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We characterize a class of quantum Markov states in terms of a locality property of
their modular automorphism group or, equivalently, of their w-conditional expectations
and we give an explicit description of the structure of these states. This study is meant
as a starting point for the investigation of the structure of Markovian KMS-states of
quantum spin chains as well as of multidimensional quantum: spin lattices.

1. Introduction

Quantum Markov chains were introduced in Refs. 1 and 6 and since then several
progresses have been made in their applications to physical models. In particular,
starting from Ref. 20 a subclass of quantum Markov chains, also called finitely
correlated stotes, was shown to coincide!® % with the so-called walence bond states
introduced in the late '80s” as an affirmative example of the Hadane conjecture
on antiferromagnetic Heisenberg models with integer spin. More recently the same
class of states was shown to coincide with the class of the so-called spin lodder
models* which possess the split property.'® In another direction, the quantum
Markov chains are currently used as trial states in Hartree—Fock approximations of
solid state models, for example the Heisenberg model®® or the fixed points of the
density matriz renormalization group (DMRG).17-23

Several progresses have also been made in the problem of clarifying the math-
ematical structure of quantum Markov chains. %! In particular, Park was able
to compute explicitly their entropy,®? Fannes, Nachtergaele and Werner clarified
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the ergodic structure of an important subclass of these states and gave necessary
and sufficient conditions for a quantum Markov state to be pure*™1® and Matsui'®
characterized them as zero energy states of nearest neighbor Hamiltonians on one-
dimensional spin lattices.

This paper goes in some sense in the complementary direction with respect to
the above-mentioned Matsui’s result, i.e. we look for characterizations of quan-
tum Markov chains as equilibrium states, defined in terms of the Kubo—-Martin-
Schwinger (KMS) condition. More precisely, following Ref. 4, we characterize a class
of quantum Markov states in terms of a locality property of their modular auto-
morphism group or, equivalently of their y-conditional expectations. Starting from
this property we are able to give a full structure theorem for the corresponding
class of Markovian states.

We restrict our discussion to one-dimensional lattices, but our technique ex-
tends, with minor modifications, to multidimensional quantum spin lattices as well
as to continuous time Markov processes. Thus the present results can therefore be
considered as a starting point for a definition and a structure theory of quantum
Markov fields.

2. Basic Notions and Notations

Throughout this paper A will be the C*-algebra @, ., My, obtained as infinite
tensor product of the finite-dimensional matrix algebra My, d € N, d > 2, cl.
Sec. 1.22 of Ref. 25. We counsider only the cases G = Nor G =Z. Thusforalln € ¢
there are injective unital *-homomorphisms i, : My — A such that 4, (b} and im (B
commute for different n,m € G. Denote for all F' C G by Ap = C*({in(b) 1 n €
F,b € My}) the C*-subalgebra generated by {i,(b) : n € F, b € My}. Further we
denote n| r= {...,n} NG and {n,m] .= {n,...,m}.
We follow Ref. 4 for the definition of Markov states on A:

Definition 2.1. Let there be given a triple (A;, Av, Ao} (i = inside, o = outside,
b = boundary) of commuting C*-subalgebras of A (a localization) and denote
Ap = C*(A U Ap) and similarly for Aopi, Agb. A quasi-conditional expectation
with respect to the triple {A4;, Ay, Ao) is a completely positive unit preserving map
&+ Aobi — Agp such that Fix € D A,, ie.

Elay) = ao, o € Ap . (1)
An equivalent formulation gives the following:
Lemma 2.1. £ is a quasi-conditional ezpectation iff

E{aotnti) = aof(anai), a; € Ai,ap € Ap, a0 € Ag . (2)

Proof. In fact, by polarization the equation

E(a*a) = E(a”)E(a)
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implies
Ela™y) =E(a")E(y), (e A) (3)
and the fact that A, is a *-algebra completes the proof. O

3. Markovian States on @, My

First let G = N. We call a state ¢ on A locally faithful if it is faithful on each An,
n € N. Then, for each n € N there exists the p-conditional ezpectation 8 i)
Any1) > Ay, defined as in Ref. 3. The following facts were proven in Ref. 4

Theorem 3.1. For o state ¢ on A which is locally faithful, the following statements
are equivalent;

(a) For all n € N, the w-conditional expectation E? 1), leoves the algebra A,
pontwise invariant.

