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In the framework of quantum probability, stochastic flows on manifolds and the
interaction representation of quantum physics become unified under the notion of
Markov cocycle. We prove a structure theorem for _-weakly continuous Markov
cocycles which shows that they are solutions of quantum stochastic differential
equations on the largest *-subalgebra, contained in the domain of the generator of
the Markov semigroup, canonically associated to the cocycle. The result is applied
to prove that any Markov cocycle on the Clifford bundle of a compact Riemannian
manifold, whose structure maps preserve the smooth sections and satisfy some
natural compatibility conditions, uniquely determines a family of smooth vector
fields and a connection, with the property that the cocycle itself is induced by the
stochastic flow along the paths of the classical diffusion on the manifold, defined by
these vector fields and by the Ito stochastic parallel transport associated to the con-
nection. We use the language and techniques of quantum probability but, even
when restricted to the classical case, our results seem to be new. � 1996 Academic

Press, Inc.

1. Introduction

Let (0, F, P) be the standard sample space of the d-dimensional Wiener
process and let (Ft]) and (F[t) denote respectively the past and future
filtration generated by the brownian paths. Let (M, B, +) (or (M, +) for
short) be a measure space and, for each p # M, let X=[X(t, p, |), t�0,
X( p, 0)=p] be a stochastic flow on M, i.e. a process such that for all
s, t�0

X( p, s+t, |)=X(X( p, s, |), t, %s(|)) a.e. in 0, (1.1)

where %s(|)(t): =|(s+t)&|(s) (| # 0). Assuming that the process preserves
the null sets of +, we define the family ( jt , t�0), jt : L�(M, +) � L�(M, +)�

B(L2(0, F, P))=L�(M, +; B(L2(0, F, P))) t�0 of *-homomorphisms by

jt(,)( p, |) :=,(X( p, t, |)), , # L�(M, +), (1.2)
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where the tensor product is in the sense of Sakai (cf. [Sak, Defini-
tion 1.22.10]) and the right hand side of (1.2) is interpreted as a multiplica-
tion operator on the Hilbert space L2(M, +)�L2(0, F, P). Denoting ĵ t the
trivial extension of jt to L�(M, +)�B(L2(0, F[t , P)), defined by

}̂t(,�a[t) :=jt(,)�a[t , , # L�(M, +), a[t # B(L2(0, F[t , P)) (1.3)

and identifying L� with L��1, we can rephrase the flow equation (1.1)
as

}̂s+t(,)=js+t(,)= }̂s(uo
s ( jt(,)))= }̂s(uo

s ( }̂t(,))), (1.3a)

where uo
t is the time shift induced by %t on L�(M, +)�B(L2(0, F, P))

(cf. (2.3c)).
Keeping in mind that uo

t acts trivially on L�(M, +), equation (1.3) can
be also rephrased as

}̂s+t= }̂s b uo
s b }̂t b uo

&s (1.4)

where uo
&s denotes the left inverse of uo

s .
If we replace the commutative algebra L�(M, +) by a von Neumann Ao ,

of bounded operators on a separable Hilbert space, and the algebra
B(L2(0, F, P)) by an arbitrary von Neumann algebra B, then the equa-
tions (1.3a), (1.4) make sense for any one parameter family ( jt) of normal
*-homomorphisms jt : Ao � Ao �B and we take them as the definition of
a 1-(uo

t )-cocycle (or cocycle for short).
Many of the results we are going to discuss in the following are valid

also for C*-algebras, but to fix the ideas we shall limit our discussion to
the case in which Ao is a von Neumann algebra and jt is normal.

Moreover we shall fix the von Neumann algebra B to be the algebra of
all bounded operators on the space of all square integrable functionals of
the increments of the standard Wiener process. It is well known that there
is a canonical isomorphism between this space and the Fock space
1(L2(R+)) over the space L2(R+). On this algebra B there is a natural
past filtration (Bt]) and a localization (B[s, t]) which are described in detail
in Section 2. Intuitively Bt] (resp. B[s, t]) can be thought as the algebra of
all bounded operators on the subspace of square integrable functionals of
the increments of the Wiener process corresponding to intervals contained
in [0, t] (resp. [s, t]).

The adaptedness (i.e. Ft] -measurability) of the process X(t, p, |) implies
that

jt(Ao)�Ao�Bt] .

422 accardi, mohari, and volterra



F
ile

:5
80

J
28

08
03

.B
y:

B
V

.D
at

e:
27

:0
2:

96
.T

im
e:

12
:3

6
L

O
P

8M
.V

8.
0.

P
ag

e
01

:0
1

C
od

es
:

29
79

Si
gn

s:
20

16
.L

en
gt

h:
45

pi
c

0
pt

s,
19

0
m

m

This notion does not require the commutativity of Ao or B and, introducing
the notations

A[s, t] :=Ao�B[s, t] , At]=Ao�Bt] , A=Ao�B,

it can be rephrased in terms of ĵt , defined by (1.3a), as

}̂t(A[t, u])�Au] \u�t�0. (1.4a)

This property expresses the fact that ( ĵt) is in some sense localized in the
interval [0, t].

These objects are natural perturbations of Markov conditional expecta-
tions in the sense explained in [Ac1]. A cocycle ( jt) with this property is
called a Markov cocycle (cf. [Ac1]).

When M is a smooth compact Riemannian manifold with the standard
volume measure it is well known [Elw], [Eme], [Kun] that the diffusion
process associated with a family of smooth vector fields, defines a Markov
cocycle. On the other hand any Markov semigroup on a finite set, and
many such semigroups on the integers and diffusions in Rd, can be realized
as Feynman�Kac semigroups associated to Markov cocycles. For details
we refer to ([Bi], [Mey1], [PaS], [Fag], [MoS]).

The notion of Markov cocycle also plays a fundamental role in quantum
physics in view of the following considerations: suppose that ( jt) satisfies
the algebraic relation (1.4) on the whole algebra A, then the 1-parameter
family (ut), defined by

ut := }̂t b uo
t , t�0, (1.5)

is a 1-parameter semigroup of endomorphisms. Conversely, given two such
1-parameter semigroups (uo

t ), (ut) such that each uo
t has an inverse, denoted

uo
&t , the 1-parameter family ( jt) defined by

jt :=ut b uo
&t , t # R+ , (1.6)

is a cocycle in the sense that equation (1.4) is satisfied with jt= ĵt . Inter-
preting (uo

t ) as the free evolution of a quantum system and (ut) as the inter-
acting evolution, jt becomes the wave endomorphism at time t and its limits
as t � \� (when they exist) define respectively the backward and forward
wave endomorphisms whose composition is the scattering endomorphism.
When the cocycle is inner, i.e., when

jt(x)=V t*xVt , \x # A, (1.7)

for some unitary or isometric operator Vt , then the cocycle condition (1.4)
is implied by the condition

Vs+t=uo
s (Vt) Vs

423classical and quantum flows
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which defines a (right) operator cocycle; one speaks of an operator Markov
cocycle if, for each t�0, Vt # A[o, t] . (c.f. Definition (3.5) below). In this
case one recovers the notions (more familiar in physics) of wave operator
and scattering operator.

The above considerations show that Markov cocycles are interesting
mathematical objects and in recent years the following two problems have
been investigated by several authors in the quantum probability literature:

Problem (I) How to construct Markov cocycles?

Problem (II) How to give an infinitesimal characterization of Markov
cocycles?

Notice that, if the semigroup (uo
s ) is trivial (i.e. the identity), then the

cocycle equation (1.4) reduces to the semigroup equation and, if the
cocycle is implemented by a strongly continuous 1-parameter unitary semi-
group (Vt), then both Problems (I) and (II) above are answered by the
Stone theorem according to which

Vt=eitH,
d
dt

jt(x)=jt(i[H, x]) (1.8)

for some self-adjoint operator H (and x in the domain of the commutator
[H, } ]).

Thus Problems (I) and (II) above constitute a quantum stochastic
generalization of Stone theorem.

The first breakthrough concerning Problem (I) occurred when Hudson
and Parthasarathy [HuPa 1] showed that the quantum stochastic calculus
developed by them provides a powerful tool to construct inner Markov
cocycles as solutions of quantum stochastic differential equations. This
result was extended to general Markov cocycles by Evans and Hudson
[EvHu 1] who showed that one can construct Markov cocycles on Ao by
solving a quantum stochastic differential equation of the form

djt(x)=jt(% ji(x)) d4ij (t)=jt(dLt(x)), x # Ao , (1.9)

where the %ji are linear maps of Ao into itself, called structure maps, and
satisfying some algebraic relations and the 4ij (t) are the (creation, number,
anhilation) processes introduced in [HuPa 1], [HuPa 2] (c.f. Section (2.)
below).

