 − λ2dλ. (4.15)

One gets the Wigner semicircle distribution for any q. In particular for q → 0 in the left
hand side of (4.15) one has

∫

SU0(2)
(a + a∗)kdµ =< 0|(a + a∗)k|0 > (4.16)

and therefore

< 0|(a + a∗)k|0 >=
1

2π

∫ 2

−2
λk

√
4 − λ2dλ. (4.17)

that demonstrates the well-known Wigner distribution for the master field from quantum
group point of view.

Note that for the case q = 0 the set of central functions is more large as compare with
the case of arbitrary q. It is spanned by functions on a and a∗. For these central functions
one can write down the special form of the Peter-Weyl decomposition.

The relation between the master field algebra and the quantum group SUq(2) permits
to write immediately the coherent states for master field as well as for operators a and
a∗. Coherent states for SUq(2) have the form [27]

Ψ(u) =
∑

j∈N/2

√

(2j + 1)[2j + 1]qtrq(W
j∗T j(u)) (4.18)

Here u is an element of SU(2),

g =

(

α −β∗

β α∗

)

and
T j(u) = (Dj

mn(u))

is a unitary representation of SU(2) of spin j. From (4.18) and (4.6) it follows that if we
introduce the kernel by

K(u, u′) =
∫

SUq(2)
Ψ̄(u)Ψ(u′)dµ (4.19)

then this kernel satisfies the superposition relation

∫

K(u, u′)K(u′, u′′)du′ = K(u, u′′), (4.20)

where du stands for the Haar measure on SU(2).
One can also introduce the coherent states for the master field a + a∗

Ψc(α + α∗) =
∑

j∈N/2

(χj(a + a∗))∗χj(α + α∗) (4.21)
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Introducing the kernel

K(α + α∗, α′ + α∗
′

) =
∫

SUq(2)
Ψ̄c(α + α∗)Ψc(α

′ + α′∗)dµ (4.22)

we get the superposition property

1

π

∫ 2π

0
K(τ, τ ′)K(τ ′, τ ′′)(sin(

τ ′

2
))2dτ ′ = K(τ, τ ′′), (4.23)

τ = 2 arccos α+α∗

2

From (4.12) for q = 0 we have

Ψc(α + α∗)|0 >=
∑

j∈N/2

χj(α + α∗)(a∗)2j |0 > (4.24)

and
K(α + α∗, α′ + α∗

′

) =
∑

j∈N/2

(χj(α + α∗))∗χj(α
′ + α′∗) (4.25)

In conclusion, in this paper we discussed a relation between the simplest master field
and quantum group SUq(2). It would be interesting to extend such a relation to more
general master fields and quantum groups.
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