(b) For eachn & N, there exists a completely positive unit preserving map Ent1lm] ¢
ArH-l] — /Ln] such that:

Fn) © gn-i-I},n] = ¥nt1] s (4)
where @n,; denotes the restriction of ¢ on Apyy and A, _y; C Fix Eni1)n)-
(c) For anyn €N

n+1
J: ]’A 1 = U:L]!Anfu s (5)

where a"H], ay I denote the modular automorphism groups associaled to the

pairs (Ani1), @nt1)) ond (A, @), respectively.

Therefore, we can make the following definition which also suits the states which
are not locally faithful.

Definition 3.1. A state ¢ on A is called Markovian if for each n € N it is invariant
under a map Ent1)n) + Ani1y > Anp which is a quasi-conditional expectation with
respect to the localization (An4+1, An, A,_q)).

If ¢ is a Markovian state on A and n € N, the limit of the ergodic averages of
Ent1),n) always exists and is a completely positive unit preserving map £°

Api1) v Apj. Moreover, 5211; ] projects onto

Fix gﬂ+1} n) = Fix gn.fml],n} 2 Aﬂ_ll

n-+1], n]

and

#n] © En—}-lj n] T = Prti] -

Thus  is Markovian with respect to the collection (Env), n])nEN iff it is Markovian
with respect to (£29 1], n])nEN If 5 is locally faithful, we know® that Fix Entl)n)
a +-algebra and £2° nt1], 18 an Umegaki conditional expectation. For d = 2, thls is
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true for all such completely positive unit preserving maps, see Lemma 6.1. Suppose
in addition that ¢ is stationary, i.e.

poll =y,

where § is the right shift on A. By translation invariance there is an Umegaki
conditional expectation £ : My @ My — My with

. 1y e
Sfr(:?l—l],n}lv‘i[n,n-j-u =ipofo (%n @ %nil)!Agn,nH} (6)

for all n € N.

We will follow this scheme, but drop the assumptions that ¢ is locally faithful
and stationary. Just assume that ¢ is a Markovian state with the property that
all ::Sr”‘n}, n € N satisfy (6) for some Umegaki conditional expectation &, i.e. the
fixed points of T‘:‘?H]!n] form a =-algebra. Let By be the range of £ and let P4,..., P,

be minimal projections in the center of By such that
D_F=1 (7)
b

and By = P;ByF; is a factor. Then By can be realized as a matrix algebra on the
space

C'=H=CPH;, H;=PH
J

and P;Bg = P;BoF; is a subfactor of B(H;). Therefore, H; = H,o ® H;1 and
PIBDP.? = P_?B(HJD) ® 17‘113'1}).’," '
From this we see

By = (D Piln,, @ B(H) P

7

and

By v By =By By) = P PiMyP; .
i

Clearly, for each j, the following holds
Py MyP; = P;BoP; ® PiBF; (®)
We will fix this identification in the following. The conditional expectation property

of 7(:?{-1],'.1] is reflected by the fact that £ is a conditional expectation, if we identify

By with By 1 C My ® M.

Lemma 3.1. Any conditional expectation E from Mg @ My onto By @ 1 ~ By has
the form

E(z) =Y P%;(PzP;)Fy, {9
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where ®; 1 B(Hjo) @ B(Hj1) ® Mg — B(Hjo) @ 11 is the Umegaki conditional
expectation

@;(bjo ® bj1 ® b) = bjod; (b @b ® 1

for states ¢; on B{H 1) ® Mg.

Proof. We know that By is mapped into itself by the conditional expectation Ep,

EP(.I,‘) = Zijpj, T C Md®Md (10)
i

which is the unique conditional expectation onto By V Bj. Since P, € Fix K, it
follows that Py E(x) = E(PyxPy) = PoE(Pyz Py )P, which implies by (7)

E(z) = Zgg(pjzg)ﬁ_

Denoting F; = E(F; - P;), we see that ¥ is a conditional expectation iff all the E;’s
are conditional expectations from B(H;) ® My onto B(H ;o) ® 1;1 @ 1p,. Now we
get from the conditional expectation property

Ei{o2b2c)=e®1Q1E;(12bc)=F;(1®0bR2c)ak® 131, a € B(Hjo) .