When dLt(x)=i[H, x] dt equation (1.9) reduces to (1.8) and this leads
to the notion of stochastic derivation [Ac Hu].

The early papers dealt with the case of bounded structure maps and a
considerable literature has been subsequently devoted to extend the

424 accardi, mohari, and volterra
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construction of Markov cocyles to larger and larger classes of unbounded
maps [Moh, FaSi].

The first nontrivial result concerning Problem (II), in the case of
operator cocycles, is due to J. L. Journe� [Jou] (see also [HuLi],
[AcJouLi]). Journe� also produced a counterexample showing that, in
general, strong continuity of a cocycle is not sufficient to guarantee that it
satisfies a stochastic differential equation. The algebraic analysis of
Problem (II), developed in [AcHu] suggested that, under suitable
regularity conditions, any Markov cocycle should satisfy an equation of the
form (1.9) and this conjecture was confirmed, in [Br], in the case of
bounded structure maps, i.e. in the case when the associated Markov semi-
group is differentiable in norm. However, both in probability and in
physics, the most interesting flows are only _-weakly continuous and the
associated structure maps, when they exist, are not bounded.

This is precisely the case we are going to consider in the present paper.
More precisely, we wish to answer the following question: when does a
cocycle satisfy an equation of the form (1.9) with respect to some family %ji

of structure maps? The converse problem, which is quite simple in the
bounded case, but deep in the unbounded case ( [FaSi] [FaChe]) shall
not be dealt with in this paper.

Our main results (c.f. Theorem (3.9) below) consists in showing that any
injective, _-weakly continuous Markov cocycle satisfies an equation of the
form (1.9) on the largest *-algebra Bo contained in the domain of the gen-
erator of the Markov semigroup, canonically associated to the cocycle via
the quantum Feynman�Kac formula.

The second part of the present paper, starting from Section 4, contains
an application of our representation theorem for Markov cocycles to the
theory of stochastic parallel transports along the paths of a diffusion on a
smooth Riemannian manifold. The problem that we consider here, which
turns out to be intimately related to that of imprimitivity systems [AcMoh]
goes in the direction of giving a quantum probabilistic characterization of
the classical stochastic parallel transport. We begin by formulating this
theory in the algebraic language of quantum probability: this leads to a
Markov cocycle on the tensor bundle and, with this, to a hopefully natural
notion of quantum stochastic parallel transport. A different notion of
quantum stochastic parallel transport was proposed by D. Applebaum
[Ap1, 2].

We then specialize our analysis to smooth Clifford section over the
tangent bundle of the manifold, which can be equiped with a natural struc-
ture of von Neumann algebra. Any connection respecting the metric has a
canonical extension to the sections of this bundle and also Ito stochastic
parallel transport along the diffusion curves, has a natural extension as a
Markov cocycle on this von Neumann algebra. It is then natural to ask

425classical and quantum flows
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oneself: Does every (injective _-continuous) Markov cocycle on the Clif-
ford bundle can be realized as a stochastic parallel transport, along the
paths of some diffusion on the manifold, with respect to a connection
canonically associated to it?

We prove (Theorem (6.6)) that, if the cocycle is graded, has continuous
trajectories (in the sense of our Definition (2.8)), and its structure maps
preserve the smooth Clifford sections, this is indeed the case and, if
moreover it is completely nondeterministic, then the connection and the
structure maps are uniquely determined up to an additive derivation of the
Clifford bundle, which is identically zero on the smooth functions. Notice
that the diffusion on the manifold and the parallel transport are both
deduced from the flow equation and not postulated ab initio.

2. Notations and Preliminaries

In the following all the Hilbert spaces considered are assumed to be com-
plex and separable with inner product ( } , } ) linear in the second variable.
For any Hilbert space H, we denote by 1(H) the symmetric (Boson) Fock
space over H and B(H) the algebra of all bounded linear operators in H.
For any u # H, we denote by e(u) the exponential vector in 1(H) associated
with u:

u}o
:=8 vacuum vector; e(u) := :

n�0

1

- n!
u}n

.

The family [e(u): u # D(1)] is total for any dense linear subspace D(1) of H
and linearly independent in 1(H). We denote by E (D(1)) its algebraic linear
span. So linear operators may be defined densely on 1(H) by giving their
action on E (D(1)). In particular when C is a bounded operator on H and
u is an element of H, the second quantization 1(C) of C is determined
uniquely by the relations

1(C ) e(v)=e(Cv)

for all v # H.
We fix two Hilbert spaces Ho , K. For H=L2(I, K) with I=R+ , [s, t)

(0�s�t) we use the notations 1+ , 1[s, t] for 1(H) respectively and

H=Ho�1+, Ht]=Ho�1[0, t] , H[t=1[t, �) .

The asymmetry in the definitions of Ht] and H[t allows us to have con-
tinuous tensor product property of 1+: H=Ht] �H[t . The Hilbert space

426 accardi, mohari, and volterra
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Ht] often will be identified with the subspace Ht] �8[t of H where 8[t is
the vacuum vector in H[t . Operators defined on a tensorial factor of H will
be often identified with their canonical ampliations to the whole space and
denoted by the same symbol.

We fix dense linear subspaces Do �Ho , D(1)�L2(R+ , K), Ko �K and
denote by /[s, t] the characteristic function of the interval [s, t].

The algebraic tensor product D�E (D(1)) is dense in H. Following a
widespread use, we often omit the symbol � when dealing with vectors in
Ho �E (D(1)). For example we write fe(u/[0, t)) e(/[t, �)) instead of f �

e(u/[0, t))�e(/[t, �)).

Definition (2.1) A family X#[X(t): t�0] of operators on H is
called an adapted operator process with respect to (Do , D(1)) (or adapted,
in the following, since Do and D(1) are fixed once for all) if for all t�0,
f # Do , u # D(1):

(a) D(X(t))$Do �E (D(1))

(b) X(t) fe(u/[0, t]) # Ht] and X(t) fe(u)=[X(t) fe(u/[0, t))]e(u/[t, �)).

X is called continuous, (more precisely: strongly continuous on Do �
�E (D(1))) if in addition, the map t � X(t) fe(u) from R+ into H is con-

tinuous for each f # Do , u # D(1). An adapted process is called bounded, con-
tractive, isometric, co-isometric or unitary if the operators X(t) have the
corresponding property for every t�0.

We fix an orthonormal basis [ei , i # S] of Ho , where S is a subset of the
integers not containing zero and set using Dirac notation, eij=|ej) (ei |:
i, j # S. Denote by S� the set obtained by adjoining 0 to S, i.e. S� =S _ [0],
and with respect to this basis we introduce the integrator processes
[4ij : i, j # S� ] defined by

4ij (t)={
4(/[0, t] �eij),
a(/[0, t] �ei),
a+(/[0, t] �ej),
t1,

if i, j # S,
if i # S, j=0,
if i=0, j # S,
if i=0=j.

(2.0)

In the following we shall use the same symbol to denote the vector
/[o, t] # L2(R+) and the multiplication operator by the (bounded
measurable) function /[o, t] . The quantum Ito formula ([HuPa 2], [Ev])
can be expressed as

d4ij d4kl=$� il d4kj (2.1)

427classical and quantum flows
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for all i, j, k, l # S� where

$� il={0,
$il ,

if l=0 or i=0
otherwise

For j # S we shall use the notations

u j(s) :=(ej , u(s)) , uj (s) :=u j(s); uo(s) :=uo(s) :=1.

Definition (2.2) We set D(1)#[u # L2(R+; K): u j ( } )=0 for all but
finitely many j # S]. For u # D(1) denote by N(u) :=[ j # S� ; uj ( } )�0], so
*N(u)<�, i.e. N(u) is the set of Ho -valued functions whose image is con-
tained in the linear span of a finite subset of the vectors) ej). A family
L#[Lij (s): i, j # S� ] of adapted processes is said to be square integrable if
each Lij is adapted and for each f # D, u # D(1) and t�0

&L&2
f, u, t := :

j # N(u)

:
i # S�

|
t

0
&Lij(s) fe(u)&2 d&u(s)<�, (2.2)

where

&u(t)=|
t

o
(1+&u(s)&2) ds.

For a square integrable family L we shall use the notations

XL(s, t)= :
i, j # S�

|
t

s
Lij({) d4ji ({)=|

t

s
L({) d4({) (2.2a)

for its stochastic integral. On the class of operators containing Do �

E (D(1)) in their domains, consider the family of seminorms

X [ &Xfe(u)&, resp. X [ |( fe(u), Xge(v)) |,

where f # D and u # D(1). The topology generated these seminorms is called
the topology of strong (resp. weak) convergence on Do �E (D(1)). The
inequality [Pa], [Me]

&XL(0, t) fe(u)&2�2&u(t) &L&2
f, u, t , (2.3)

where &L&f, u, t is defined by (2.2), shows that for each t�0 the map
L � XL(o, t) from the class of adapted processes with D(1) �E (D(1)) in
their domain, to its stochastic integrals, is continuous in the topology
defined by the seminorms & } &f, u, t to the topology of strong (hence weak)
convergence on D(1) �E (D(1)).