Since Ej{1®b®c) commutes with all a® 1® 1, it must be a scalar. Therefore, there
is a state ¢; on B(H;1) @ Mg with E;(1®b® c) = ©;(b® c). This shows £; = 3,
and completes the proof. O

Now we want to return o a Markovian state ¢. It is standard to see? that
W@ @by) = 0o ®- - @by ® E(bp ®1))
= @o(EB RED @+ ® E(bn1 ® E(b, @1))))), (11)

Le. y is a quantum Markov chain in the sense of Refs. 1 and 6. Thus the knowledge
of the initial state o (a state on My) and of £ uniquely determines the structure
of a Markaov state.

Lemma 3.2. If ¢ satisfies (11), then with the conditional expectation Ep defined
by (10):

plbp @ Rbp} = @(Ep{bo) @ -+ @ Ep{by))

and setting £;(x) = PjzP;:

Plbo® - ®bu) = Y @(Ejolbo) &, (ba)). (12)

Jasndn
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Proof. In the proof of Lemma 2.1 we saw that £(Ep (a) ® b) = £(a ® b). This,
together with (11), shows that

#(Ep(bo) ©--- @ Bp(bn)) = 9(E(Ep(bo) @ - ® £(Ep(buo1) ® E(Ep(bp) ® 1))
=@(E(bo @ -+~ ® E(bn—1 ® E(br, 2 1))))
=plbo @ - B by).

Since Ep = 37 &;, this proves the second formula. |

Now we set
Pjo..in 7= (3o (1) -+ £, (1) = p(Pj ® - ® B}, ).
Further, we define maps &;;: : PMuP; ® Py By Py v PjByP; through
Eiyr(a®@b) = E(€;(a) ® E;:(D)).
Due to (12) and Markovianity, we obtain

Plo® - 8ba) = D u(Ep i (b0® D E s (ba®Pr) ).

rendnadnl

First, we look at the center of By. Set m;;0 := ¢;(P; ® Py) and ;1=

wo(L). Then
one has

Int1

@B POPTID) - (P (P, @ P,,,,)).
By definition,

goo(Pn ® an«[Ll) = ijn(ﬁjn (PJ P]n+1)Rin = (p.?n(l ® len+l}]:3.n !
We set pj; = ¢;(P; ® Pj:) and obtain

SO(BT(GD) e PJ(n (n+1)) — (P( ) ' -P(n)) (la.:'n (1 ® 'PJn+l)

Ini1

G(PQ ... p®

Jn ) Jn.?nJrl

0
= ‘P(Pj(e)) "Bjojs " Pinjnir -
Denoting m; = @o(P;) we obtain

PP - P = i i i
Corollary 3.1. For all indices J0se 3 dn
Piossin = Fio " Wjajs " Mjn_ 3 - (13)
Proof. It is easy to see that
iy (P ® Py) = E(P; © Pyr) = Pypjjn( P @ Pyi) = Pymyye

A simple induction completes the proof.

iy




{a) ® b) = E(e ®b). This,

{bn—1) ® E(Ep(bn) @1))))
(b @ 1))))

@ Fy,).
:Bo P; through
).

in,jn+1(b'ﬂ ® ‘Pjn+1) tT )) .

%} and #; == @o{P;). Then

3‘". @ Pjn+1)) :

(IDJn(l ® I_)jﬁ‘!rl)ﬂn "

i (l@P;,..)

frdnt+1

Pindntr -

jndnt1 -

(13)

0 Py ) = Pymjje .
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Remark 3.1. Observe that the right-hand side in (13) is equal to
Prob(Xo = jo, X1 =J1,.. -, X0 = jn, Xn+1 = jnt1),

where (X} is the homogeneous Markov process on {1,...,n} (or equivalently, on
the atoms of the center of Fix&) with initial distribution P(Xy = j) = «; and
transition probabilities 7, = ¢;(1 @ Pjr). We denote the law of this process by pu.