428 accardi, mohari, and volterra
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We fix Ao to be a von Neumann subalgebra of B(Ho) and A$o be its
commutant. Consider the family [A[s, t] :=Ao �B[s, t] 0�s�t] of local
subalgebras of the von Neumann algebra A :=Ao �B and set At] for
Ao �B[0, t] and A[t for Ao �1[0, t] �B[t .

For our present purpose we restrict ourselve to the class of bounded
family Lij of adapted processes so that Lij (t) # At] for each t�0 and will
extend the basic estimate (2.3). First we set for any vector !, in a Hilbert
space H,

,!(x)=(!, x!) , x # B(H)

Thus ,! is a normal state on B(H). If !=e(u) is an exponential vector, we
write ,u instead of ,e(u) . The fact that &Lij (s) fe(u)&2=,f �,u( |Lij (s)| 2)
suggests the natural extension of seminorms in (2.3),

&L&2
,, u, t := :

j # N(u)

:
i # S�

,�,u( |Lij(s)| 2) d&u(s)
(2.3a)

&XL(o, t)&2
,, u :=,�,u( |XL(0, t)| 2,

where , is any positive normal linear functional on Ao and all the other
symbols are described as in (2.2). From (2.3) it follows that, for any pro-
cess L such that for t�0, L(t) # At] and for any positive normal linear
functional , on Ao), the following inequality holds:

&XL(0, t)&2
,, u=,�,u( |XL(0, t)| 2)�&L&,, u, t . (2.3b)

Remark (2.3) In dealing with flows, the topology induced by the semi-
norms (2.3b) (resp. X [ |,�,u(X(0, t))| ) is sometimes more convenient
(cf. the proof of Proposition (2.5) below). We shall call it the topology of
strong (resp. weak) convergence on Ao* �E� (D (1)

o ), where E� (D(1)) denotes
the set of all vectors of the form ,u , with u # D(1). We shall also use the
notation D (1)

[s =[/[su: u # D(1)].

Denote by %t the right shift on L2(R+, K), so that for all t�0

(%t u)(s)={u(s&t),
0,

if s�t
if 0�s�t.

(2.3c)

%t is isometric with %t*u(s)=u(s+t). Using the isomorphism Ho �Ht

Ho �H[t �Ht] we define the time shift as the 1-parameter normal semi-
group of endomorphisms of B(H)#B(Ho)�B(1(L2(R+ , K))) charac-
terized by the property

uo
t (bo�b)=bo �1(%t) b1(%t*)| Ht]

�1t] ,

bo # B(Ho), b # B(1(L2(R+, K))), t�0.

429classical and quantum flows
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The shift uo
t is a normal, injective *-endomorphism and satisfies the follow-

ing relations:

(a) For s, t�0, uo
s uo

t =uo
s+t .

(b) For t�0, uo
t (A)=A[t .

The action of (uo
t ) can be naturally extended to any operator on H

whose domain includes Do �E (D(1)), in particular to stochastic integrals.
For a family L=[Lji (t), i, j # S� ] of square integrable process, the shifted

process Ls=[Lji
s (t), i, j # S� ], (s�0) defined by

L ji
s (t)={uo

s (L ji(t&s)),
0,

if t�s
if t<s

(2.4)

remains square integrable and moreover the identity

uo
s \|

t

0
Lij d4ij+=|

t

0
uo

s (Lij) d4 (s)
ij (2.4a)

is true whenever the stochastic integral of (Lij) exists in the weak topology
on Do �E (D(1)).

Vacuum conditional expectations [E[s, t] : A � A[s, t] 0�s�t] exist and
are characterized by the property

E[s, t](ao�b[s, t] �bc
[s, t])=(e(0), b[s, t]c(0)) ao�b[s, t] �1[s, t]c (2.5)

for all ao , # Ao b[s, t] # B[s, t] , b[s, t]c # B[s, t]c and where [s, t]c=R+"[s, t].
They satisfy the projectivity condition

E[s, t] E[s$, t$]=E[s, t] , if [s, t]�[s$, t$].

We also write Es] for E[0, s] . As a consequence of (2.5), for all A # A one
has

Es][uo
s (A)]=Eo](A) # Ao . (2.6)

Definition (2.4) A stochastic process on Ao is a family j=[ jt : Ao �
A, t�0] of *-homomorphisms with jo(x)=x�1; ( jt) is called adapted if,
for each t�0, jt(x) # At] ; conservative if for each t�0, jt(1)=1; normal if
jt is normal for each t; _-weakly continuous if the map (t, x) [ jt(x) is con-
tinuous for the _-weak topology on Ao , A; injective if jt is injective;
measurable if for each x # Ao the process j(x)=[ jt(x): t�0] is weakly
measurable.
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Let j be a normal stochastic process. We define ĵs as the unique normal
*-homomorphism ĵs : Ao �1[0, s] �B[s, �) � A characterized by

}̂s(x�1)=js(x), }̂s(1�a[s)=js(1)�a[s , x # Ao , a[s # A[s . (2.7)

Each ĵs can be extended, by the same action described as in (2.7), to the
complex vector space Lo algebraically spanned by the elements of the form
x�1[0, s] �Y[s , where x # Ao , Y[s is an operator on H[s with domain con-
taining E (D (1)

[s ). Moreover, if (X:
s ) is a net of adapted operator processes in

L0 strongly (resp. weakly) convergent on B(Ho)
*

�E� (D(1)) to a process
(Xs) then, due to the identity

.�.u( }̂s(X (:)
s ))= }̂s*(.�./s] u)�./[s u(X (:)

s ), (2.8)

also the net ( ĵs(X:
s )) also converges strongly (resp. weakly) on

B(Ho)
*

�E� (D (1)) to an adapted process which we denote by ( ĵs(Xs)). In
particular ĵs) can be extended to stochastic integrals.

Proposition (2.5) Let ( jt) be a normal adapted stochastic process and
let L=[Lji (t), t�0] be square integrable bounded processes such that for
each j # S� the process �i # S� (Lji)* Lji is norm uniformly bounded on com-
pacta and �t

0 Lji d4ij # At] for each t�0. Then for each i, j # S� , Lji (t) # At] ,
for almost all t�0 and for all s, t�0,

}̂s \uo
s \ :

i, j # S�
|

t

0
L ji d4ij++=|

s+t

s
}̂s \uo

s \ :
i, j # S�

L ji({&s)+ d4ij ({)+ . (2.9)

Proof. Fix T�0, j # S� and choose cj such that �i # S� (Lij (s))* Lij (s)�cj

for all f # Do , u # D(1), 0�s�T. It is known that one can choose a sequence
of simple square integrable elements L(s, n) # As] , n�1 such that �i # S�

(Lij (s, n))* Lij (s, n)�cj for all f # Ho , 0�s�T and &L&L(n)&f, u, s � 0 for
all 0�s�T. Moreover from the hypothesis that, for each j # S� , the family
�i # S� (Lij)* Lji is uniformly bounded on [0, T], it follows that, for any
normal state , on Ao , &L&Ln)&,, u, t tends to zero, by dominated con-
vergence, for any t�T. Because of (2.4a) we need to show that

}̂s(Xus
o(L)(o, t))= }̂s \|

t

0
uo

s(L) d4(s)+=X
}̂su s

o(L)(0, t)

=|
t

0
}̂s(uo

s (L)) d4(s). (2.10)

The identity (2.10) is obviously true for step functions.
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We shall prove that it is preserved under limits with respect to strong
convergence on B(Ho)

*
�E� (D(1)). To this goal notice that, in the notation

(2.3a)

& }̂s(Xu s
o(L)(0, t))&X

}̂s us
o(L)(0, t)&., u�& }̂sXus

o(L)(0, t)&X
}̂su s

o(Ln)(0, t)&., u

+&X
}̂s u s

o(Ln)(0, t)&X
}̂s u s

o(L)(0, t)&., u .

(2.11)

Since the indentity (2.10) holds for step processes, the first term on the
right-hand side of (2.11) is equal to

& }̂s(Xu s
o(L&Ln)(0, t))&., u . (2.12)

Because of (2.3b), the second term on the right hand side of (2.11) is less
than or equal to

& }̂suo
s (L&Ln)&., u, t . (2.13)

Now notice that, for any ao # B(Ho) and b[s # B[s , one has

& }̂s(ao�b[s)&
2
., u=.�.u( }̂s(ao�B[s)| 2)

=.�./[o, s] u�./[su( }̂s( |ao| 2 � |b[s|
2)

= }̂ s*(.�./[o, s] u)�./[su( |ao�b[b| 2),

where ĵs*(,�,/[su) is a normal state on Ao due to the normality of the map
js : Ao � Ao �Bs] . By normality, the identity

& }̂s(x)&2
., u=&x&2

}̂ s*(.�./s] u), /[su (2.14)

holds for any x # Ao �B[s and therefore also for any limit of such
operators in the topology of strong convergence on (Ao)

*
�E� (D (1)

[s ).
(cf. the remarks after Lemma (2.2a)).

Since uo
s(Lt&Lt(n)) belongs to the first type of operators and

Xu s
o(L&L(n))(0, t) to the second, it follows that

& }̂s(Xu s
o(L&L(n))(0, t)&2

., u=&Xus
(L&L(n))(0, t)&2

}̂ s*(.�./s] u) , /[su

�&u0
s (L&L(n))&2

}̂ s*(.�./s] u) , /[s u, t

=&L&L(n)&
}̂ s*(.�./s] u), %s*/[s u, t ,

which tends to zero as n � �. Similarly

& }̂suo
s (L&L(n))&2

., u, t=&uo
s(L&L(n))&2

}̂ s*(.�./s] u), /[su, t ,

which again tends to zero as n � �.
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Definition (2.6) An operator process X#(X(t): t�0) is called a mar-
tingale if it is a vacuum martingale, i.e., if for all 0�s�t

Es][X(t)]=X(s),

and a regular martingale if there is a Radon measure + on R+ for which

&[X(t)&X(s)] �&2+&[X(t)*&X(s)*] �&2�+([s, t]) &�&2 (2.15)

whenever 0�s� and � # 1[0, s] �8[s .

The following Theorem was proved by Parthasarathy and Sinha
[PaSi 1, PaSi 2] . The last statement is a remark in [Mey 2].

Theorem (2.7) Let X be a bounded regular martingale on H. Then there
exists a family of bounded adapted processes Lji (t), i, j # S� , (i, j){(0, 0) such
that for each t�0

dX(t)=Xo+ :
(i, j){(0, 0)

L ji(t) d4ij (t)

on Do �E (D(1)). The measure + in (2.15) can always be choosen to be
absolutely continuous with respect to the Lebesgue measure.

For each j # S� the series �i # S� (Lji)* Lji is convergent in the strong
operator topology and such a family is unique modulo a set of Lebesgue
measure zero. Moreover for each j # S the process �i # S (Lji)* Lji is
uniformly bounded on compact sets.

The quantum analogue of square and angle brackets for any two square
integrable regular martingales X, Y are the adapted processes [[X, Y]] and
((X, Y)) defined respectively as (cf. [AcQu])

[[X, Y]](t) := lim
Max(tk&tk&1) � 0

:
k

[X(tk+1)&X(tk)][Y(tk+1)&Y(tk)]

((X, Y))(t) := lim
Max(tk&tk&1) � 0

_:
k

Etk]
[[X(tk+1)&X(tk)][Y(tk+1)&Y(tk)]],

where the limit is to be interpreted in the sense of sesquilinear forms on
Do �E (D(1)). Its existence follows from the square integrability of the
coefficients which appear in the stochastic representation of the regular

433classical and quantum flows
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martingale [Att]. In fact, in the notation (2.1a), the quantum Ito formula
implies

[[XL , XK]](t)=|
t

0
:

k # S

Lik(s) Kkj(s) d4ij (s) (2.16)

((XL , XK))(t)=|
t

0
:

k # S

L0k(s) K k0(s) ds. (2.17)

Definition (2.8) A regular martingale X is said to have continuous tra-
jectories, if

[[X*, X]]=((X*, X)). (2.18)

Since for a regular martingale X the process ((X*, X)) is absolutely con-
tinuous with respect to the Lebesgue measure, the above notion is the same
as that introduced in [AcQu]. That this condition indeed extends the
classical notion of continuous trajectories was proved in [AcQu]. The
following proposition confirms the intuition behind the notion of Defini-
tion (2.8).

Proposition (2.9) Let X be a regular martingale. Then it has continuous
trajectories if and only if its stochastic representation is gauge free, i.e.,

dX(t)= :
k # S

[Lk0 d4k0(t)+L0k d40k(t)].

Proof. Comparing (2.16) and (2.17) and using the independence of the
basic processes one sees that condition (2.18) is equivalent to the vanishing
of the martingale part in the representation (2.16), i.e., to the fact that for
each i, j # S, �k # S (Lki (s))* Lkj (s)=0 almost everywhere. Thus L ji (t)=0
almost everywhere.

3. Markov Semigroups and Cocycles

Definition (3.1) A one parameter family of completely positive maps
P#[Pt, t�0] on a von Neumann algebra Ao is said to be a Markov semi-
group if the following relations hold:

(i) Po(x)=x, Pt(Ps(x))=Ps+t(x), s, t�0, x # Ao ;

(ii) &Pt&�1, t�0;
it is said to be conservative if

(iii) Pt(1)=1 for all t�0.

434 accardi, mohari, and volterra
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A Markov semigroup P is said to be _-weakly continuous if the map
(t, x) # R_Ao � Pt(x) is jointly continuous in the _-weak topology.

The generator L of a Markov semigroup (Pt) is characterized by the
property

Pt(x)=x+|
t

0
Ps(L(x)) ds, x # D(L), (3.1)

where D(L) denotes the domain of L.
From (3.1) we also have, for any x # D(L) the inequality

&Pt(x)&x&�t &L(x)&.

The following lemma is useful for relating the joint continuity property
to an apparently weaker notion which one often meets in the literature on
quantum Markov semigroups.

Lemma (3.2) Let (Pt) be a Markov semigroup on a von Neumann
algebra Ao . The following statements are equivalent:

(i) For each x # Ao the map t � Pt(x) is continuous in the _-weak
operator topology and for each t�0 the map x � Pt(x) is continuous in the
_-weak topology.

(ii) (Pt) is _-weakly continuous.

Proof. Obviously (ii) implies (i). To prove the converse, first note that
(i) implies that (Pt

*
), the pre-dual semigroup of (Pt), acting on the Banach

space (Ao)
*

is continuous in the Banach space topology. Let L
*

be the
generator of (Pt

*
). Thus for any \ # D(L

*
), the domain of L

*
, and any

x # A, the following integral equation holds:

(Pt

*
(\), x) =(%, x)+|

t

0
(Ps

*
(L

*
(\), x))) ds. (3.1a)

This implies that, for any \ # D(L
*

), the map (t, x) � (\, Pt(x)) is con-
tinuous. To prove this consider nets xn # Ao , tn # R+ (n�1) such that
xn � x, tn � t and notice that

lim
n � �

( \, Ptn(xn))= lim
n � �

( \, xn) + lim
n � � |

tn

o
(L

*
(\), Ps(xn)) ds.

By the uniform boundedness principle the integrand in the right hand side
of the above expression is uniformly bounded, therefore, by dominated
convergence theorem one can pass to the limit inside the integral sign and
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this gives the right hand side of (3.1a) for any \ # D(L
*

). Since the domain
is dense, a simple density argument completes the proof.

The following characterization of (Pt) is stronger than (3.1) and will be
needed in the proof of Theorem (3.9) below.

Lemma (3.3) Let Kt, t�0 be a uniformly bounded family of normal
maps on A0 such that for each x # A0 the map t � Kt(x) is continuous in the
_-weak topology and

K0=0,
d
dt

Kt=KtL�0, (3.2)

on B0 , where B0 is a core for L. Then Kt=0 for all t�0.

Proof. Define the bounded linear map R* , (*>0) on A0 by

R*=|
�

0
e&t*Kt dt, (3.3)

where in order to define the integral we have used the uniform bounded-
ness and continuity property. A simple computation and (3.2) imply that
R*(L&*)=0 on B0 . B0 being a core for L, we also have (L&*)(B0))=
A0 . Thus we obtain the result.

Definition (3.4) A normal stochastic process ( jt) on Ao is said to be
a Markov cocycle if it satisfies the cocycle equation

jo(x)=x�1, js+t(x)= }̂t(uo
t ( js(x))), (3.4)

for all s, t�0 and x # A0 where ( ĵt) is the extension of ( jt) defined by (2.7).
It is said to be _-weakly continuous if the map (t, x) � jt(x) is continuous
with respect to the _-weak topology of the von Neumann algebras Ao

and A.
Notice that such a cocycle is automatically a Markov cocycle in the

sense of (1.4a), in fact it has the stronger property that, for any s�t,

Et] }̂s= }̂s Et]=jsEt] (3.5)

on Ao �B[s=A[s .