Lemma 3.3. For a fized sequence (j,) =: w, there exists a state v, on

@ Pi. MuP;, = Q) Py, BoP;, ® P, ByP;,
neN neN

= Py, Bo by, @ ® PjnBl‘,IlP'n ® P:fn+1BUPjn+1 {14)
ncM

such that, for alln € N, bg,...,b, € My
P(Ejob0) @ @& (b)) @ P, ®1---)

== pjl]y-~-;jn:jn+l (PW(EjD (bO} ® tor ® g.n (bn) ® ‘Fif-n+l ® o ) ¢ (15)

Proof. Clearly, for all n there is a state @, which fulfils (15) for all by, . . ., b, € My,
‘We need only to prove compatibility. Observe

(Ejalbo) ® - @& (ba) ® Py, ® P, L,)
= p(Ejo(bo) @ --- ® & (bn) @ E(Py,,, ® Fj,,,) ®--7)
= @50 (bo) ® -+ ® &, (bn) @ Fjyy @ 1), (Phy ® Fy )
= @(Ejo(bo) ® - @& (bn) @ Fjyy @) 435y -

Together with pj, . i. dnis Tinsidnez = Porrinisjnss bHis shows compatibility of
the states (@) if pjo,...jns1.dnse > 0. But this is true for p-a.a. w = (j). O
Remark 3.2. Observe that (12) is not enough to construct the states .. We
need in (15) at least one additional F;_
Markovian structure of .

. on the right. This reflects the quantum

For mj; > 0, we define the states n;;» on P;ByP; @ PyBoFy,

i (b} @ byr)

Tyt

Ny (0 @ by ) = , by € PjByPy by € PuBoPy .

Similarly, for 7; > 0, we defline the states 7; by

wolb;
i (b;) = M bj € PiByPF;.

Ty
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Lemma 3.4. In the representation (14),
P = Mo @ Q) Mjuiuss (16)
nel
for p-a.e. w = (3,).

Proof. Fixn € N, (ju) = w such that pj,..;.., > 0 and b, € Py BoPy,, b, €
P ByPy,, k=0,...,n From (11) we obtain

Ployegnp1Pu(lo @B @ - @ b1 @Y, @b, @)
= oo R Q- Qb1 Db, 1 @b, QP )
=Pl @Y Q@b 1 @Y, REDBLRY, @ P )
=plo @@ b1 @by, Db ® )y, 5., (B, ® Py, )

= fp(b(} ® b6 R Qb1 @ b;_l @b, ® l)ﬂjn,jnﬂ (b:z @ P

Intl )ﬂ-j‘n P A

= Mo (90) o1 (B @ b1) - M 2 (B, ® 1)y T 05
= Piosecosfrnrr o (bﬂ)njo.h (b"(} ® bl) EERE/ B S (b;z @ 1) .

Thus, for all such w, (16) is valid. But this set of w has y-measure 1 and the proof
is complete. O

Summarizing, we obtain

Theorem 3.2. Let ¢ be o Markovian stale with stationary completely positive unit
preserving maps E,q) ) related to € which is an Umegaki conditional expectation
onto By with minimal central projections (P;);. Define Tjy Tgjrs M, Mg as above.
Further, let p be the law of the classical Markov process with initial distribution
(m;); and transition probabilities (). Then

= / p{dwpe, (17)
&
in the sense that for alln € N

PR - @hR1Q--)

= Z ij:'--:jn+1(Pjﬂu-~-:jn+ly--v(8j0(b0) - ® gn(bn) ® Pjn+1 & - ) : (18)

jO!'“rjn,jn+l

Moreover,

(a0}
Pliarndni) = o ® Ninrintr -

n=0




(16)

}and b € ijB()ij, b;c S

)

1)

3 Pji))
inia(On ® Pi )

fn+3 (b;?. ® Pjn+1 )Trjmjﬂ"H

Ujo.51 T fn s dmr
L®1).

y-measure 1 and the proof
|

ary completely positive unit
gaki conditional ezpectation
iy ity N, N a5 above,
ess with initiel distribution

(17)

in(bn) ® Fj, s ®-0) . (18)