Definition (3.5) A family V#[V(t), t�0] of bounded operators on
Ho �B(1(L2(R+ , K)) is called a (left) operator cocycle if

V(s+t)=V(t) uo
t (V(s)), \s, t�0, (3.5a)

if moreover Vt # At] for any t�0, we speak of a Markov operator cocycle.
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Given a strongly continuous unitary cocycle V, the family jt(x) :=V(t)
xV(t)* defines a _-weakly continuous Markov cocycle on B(Ho).

Proposition (3.6) Let jt , t�0 be a Markov cocycle. Then the family
[ jt(x), t�0] is commutative whenever Ao is commutative.

Proof. Fix any two elements x, y # Ao . Because Ao is in the centre of
Ao �A we have xjs( y)=js( y)x. Now use the homomorphism property of
uo

t , jt and the fact uo
t acts trivially on Ao to obtain

jt(x) }̂t(uo
t ( js( y)))= }̂t(uo

t ( js( y))) jt(x)

The result follows from the above identity and the cocycle equation (3.4).
According to the quantum Feynman-Kac formula, to every (_-weakly

continuous) Markov cocycle ( jt) on Ao , one can associate a (_-weakly con-
tinuous) Markov semigroup Pt (t�0) on Ao , characterized by the identity

Pt(x)=Eo][ jt(x)]

for all t�0, x # Ao . Moreover the cocycle identity (3.4) and the localization
property (3.5) imply that, for each 0�s�t,

Es][ jt(x)]=js(Pt&s(x)).

Lemma (3.7) Let [ jt : t�0] be a _-weakly continuous Markov cocycle
and let %o be the generator of the associated Markov semigroup [Pt: t�0],
defined by (3.6). Then for each x # D(%o)

X(t, x)=jt(x)&x&|
t

0
js(%o(x)) ds (3.6)

is a martingale. Moreover X(t, x) is a regular martingale whenever x, x*,
x*x, xx* # D(%o).

Remark (3.8.) By the polarization identity, to assume that x, x*, x*x,
xx* # D(%o) whenever x # D(%o), is equivalent to assuming that D(%o) is a
*-algebra.

Proof. The martingale property follows from (3.1) and Lemma (3.7)
because, for 0�s�t:

Es][X(t, x)]=js(Pt&s(x))&x&|
s

o
jr(%o(x)) dr&|

t

s
js(Pr&s(%o(x))) dr

=js {Pt&s(x)&|
t

s
Pr&s(%o(x) dr=&x&|

s

o
jr(%o(x)

=X(s, x). (3.7)
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To show that it is a regular martingale we first note that for any ,=�s] �

8s] # Hs] we have

&[X(t, x)&X(s, x)] ,&2�2 &[ jt(x)&js(x)] ,&2+2 "|
t

s
jr(%o(x)) dr ,"

2

.

(3.8)

Moreover, using the cocycle property, (3.5), (2.6), and (3.6), we find

&[ jt(x)&js(x)] ,&2

=& }̂s(uo
s( jt&s(x)&x)) ,&2

=( }̂s(uo
s(( jt&s(x)&x)* ( jt&s(x)&x))) ,, ,)

=( js(Pt&s(x*x)&Pt&s(x*) x&x*Pt&s(x)+x*x)) ,, ,)

�&Pt&s(x*x)&Pt&s(x*) x&x*Pt&s(x)+x*x& &,&2

�"|
t&s

o
[Pr(%o(x*x))&Pr(%o(x*)) x&x*Pr(%o(x))] dr" &,&2

�(t&s)[&%o(x*x)&+2 &%o(x*)& &x&] &,&2. (3.9)

From this we deduce that for any , # Hs] , any t�s�0 and any X such
that x, x*, x*x # D(%o), one has

&[X(t, x)&X(s, x)] ,&2�(t&s) k(x) &,&2, (3.10)

where k(x) :=[&%o(x*x)& } & &+2&%o(x*)x&] is independent of s�t for
any 0�s, t. The analogue inequality for M* follows from the identity
M(t, x)*=X(t, x*). Therefore M(t, x) is a regular martingale.

The main result of the present paper is the following:

Theorem (3.9) Let ( jt) be a _-weakly continuous adapted injective
Markov cocycle on Ao ; let (Pt) (t�0) be the associated Markov semigroup
on Ao and %o its generator. If Bo /D(%o) is * subalgebra of Ao then there
exists a unique family % ji, i, j # S of linear maps from Bo into Ao such that,
whenever x # Bo

djt(x)= :
i, j # S�

jt(% ji(x)) d4ij (t) (3.11)
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on Ho �E (D(1)). Moreover, for x, y # Bo the following relations hold:

% ji(x)*=%ij(x*) (3.12)

% ji(xy)=% ji(x) y+x% ji( y)+ :
k # S

%ik(x) %kj( y). (3.13)

Conversly, if the maps %ij satisfy (3.12) and (3.13), and if Bo is a core for
%o then there exists at most one _-weakly continuous stochastic process
satisfying (3.11). In such a case the stochastic process is a Markov cocycle.

Proof. Given x # Bo , applying Theorem (2.7) to the regular martingale
defined by (3.8) one has

jt(x)=x+ :
i, j # S�

|
t

0
L ji(x, s) d4ij (s), (3.14)

where for each j # S� the series �i (L ji)* L ji is convergent in the strong
operator topology and Loo(t, x)=jt(%o(x)). Moreover such a family is
unique modulo a set of Lebesgue measure zero. The uniqueness of the
representation implies that L ji (x, t) # Ao �B(1(R+, K)). To see this fix
an unitary element U # A$o and observe that jt(x)=U* jt(x)U hence by the
uniqueness of the representation: L ji (x, t)=U*L ji (x, t)U, i.e. L ji(x, t)
belongs to Ao . From the identity

ur( jt(x))=x+ :
i, j # S�

|
t

0
uo

r (L ji(x, s)) d4ij (r+s)

we get, using the cocycle property and Proposition (2.5),

jr+t(x)=jr(x)+ :
i, j # S�

|
t

0
}̂r(uo

r(L ji (x, s))) d4ij (r+s). (3.15)

In order to apply Proposition (2.5) we need to verify that for each j # S� the
process �i # S� L ji (x, t)* L ji (x, t) (t�0) is uniformly bounded on compact
sets. First recall that the last part of Theorem (2.7) guarantees that this
condition is satisfied for each j # S. Since jt is *-linear map we also have
(L ji (x, t))*=Lij (x*, t), i, j # S� . Thus it is enough to verify the uniform
boundedness on compact sets in the case j=0. To this goal notice that, jt

being a *-homomorphism, the quantum Ito formula (2.1) and

djt(x*x)=d( jt(x*) jt(x))=djt(x*) jt(x)+jt(x*) djt(x)+djt(x*) djt(x)
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implies the identity

jt(%0(x*x))=jt(%0(x*)) jt(x)+jt(x*) jt(%0(x))+ :
k # S

L0k(x, t)* L0k(x, t),

(3.16)

where for the second identity have used our hypothesis that x*x # B0 so
that (3.14) holds for jt(x*x) as well. Since each jt is contractive, it follows
by inspection from (3.16) that the sum �k # S L0k(x, t)* L0k(x, t) belongs to
At] for each t and is uniformly bounded in norm as a function of t. The
uniqueness of the representation, (3.14) and (3.16) implies that, for any
r, t�0 and for almost any s # [0, t],

}̂r(u0
r (L ji(x, s)))=L ji(x, s+r),

for each fixed r�0. By Fubini's theorem

}̂t&s(ut&s(L ji(x, s)))=L ji(x, t) a.e. [(s, t) : s�t]. (3.16a)

Since the left hand side is a continuous function of t, also the right hand
side is and this implies [Br] that there exists a version such that

}̂t&s(ut&s(L ji(x, s)))=L ji(x, t) for all t�s>0. (3.16b)

Applying Et&s] to both sides of (3.16b) and using (2.6) gives

jt&s(Eo][L ji(x, s)]=Et&s][L ji(x, t)] for all t�s>0. (3.17)

Now our aim is to define % ji (x, ) so that

jt(% ji(x, ))=L ji(x, t) for all t�0. (3.18)

Since for each i, j # S� , x # B0 the family L ji (x, s), s>0 is uniformly
bounded, the same holds for the family Eo][L ji (x, s)] # A0 , s>0. Since a
norm bounded, closed set in A0 is compact in the _-weak topology, we can
extract a subsequence sn>0, such that limsn � 0Eo][L ji (x, sn)]=:
L ji (x, 0) # Ao exists. Thus (3.18) follows from (3.17) once we pass to the
limit s � 0 because of our hypothesis that the map (s, x) � js(x) is _-weakly
continuous.