(19)
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Conversely, fiz By, a probability distribution (r;);, transition probabilities (pi; ).,
states n; on B(Hjo) for each j with w5 > 0 and states 1; ;o on B(Hjy ® M) for all
53" with wj; > 0. Then (17) and (19) define a state @ on A which is Markovian. In
the notations of Lemma 3.1, the structure of a corresponding Umegaki conditional
expectation &£ is determined by

$5{b' @ b) = ¢; (¥ ® Ep(})). (20)
(Ep is given by (10) and
oi( @ Ei(c® ) = D migrmygr (V' © )mjrgumy o (€ @1) )
jlf

Remark 3.3. Please note that the symbol |, o 15 10t 2 usual direct integral® because
we need in (15) an additional P;_ ,, to be present. In other words, it is like a
“Markovian” direct integral.

n41

Remark 3.4. One can easily apply the above technique also to the inhomogeneous
case. In fact, we did something similar for the “fiber” state .

Proof. The structure of Markovian states is determined by the above considera- -

tions. Thus we prove here only that states ¢ determined by (18) are Markovian.
Clearly, this equation determines a state ¢ on A. Due to (20} it is enough to check
for p-a.e. (jn)

Py @b @ @ (b @B IR L)
=({bo @) R - RE{br1 R, 1) R b ®B,))®1--)
for all b, € P, BoPy,, b; € P;, ByP;,. Then
(b @) ® - RE(bp-1 @Y, _1) @b @) ®1--4)
=D (o @) @ Bbp_a @ Uy, 5, (bl ® i)y, (U, @ P)
j

=) Pioreninidio (00)0iags (V0 @ b1) 5,32 (B3 ® bt )i
i

X (brm1 ® b )5, (b, ® Fy)
=Y o((b®bp) @ @b ®b,)2P®1 )
7
=o(bo®b) @ - @ (b ®b;,) @),
This completes the proof. g

We will shortly present some examples.
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Example 3.1. Assume that By is maximal Abelian, i.e. By = @ ; CF;, allH; = C.
This leads to .4, = C and g, being trivial. But to each P; there belongs a natural
state 1; : @ > tr P;a. So (18) translates into

plbo @ @) = [ (i) i 00) 5, ().

Thus ¢ is a mixture of ordinary product states under a Markov process. Such
states were considered in Ref. 5 and a limit theorem provided even a continuous
time analogue,

Example 3.2. If By is a factor, the Markov process (X} is constant, ie. p is
trivial. Thus ¢ = 79 &, 7, where 7 is a state on B ® By. There are other recent
works'! suggesting one to think of such states as quantum Markov states. We want
to note that such states also play a role in the construction of valence bond solid
(VBS) states.”15

In particular, if By = C1 or By = My, the Markovian states are just ordinary
product states.

Example 3.3. If d = 2, there are only three possible types of algebras By: By = C1,
By = My and maximal Abelian algebras. In view of Lemma 6.1, all Markovian states
are either product states or come from a classical Markov process. This seems $o
be a partial reverse of the transfer matrix principle which relates to any classical
spin system a quantum spin system of lower dimension.?4

We can look for several criteria to be fulfilled for the state ¢ defined by (17)
and (19) with the various ingredients. The following results are straightforward, we
oniit the proofs.

Lemma 3.5. ¢ is locally faithful iff
(a
(b

(c
(d

w; >0 for all 4,

Jor all 3,7, it holds m;; > 0,

for all §, the state n; is faithful and
For all j,j' the state n;; is faithful.

e et S e

Remark 3.5. In fact, £ is faithful iff (b) and (d) are satisfied.
Lemma 3.6. y is stotionary iff

(a) p is stationary, i.e. >0 M5 = wj and
(b) we have for all j'

> mimigp iy (P @b) = mpmp (b), b PyBoPy. (21)
i

Consequently, the stationary Markovian state is unique iff the invariant distribution
(m5); is unique.
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Proof. Clearly, i is stationary only if (X,,) is stationary. Moreover,
Pl b @) e (b @) ®1)

=Y vFemob) e - ®b.ob,)01
¥

= Y T g (L BT oy (B @ b2) Sy, oy (Bl 1) .
7 T

On the other hand,
P ®b)® - @ (b @ b)) @ 1)

= 5,1 (BT o o (B ® B2) - Y g, omy e (B @ 1)
jl

This shows {21). The proof of sufficiency is straightforward.