If jt is injective, then % ji (x, )) is uniquely determined by (3.18).
That it satisfies (3.12) and (3.13) is a simple consequence of the quantum

Ito formula and of the uniqueness of the stochastic representation. This
completes the proof of the first part of the theorem.

Now we show that, if Bo is a core for %o , then the maps %ij determine
jt uniquely via (3.11).
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Let ( j $t) be an another normal stochastic process satisfying (3.11). The
homomorphism property guarantees that each j $t is contractive. Hence for
each fixed u, v # M and m, n�0 we can define the uniformly bounded
family of normal maps Kt

u, v, m, n) : Ao � Ao by

( f, K t
(u, v, m, n)(x) g) =( fu (m), [ jt&j $t](x) gv(n)) , x # A0 ,

for all f, g # H0 , where u(m)=1�- nu �m . Our aim is to show that for
m, n�0

K t
(u, v, m, n)(x)=0 (3.19)

for all u, v # M.
Since by our hypothesis B0 is core for L, Lemma 3.3 says that it is

enough to verify that each Kt
(u, v, m, n) satisfies (3.2). For m=0=n it is

immediate from (3.11). Now we shall adapt an induction argument due to
Fagnola [Fag] to verify (3.19) for arbitrary m, n�0. From (3.11) and the
analyticity of the exponential vectors, we also deduce the identities

( fu((m)), [ jt&j $t](x) gv((n)))

= :
i, j # S�

|
t

0
( fu (mi), [ js&j $s](% ji(x)) gv((nj)) ui (s) v j(s) ds, (3.20)

where

ni={n&1,
n,

if i # S,
if i=0,

and similarly for mi .
Assume that (3.19) holds for all m, n�0 such that m+n�k and fix any

m, n such that m+n=k+1. Thus, by induction hypothesis, it follows from
(3.20) that T t

(u, v, m, n) satisfies (3.2). Hence Lemma 3.2 allows us to conclude
that (3.19) holds for all m, n.

For the last statement, observe that for any fixed s�0 the processes
kt(x)=js+t(x) and k$t(x)= ĵt(uo

t ( js(x))) satisfy (3.11) with the same initial
value. Since Bo is a core, (3.11) admits a unique solution, thus the cocycle
property follows. This completes the proof of Theorem (3.9).

4. Stochastic Parallel Transports on Clifford Bundles

Let (M, g) be a d-dimensional, oriented, smooth, compact Riemannian
manifold with metric g=( } , } ). By definition for each p # M, there is a
positive definite inner product gp on the tangent space Tp M to M at p.
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Here we recall the standard construction of the smooth Clifford sections
and various natural actions on it.

Denote by V the space of smooth vector fields on M and suppose that
V is equipped with a covariant derivative { which respects the metric i.e.,
for any smooth vector field ` # V, {` is a linear map on V satisfying the
Leibnitz rule

{`( fg)=f {`(g)+`( f ) g (4.1)

and the so called orthogonality relation

` (g, h) =({`(g), h)+(g, {`(h)). (4.2)

We denote T m
n (M) the bundle of tensors of type (m, n) and Tens(M)=

�(m, n) T m
n (M) the full tensor algebra. The connection { lifts naturally to

a derivative on the tensor algebra Tens(V), denoted by the same symbol
and characterized, by

{`(g1�g2� } } } �gm)={`(g1)�g2� } } } �gm+g1�{`(g2)

� } } } �gm+ } } } +g1�g2� } } } �{`(gm).

Tens(V) also has an anti-involution % (%2=id; %(ab)=%(a) %(b)) defined by

%(g1�g2 � } } } �gm)=gm � } } } �g2�g1 ,

which commutes with the connection, i.e., for any section g # Tens(V)

{`(%(g))=%({`(g).

Let I be the two sided ideal generated by the sections
g�h+h�g&2(g, h). Then I is fixed by the anti-involution %. Since the
connection respects the metric it follows that the ideal I is preserved by
{` . Hence the connection on Tens(V) pushes down to a connection on the
quotient space denoted by C(V), whose fiber ((Tens(V))�I)p at p is
isomorphic to the universal Clifford algebra over V. This quotient is a
*-algebra with involution g*=%(g) where g is any smooth section.

Since the connection commutes with % we have for smooth sections g, h

{`(g)*={`(g*), {`(gh)={`(g) h+g {`(h);

hence the covariant derivative defines a *-derivation on Tens(V) and there-
fore on C(V). Since the Clifford algebras are either simple or the direct sum
of isomorphic simple algebras, on each of them there is only one nor-
malized invariant trace, which we denote by tr. We introduce a bilinear
form on the fibers at p of the Clifford algebra by

(g, h)( p)=trp(g( p)* h( p)),
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which extends the Euclidean structure on V. From (4.2) it follows that

` (g, h) =({`(g), h)+(g, {`(h)) , (4.3)

where g, h are smooth Clifford sections. We also introduce a bilinear form
on the Clifford sections by setting

(g, h)=| (g, h)( p) d+( p),

where + is the Riemannian measure on M. The completion Ho :=L2(C(V))
of the smooth sections is a Hilbert space and {*̀={`+div+`, where div+`
is the divergence of `k with respect to the volume measure +.

Note also that (g, h)=0 whenever g # T m
0 (M), h # T n

0(M) and m{n.
We denote by Pn the orthogonal projection of H0 into the closed span of
T n

0 . Thus 1=�0�n�d Pn . For g, h # C(V) we also note that

&g�h&2=| tr((g�h)* g�h)) d+

=| (g, g)(h, h) d+

�sup[(g, g)( p), p # M] &h&2;

hence left multiplication by an element of C(V) is a continuous operator on
L2(C(V)) and for each element g # C(V) we denote by *(g) the bounded
extension of the linear operator *(g): h � g�h on Ho (left multiplication
by g).

This is a *-representation of the Clifford algebra, i.e. *(gh)=*(g) *(h)
and *(g)*=*(h*). We shall denote Ao the von Neumann algebra gene-
rated by [*(g), g # C(V)]. A linear map : on A0 will be called graded if
:(Pn xPm)=Pn :(x) Pm for all m, n�0.

5. Unitary Implementation of Parallel Transports

Let 1=(1i
jk) be the affine connection on M associated to the covariant

derivative { and T m
n ( p), p # M the bundle of tensors of type (m, n), which

is the dual to T n
M( p) relative to the invariant bilinear form defined by the

identification of TpM with its dual, induced by the metric g i.e., in a coor-
dinate system where the metric tensor is the identity

(g, h)=g j1 } } } jm
i1 } } } in

hi1 } } } in
j1 } } } jm

, (5.1)
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where summation over repeated indices is understood. With the notation

(1i g) j1 } } } jm
i1 } } } in

:=1 k
ii& g j1 } } } jm

i1 } } } i&&1ki&+1 } } } in
&1 j:

ikh j1 } } } j:&1kj:+1 } } } jm
i1 } } } in

,

we have

(1: g, h)=&(g, 1:h), g # T m
n , h # T n

m (5.2)

and the covariant derivative {i : ={���xi can be expressed as

{i=�i&1i .

Let c(t), t�0 be a smooth curve on M. A family of tensors g=[u(t) #
T m

n (t), t�0] is said to be parallel along the curve c(t) if it satisfies the
ordinary differential equation

u* =(1i u) c* i, u(0)=uo . (5.3)

The smoothness of 1 implies that (5.3) uniquely determines a linear map
Ut(c) from T m

n (c(0)) to T m
n (c(t)) and it follows from (5.2) that it preserves

the bilinear form (5.1).
Denote #`=[#`

t( } ), t # R] the flow of diffeomorphisms on M determined
infinitesimally by a complete smooth vector field ` and {`

t the induced flow
of automorphisms on T m

n , defined by

{`
t(g)( p)=Pt(#)&1 g(#`

t( p)), p # M.

Thus

{`(g)( p)= lim
t � 0

g( p)&{`
t(g( p))

t

for all smooth vector fields. The map {`
t is extended by linearity to the full

tensor algebra. Since the connection respects the Riemannian metric

({`
t(g), {`

t(h))( p)=(g, h)(#`
t( p)). (5.3a)

Thus these maps preserve the two sided ideal I and push down to
a canonical *-automorphism on the Clifford sections. We now intro-
duce the strongly continuous one parameter group of unitary operators
V=[V(t), t�0] on Ho , given by the continuous extension of the following
action on the smooth Clifford bundle

V(t) f=_d+(#`
t )

d+ &
1�2

{`
t( f ). (5.4)
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That V(t) is an isometry on C(V) follows from the orthogonality relation
(5.3a). It is also simple to observe that for all f # C(V) we have

*({`
t(g))=V(t) *(g) V(t)*. (5.5)

Thus the natural extension of { on Ao=*(C(V))" defined by {`
t(x)=V(t)

xV(t)* is indeed a _-weakly continuous 1-parameter automorphisms group
on Ao . In the following we shall often identify C(V) and *(C(V).