Moreover, if the invariant distribution (#;}; is unique, then {21) determines all
the ¢ which are essential for determining the Markovian state. This completes the
proof. [

An interesting problem seems to be whether a state ¢ defined by (17) and (19)
is really leftinvariant under the original completely positive unit preserving maps

Eny1),n) OT equivalently, 87‘;11]’”].

Theorem 3.3. Suppose the completely positive unit preserving maps 512?!-1],11]’ ne
N come from one completely positive unit preserving map for which £ is an Umegaki
conditional ezpectation given by (9). From this description, construct m; and Tig-

Then a stote ¢ is tnvariant under all ﬁl],n]: n e N iff

(a) It has a representation (17) where p is the law of the Markov process
(Xn){(mi5), (m3)}-
(b) (X.) never visits points § for which there is a pair (§',j") with wsjmjige > 0
associated with and there exist b, ¢, ¢ such that
bl @ Fpe®cPy) , $;('® Pycky) éy(d @ Pyr)

T it g

Proof. We already showed that conditions (17) and (19) are necessary for a state
to be invariant. So, to prove the necessity of {(b), we can go to the fibers and have

to characterize the fiber states ¢,,, which are invariant under the maps £3°% given
by
EXbo @ @bn @b 1 @) =bo® - @by 1 ®EL, (b @bpi1) @,

Fnadnti

where £7%, is defined by

£ ({by @ by) @ (by @) = bjg“sjj, (0 @ by @ V)
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and the state dj; on PiByP; ® Py MyPy is given by

. (W @b
By oy = 220 ? ).

T4
We obtain for any invariant state @ for p-a.a. fibers

Pl @) @ - RET | ((bn-1®bj,_1) © (ba @ B,)))

n—1:Jn

= pullbo®by) ®- - ®ET i (a1 @by, 1) ®ES; (b @ BL)®1))).

midnt1

It follows
(Pw((bU ® b;)) R @ bnfl ®-- ')(&jn—i:jn (b:%—l @ (b'n ® b;a.))
- (Ejn—l,jn (b’ a1 ® bn)éjmjmm (b,:} @ 13jn+3)) = .

This shows that the term in parentheses has to vanish for p-a.a. (§,). This is
equivalent to {b).

To prove sufficiency, it is enough to show that for p-a.a. w the states ¢, are
invariant under the maps £5°*, n € N, described above. By the calculations before
Theorem 3.2, the following must hold

Now we find

Po(bo@by @ - ®ET | (b1 @b,y ®bn DD],))
= u(bo @by R+ b1 ®1)@j, s (b 1 @ bn @ Br).
From the assumption we know that p-a.a. w = (j,) fulfilforalln e N, n > 1
Pin-1,dn (V' B C) = Gjo_1,ja (V' @ @ 1) B jus (€ @1 R1).
T'hus we can conclude from the definition of ¢,
Pulbo @by @ @ET | (o1 @b ® b, @)
= Pulbo Db ® - ®bn1 @ 1)@y 5 (B @ b0 @ 1), oy (b, ®101)
= Pulbo®B @+ @ b1 ® 1)y (b1 B br)ips jnss (B @ 1)
= 05 {00)Psn s B0 B b1) -+ 0y (B2 @ bn1) 0y 5 (U g ® D)
X Pininss (P @ 1)
=pulbo @b Q- @by 1 @b, ®b, ®by).

This completes the proof.



7))

£ s ((br @ ) @ 1))
-1 ® (b R 7))

a+l)) = .

sh for p-a.a. (jn}. This is

J-a.a. w the states ¢, are
. By the calculations before

L @ b))
by @b ).
forallne N, n>1

irt1 (Cl @1I® 1) :

n & 1)@jn-jn+1 (b;z @l 1)
1) i i (U © 1)
B0—1)P;1— 1,50 (b1 ® )
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4. Relations to Potentials

In analogy to the classical case, we want to relate a Markovian state to a potential,
Fix a locally faithful state v on A (chosen as in the previous section). We define
self-adjoint operators (hy), ha) € Ay by

pyp=€¢ ™, neN (22)

if pn) is the density matrix of ¢,). The following is known from Theorem 4.2 of
Ref. 4.

Proposition 4.1. For a locally faithful state ¢ on A, the following statements are
equivalent:

(a) ¢ is @ Markovian state.
(b) ForallneN

eTithmcithain ¢ A teR. (23)

(¢c) For eachne N

o L/2hpy o 1/2h 0y A1) -
Remark 4.1. In Ref 4 a sequence {hg jncn satisfying (23) was called an Ising
potential. Note that not all Ising potentials define a Markovian state because some
compatibility conditions have to be fulfilled. Also the characterizations of Ising
potential from Theorem 3.2 of Ref. 4 is too indirect for the construction of examples.
Now, we want 10 go one step forward in this direction and lock at an intrinsic
property of (h,)) assuring that ¢ is Markovian.

Proposition 4.2. ¢ is o Markovian state if and only if for ell n € N there is
some by € Ap such that by — hyy € Alnnt1]s bn commutes with hn) and hp )
commutes with hn; — An.

Proof. Suppose that ¢ is Markovian. So there are the ingredients y, 7;, 7;,.. We
know from Lemma 3.5 that p;, ;. > 0forall jo,...,jn and all 4;, n;;- are faithful.
So we relate to the latter state potentials h; € P;BoP;, h;j € PiByP; @ Py By Py .
Further, there are also (faithful} states

Bi(0) =Y migmiy (b @ Pp), b PByF
j’

with potentials ﬁj & P;BjP;. Then, using Theorern 3.2 we find by easy calculation

Pl = > Eioongu(—10(Bio,. 1)1 +d0(Bly) +io (R )
Jo,rdn

ot (B ) Fin(R))

In—-1,in

with

Eioyinb) = Pjo® - @ P 0P, ®---® P
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and the short hand Tmn = T @ ip. Setting h,, =
assertion.

Conversely, we obtain

> ;in (hj) we derive easily the

e~ thn ez’f.h,,HI - eqthnefit(hﬂgfhn)eithnﬂl — e—z’thneit((hmq]ﬁh.,,})+h,,1) e A[n, ] -

By (23) this implies the Markovianity of ¢ and the proof is complete. a0
Corollary 4.1. Suppose @ 1s a locally faithful Markovian state on A. Then it is g
KMS state with respect to the one-parameter automorphism group o,

oila) = liﬁm e““"io’"]aeimio’”i, ac A tcR.
i o0

In particular, ¢ has a faithful extension to To(A)’, where T 18 the GNS-
representation of ¢.

Proof. The first part follows from the remark after the proof of Theorem 4.2 of
Ref. 4. The second part is an application of Corollary 5.3.9 of Ref. 9. O

5. Markovian States on Qg My

Now we want to deal with Markovian states on the full chain. The definition now
reads as
Definition 5.1. We call a state ¢ on A Morkovian state

fitisforallk < nez
invariant under a map &

k1], [en]t Aknt ) Alk,n) which is a quasi-conditional |
expectation with respect to the localization (Anyz, Any Ap—y).

e

We will restrict to the case of locally faithful states. Again, the completely
positive unit preserving maps should be stationary. A next problem is to construct

a suitable Umegaki conditional expectation £%°: My ® My > M, like in the case of
a half-chain.

Fabll

™ ™

Lemma 5.1. Suppose w 18 locally faithful Then for each n € Z there exists an

Umegaki conditional expectation E°n: Mg @ My v My such that every state ¢ f

invariant under all Ef":,n 1) (knp T > k€ Zds dnvariant under the lifting of £2° to

C
Ani1] too. Purthermore, An 1) @ Fix(£3°) C Fix(c‘,'["‘,';}nHj’[k‘n]) Jor allZ 3 k < n. #
Proof. From Ref. 3 we get for all £ < 5 the Umegaki conditional expectation £90-% 5¢

which projects onto Fix 8{(‘;,” +1],kyn) Moreover, we know that A[k,n_{,” is mapped
into Ag o) by £%%-1 8o £%6=1 ig ancther Umegaki conditional expectation leay- P
ing ¢ invariant, Therefore, the results of Ref. 3 imply that M

goo,k—l o gcx),k — goo,k o goo‘k—I — goo,.fc—l .
6.
Now, putting
e ) Tl
EX = lim £° 0 (in @ iny1) |
k-r—oo0




in(;) we derive easily the

Poi=hoa)thn) ¢ A ne1] -

of is complete. |

an state on A. Then it 15 a
WSTTL Group Oy

- AteR.