Conversely let {=[{t , t # R] be a 1-parameter automorphisms group on
Ao which preserves C(V) and the grading of the algebra. Since it preserves
the smooth functions on M it follows [AbMaRa] that there exists a
smooth vector field ` such that {t( f )( p)=f (#`

t( p)) for all f # C�(M).
It is natural to ask whether {t={`

t for a suitable connection on V. Let
$ be the generator of {. It follows from the homomorphism property that
$ is a linear derivation preserving smooth elements in V so that there exists
a vector field ` such that, for any two smooth sections f, g we have the
relation

($( f ), g) +( f, $(g)) =` ( f, g).

It is evident that a single vector field (i.e. a single {) carries too little
information to determine a unique connection {, since it specifies how to
transport vectors only along its integral curves. A more natural candidate
is a family of such automorphisms {k (1�k�d ), where d is the dimension
of the manifold M, with the property that at each point p # M the set of
vectors `k (1�k�d ), associated to the vector fields {k, generates the
tangent space at p. Given such a family (`k) (1�k�d ), for any given
smooth vector field ` because of our hypothesis that the `i ( p) (1�i�d )
generates T p(M), there exists a family of smooth maps ,i (1�i�n) such
that `( p)=,i ( p) `i ( p).

Define the linear map {` : V � V by the prescription

{`(u)( p)=,i ( p) $`i (u)( p). (5.6)

It is simple to check that the right hand side of (5.6) depends only on `( p),
and that it defines a unique connection { on M such that {`i=$`i .

6. Unitary Implementation of Stochastic Parallel Transports

The notion of stochastic parallel transport along a random curve was
introduced by Ito [Ito] and subsequently studied by many authors [Dy],
[DoGu], [Elw], [Eme], [Kun], [Mal], [Nel]. Here we briefly review
this notion. For simplicity we consider a smooth, oriented, compact
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manifold M of dimension d and, for each fixed s�0, a classical stochastic
differential equation in Stratonovich form

X(t)=p+:
k
|

s+t

s
`k(X({)) b dBs

k({), (6.1)

where b denotes Stratonovich differential, the `k are smooth vector fields
on the manifold M, Bs

k({)=Bk(s+{)&Bk(s), Bk(s) are independent
standard Brownian motions and dBs

o({)=d{. We denote by X( p, t, %s|)
the unique solution of (6.1) The uniqueness of the solution implies that for
all s, t�0

X( p, t+s, |)=X(X( p, s, |), t, %s|) a.e. (6.2)

Define the family of *-homomorphism jt , t�0 from L�(M) into
L�(M)�L�(0, F, P) by

jt(,)( p, |)=,(X( p, t, |)). (6.3)

Using the Wiener�Segal isomorphism to embed this algebra into the
algebra of all bounded operators on L2(M, +)�1(L2(R+, Cd)) and recall-
ing that, in this identification, the time shift uo

s acts on L2(M)�

L2(0, F, P; Cd) as

uo
s(F )(|)=F(%s(|)),

we easily verify the cocycle property in the Wiener space, i.e.,

js+t(,)( p, |)=,(X( p, s+t, |)=,(X(X( p, s, |), t, %s|))

=uo
s ( jt(,))(X( p, s, |))=js(uo

s( jt(,)))( p, |).

That jt is a Markov cocycle on L�(M) follows from the adaptedness of the
solution of (6.1). Equation (6.1) is a symbolic form for

jt(,)=,+ :
1�k�d

|
t

0
js(`k,) dBk(s)+js(L(,)) ds,

where the generator L is `0+1�2 �1�k�d `k `k .
Our aim is to realize stochastic parallel transports as Markov cocycles

on the Clifford-von Neumann algebra A0 described in Section (4) and
show that they are implementable by unitary operator cocycles. Conversely
as a consequence of the stochastic representation of _-weakly continuous
Markov cocycles we will show that any given Markov cocycle on A0

satisfying some natural additional hypothesis can be realized as stochastic
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parallel transport with respect to a unique connection compatible with the
metric.

Consider the T m
n valued stochastic process P(t, |) along the diffusion

X( p, t, |) (t�0) satisfying the Stratonovich stochastic differential equation

dPt=(1iPt) b dX i, Po=1. (6.4)

It is known [Eme] that the solution of (6.4) exists and is unique. Thus it
determines a stochatic linear map Pt(|) from T m

n ( p) to T m
n (X( p, t, |)).

The following property is a consequence of the uniqueness of the solu-
tion to (6.4):

Ps+t( p, |)=Ps(X(t, p, |), %t |) Pt( p, |). (6.5)

That it preserves the bilinear form (5.1) is a simple consequence of Ito
formula and (5.2). The fact that the map p � X( p, t) is a local dif-
feomorphism also guarantees that Pt is onto for almost all sample paths,
thus invertible. Denote j=( jt) the stochastic linear maps on V defined by

jt(v)( p)=(Pt)
&1 v(X( p, t, |)).

The fact that the bilinear form is invariant under the parallel transport,
implies the crucial identity for any u # T m

n and v # T n
m

(u(X( p, t, |)), Ptv( p))=( jt(u)( p), v( p)). (6.6)

Moreover the process jt satisfies the stochastic differential equation

d(u, jt(v))=(u, jt(L(v))) dt+(u, jt({`k) v) dBk(t), (6.7)

where L(v)={`o(v)+1�2 �0�k�n {`k {`k(v).
When M, ( } , } ) is a Riemannian manifold and the connection respects

the metric, we identify T m
n with T n

m using the bilinear form (u, v)=(u, v).
It is simple to verify that jt is a *-homomorphism on the full tensor algebra
and that for any u, v # V we have

d(u, jt(v)) =(u, jt(L(v))) dt+(u, jt({`k v)) dBk(t). (6.8)

Since Pt preserves the scalar products, one also has

( jt(u), jt(v))=jt((u, v) ) :=(u, v)(#g( } )), (6.9)

where #t is the stochastic flow #t( p)=X( p, t, |). Thus jt pushes down
to a canonical map on the Clifford sections and it is also clear from
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(6.9) that for each u # C(V), jt(u) defines a bounded operator on H0 �

L2(0, F, n). That jt satisfies the cocycle relation on C(V) follows from
(6.5). Following [Sau] we define the strongly continuous unitary operators
V=[V(t), t�0] to be the bounded extensions of the following action on
C(V):

V(t) f=jt( f ) _d+ b #t

d+ &
1�2

. (6.10)

That V(t) is an isometry on C(V) follows from (6.18). Following the
arguments of [Sau] one checks that V(t) satisfies the stochastic differential
equation

dV(t)= :
1�k�n

V(t)(Dk dBk(t)+(1�2D2
k+Do) dt) (6.11)

on C(V)�E (M) where Dk={`k+1�2 div+`k (0�k�n). In particular
t � V(t) f is strongly continuous for each f # C(V). Thus the family (V(t))
of unitary operators is strongly continuous. Moreover since the operator
1�2 �1�k�d D2

k+D0 preserves C(V), it is a core and thus it follows by
Proposition 4.4 in [Moh] that V is the unique strongly continuous
operator Markov cocycle satisfying (6.11) on C(V). Now it is also routine
to verify that for all f # C(V)

jt( f )=V(t) *( f ) V(t)*.

Thus the natural bounded extension of jt to A0 , i.e. jt(x)=V(t) xV(t)*,
defines a _-weakly continuous Markov cocycle.

Consider a family L ji, i, j # S� of smooth bounded functions on M such
that

L ji+(Lij)*+ :
k # S

Lik(L jk)*=0 (6.12a)

L ji+(Lij)*+ :
k # S

(Lki)* Lkj=0. (6.12b)

Since the coefficients are bounded and satisfy (6.12b), the homomorphism
property of jt guarantees that there exists a co-isometric operator valued
processes U#[U(t), t�0] satisfying

dU(t)=U(t) jt(L ji) d4ij (t), U(0)=I. (6.13)

Now set W(t)=U(t)V(t), t�0. A simple application of the quantum Ito
formula gives

dW(t)=W(t) :
i, j # S�

K ij d4ij (t) (6.14)
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on C(V)�E (M), where

K ji=L ji+Z ji+ :
k # S

kkiZ jk. (6.15)

Now we will make a more specific choice for L ji, i, j # S� . Choose

L ji={
0,
,k ,
&,k ,
&1�2 �k # S ,2

k ,

if i, j # S
if i # S, j=0
if i=0, j # S
if i=0=j,

where ,i=1�2 div+`i and verify that

K ji={
0,
{`i ,
&{*̀

j
,

&1�2 �k # S {*̀
k
{`k

+iH,

if i, j # S
if i # S, j=0
if i=0, j # S
if i=0=j,

where H=Do+�k # S (,kDk+Dk ,k) is defined on C(V) and H*=&H.
So far the choice of `k (0�k�n) were arbitrary. For any fixed vector field
`$o we now choose `o such that H=D`$o . The following equation (6.16) was
discussed by D. Applebaum [Ap2].