bl

where w1, s the GNS-

1e proof of Theorem 4.2 of
.3.9 of Ref. 9. O

| chain. The definition now

eifitisforalk<neZ
vhich is a quasi-conditional
Alt,n-1))-

bes. Again, the completely
ext problem is to construct
dq — M4 like in the case of

ach n € Z there exists an
{g such that every stale @
- under the lifting of £ to
1]%’"}) foral Z 2k < n.

nditional expectation £
w that A 1 is mapped
nditional expectation leav-
hat

oo, k—1
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we obtain a completely positive unit preserving map which has all the anncunced
properties. O

In the following, we will assume £° = £ o (ip, ® ips 1) for all n € Z and some
Umegaki conditional expectation £. We can also drop the assumption that ¢ is
locally faithful. Clearly, we can repeat the whole computations from the half-line
chain, Thus

Theorem 5.1. Let ¢ be o Markovian state with stationary completely positive unit
preserving maps £5° such that £ is an Umegaki conditional ezpectation onto By
with minimal central projections (P;);. Define w5, ;5 as above. Further, let it be
the law of the classical Markov process (Xy) with transition probabilities (pjj); .
Then {17) holds in the sense that

ol @b @ @bn) = /M(djn)w(jn)(”'®gjk(bk) ® - ®&,(bn) @), (24)
where the states v, on Ay, = @, .5 B(H;,) are determined as

Fiin = ®njna3‘n+1 . {25)
neZ
Conversely, fix By, transition probabilities (7 )45, and states n; j» on B(Hj1 @M )
for all 4,7 with ;3 > 0. Then (17) and (25) define a state ¢ on A which is
Markovian. In the sense of Lemma 3.1, the structure of a corresponding Umegaki
conditional expectation £ is determined by (20).

Remark 5.1. A close look at (24) and (25) shows that the structure of Markovian
states is invariant under time reversal, mapping 4, into .A_,. This happens in
analogy to classical processes, for which the backward and forward Markov prop-
erties are equivalent. In the quantum case this is quite unexpected, as there is a
considerable asymmetry in the definition of quasi-conditional expectations.

So it remains to look at the uniqueness of Markovian states in this more general
framework.

Corollary 5.1. Suppose (m;;+) is aperiodic. Then all £ Markovian states are sta-
tionary.

If (z;p ) has period p, any Markovian state is periodic and the dimension of the
set of Markovian states is at most p.

Proof. It is straightforward, all results depend only on the possible (i );;r
Markov processes. 1

6. A Special Property for d = 2

There remains the following question. How much restrictive is the assumption that
£ is an Umegaki conditional expectation?
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Lemma 6.1. Suppose £ is a completely positive unit preserving map on Ms which
is also a projection: € o £ = E£. Then it is an Umegaki conditional expectation, i.e.
its range is a x-algebra.

Proof. We assume the contrary. Clearly, 1 € Fix£&. Moreover, there should be
another a € My with @ = £{a) not being a multiple of 1. Without loss of generality
we may assume a to be self-adjoint. Thus it has two-point spectrum. Shifting a by
a multiple of 1 and scaling appropriately we achieve that a is a projection. Say,
a = (1 4 o,)/2, where g,,a,,0, are the Pauli matrices. Because we assumned that
Fix £ is not a *-algebra there is yet another b € Fix £ which is not in the linear hull
of 1 and a. Again, we may assume that b is self-adjoint. Using hinear algebra we
may force b = oy, say. But 62 = 07 = 1 € Fix £ and as Lemma 2.1, Eq. (3) shows

0 = 100y = 1€(05)E(oy) = i€(0.04) = E(0,).

Consequently, o, € Fix& which forces Fix & = M;. This contradiction completes
the proof. -}
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