Proposition (6.1) Let `k , (0�k�n) be a family of smooth vector
fields. Then there exists a unique family U=[U(t), t�0] of unitary
operators such that

dU(t)= :
k # S

U(t)[{`k
dA+

k (t)&{*̀
k

dAk(t)+(1�2 {*̀
k
{`k

+D`o
) dt] (6.16)

on C(V)�E (M).

Proof. That it exists and is co isometric follows from the preceeding
paragraph. Since L=1�2{ *̀k{`k+D`o is the generator of a contractive semi-
group and C(V) is invariant under the action of L, C(V) is a core for L.
Hence by Proposition 4.4 in [Moh] we conclude that U is the unique solu-
tion of (6.16). To show the isometric property we consider, following
[Jou], the time reflected cocycle U� (t)=1(Rt)U(t)* 1(Rt)*, where Rt is the
time reflection with respect to t, defined by

Rt(u)(x)={u(t&x),
u(x),

if 0�x�t,
otherwise.
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Note that U� (t) is weakly differentiable, and thus it admits a stochastic
representation [Ac Jou Li], [Fag]. An easy computation shows that it has
the stochastic representation

dU� (t)= :
k # S

U� (t)[&{`k
dA+

k (t)+{*̀
k

dAk(t)+(1�2 {*̀
k
{`k

&D`o
) dt]

on C(V)�E (M). Replacing the family `k by &`k in (6.16) we conclude
from the first part that U� (t) is co-isometric. Thus U(t) is unitary.

Notice that A0 �B(1(L2(R+))) inherits the grading of A0 and that the
inner cocycle associated with U(t) also respects this grading, i.e. Pm jt(x)
Pn=jt(PmxPn), such a cocycle will be called graded. The main result of the
present section is that a _-weakly continuous graded cocycle on A0 can be
realized as stochastic parallel transport with respect to some connection on
M. First we restrict ourselves to _-weakly continuous Markov cocycles on
L�(M, +).

Definition (6.2) Let ( jt), (t�0), be a _-weakly continuous Markov
cocycle on L�(M, +) and %00 be the generator of the associated Markov
semigroup Pt defined as in (3.6). ( jt) is said to be a diffusion if the follow-
ing holds:

(a) The domain of %00 contains the smooth functions.

(b) For each smooth , the associated martingale X(,, t), t�0,
defined by (3.6), has continuous trajectories in the sense of Definition (2.8),
i.e. [[X, X]]=((X, X))

( jt) is said to be completely non deterministic if there exists no non con-
stant function , such that jt(,) # L�(M, +) for all t�0.

Lemma (6.3) Let %: C�
o � Ao=L�(M) be a linear derivation, i.e., for

any two elements ,, ,$ # C�
o

%(,,$)=%(,) ,$+,%(,$).

Then there exists a vector field ` such that its local representative in a chart
(O, /) on M is

(x, %(/1)( p), %(/2)( p), ..., %(/n)( p)), /( p)=x # U$,

where /: U � U$/Rn and %(/k) are locally bounded measurable functions on
U. Moreover the representation is independent of the chart.
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Proof. The proof is an easy adaptation of the known characterization
of smooth vector fields as derivations which preserve smooth functions. For
a proof we refer to [AbMaRa].

Proposition (6.4) Let jt , t�0 be a diffusion in the sense of Defini-
tion (6.2). Then there exists a family `k , (k�0) of locally bounded
measurable vector fields on the manifold M such that

djt(,)= :
k # S

jt(`k(,)) dBk(t)+jt(1�2`k`k(,)+`o(,)) dt (6.17)

on C(V)�E (M). Moreover the following holds:

(a) `k is smooth if each %io preserves the smooth elements.

(b) If jt is completely non-deterministic, then for each point p # M the
family `k( p) (1�k�n) of vectors forms a basis for Tp(M), the tangent
space of M at p.

Proof. Since smooth functions with compact support form an algebra
under point-wise mutiplication the associated martingale X(,, t) is regular.
Hence , is an element in the domain of each % ji, i, j # S� . By our hypothesis
X(,, t) has continuous trajectories hence by Proposition (2.6) we have
% ji (,)=0 for all i, j # S. As a consequence of the structure relations (3.11)
we have, for any i # S,

%io(,,$)=%io(,) ,$+,%io(,$) (6.18)

%o(,,$)=%o(,) ,$+,%o(,$)+ :
i # S

%oi(,) %io(,$) (6.19)

for all ,, ,$ # C�
o (M). From (6.18) and Lemma (6.3) we conclude that there

exist a family `i (i # S) of bounded measurable vector fields such that
%i0(,)=`i (,). Define the linear map D on C�

o (M) by

D(,)=%00(,)&1�2 :
i # S

`i (`i (,).

Now because of (6.19) D is also a derivation hence, again by
Lemma (6.3), there exists a bounded measurable vector field `0 such that

%00(,)=`0(,)+1�2 :
i # S

`i (`i (,).

(a) is trivial. To prove (b) it is enough to show that there is no non-con-
stant smooth function , such that

`k(,)=0 for all 1�k�n. (6.20)
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But for such a function (6.17) implies that ( jt( f )) is a deterministic
operator process, i.e. a family of elements of L�(M, +), thus f is a constant
by our hypothesis.

Remark (6.5) It is not clear whether the %i0, (i # S) will preserve the
smooth elements if %00 does so. This technical point puts a hurdle to
characterise the diffusions associated with smooth vector fields.

Theorem (6.6) Let Ao=C(V)". Let ( jt), (t�0) be an injective graded
_-weakly continuous Markov cocyle on A0 and suppose that the associated
martingales X(t, x) have continuous trajectories in the sense of Defini-
tion (2.5). Furthermore assume that the structure maps % ji (i, j # S� ) preserve
the smooth Clifford sections and the associated diffusion is completely non
deterministic. Then there exists a unique family [`k , 0�k�n] of smooth
vector fields and a unique connection { such that

djt( f )=jt({`k
( f )) dBk(t)+jt(L( f )) dt, (6.21)

where
L=1�2 {`k

{`k
+{`o

+$ (6.22)

and $ is a derivation on C(V) such that $( f )=0 for any smooth function f.

Proof. We need to study the structure maps appearing in the represen-
tation theorem of the _-weakly continuous Markov cocycle. It follows from
the independence of the basic processes, applied to the stochastic represen-
tation of the processes jt(Pm xPn)=Pm jt(x)Pn that each % ji is graded map
on C(V).

Since, by Proposition (2.9), the representation is gauge free i.e. % ji=0 for
any i, j # S, for each i # S, %io is a graded derivation on C(V), in particular,
its restriction to the smooth functions is induced by a smooth vector field
`i (1�i�d ). From the Clifford commutation relations g�h+h�g=
2(g, h) and the derivation property of %io it follows that

(%i0( f ), g)+( f, %i0(g))=`i (( f, g) ). (6.23)

The process ( jt) being completely non-deterministic, the vectors `i ( p)
(1�i�d ) span Tp(M) and thus for any fixed smooth vector field `, one
has in a local chart (O, /) `( p)=,i ( p) `i ( p) for some smooth functions ,i

on O. Define

{`=,i%i0 (6.24)

on V. Since the %io are globally defined, the right hand side is independent
of the chart. It is evident from (6.23) that { indeed defines a connection on
M and it respects the metric.
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Now, we define a linear map D on C(V) by

D(g)=%00(g)&1�2 :
i # S

{`i
{`i

(g)

and verify that D is also a derivation on C(V). Thus there exists a smooth
vector field `0 such that D={`0+$ where $ is a derivation on C(V) such
that $( f )=0 for smooth function f.

Remark (6.7) Note that the representation of a Markov cocycle given
by Theorem (6.5), involves an unspecified derivation $. When $=0 we
obtain Ito's parallel transport. The connection between Markov cocycles
and a stochastic generalization of the imprimitivity theorem, shall be
investigated elsewhere [AcMoh].
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