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It is usually calimed that quantum computer can outperform classical computer.
Is this statement true? We discuss this issue, not in general, but in the context of
the most famous algorithm of quantum computation: Shor’s algorithm.

1. Introduction

Shor’s algorithm is supposed to achieve integer factorization faster than
classical algorithms. In order to discuss this issue we shortly review Shor’s
algorithm and the strictly related Simon’s period- nding algorithm (see
section (2)). Then we argue that, since quantum computer is an analogical
machine, the complexity estimates on quantum algorithms should involve
the analysis of the concrete implementation of the operations whose use is
required by these algorithms. An outline of this analysis is done in section
(3).
Finally, in order to compare the performance of Shor’s algorithm with some
classical probabilistic factorization algorithms, the latter ones are shortly
reviewed in section (4).
The essence of the factorization problem can be described as follows:
Given a natural integer N = pq, which is the product of two primes p 6= q,
nd p and q. If p and q are large and satisfy additional diophantine condi-
tions, the problem is hard and this di culty has been exploited by a famous
cryptographic algorithm.
A classical argument of number theory reduces the factorization problem
to the problem of nding the period of the function a 7 ya (mod N) (see
section (4)).
At the moment there is no classical algorithm that can nd the period of
the function a 7 ya (mod N) (hence the factorization problem) in a num-
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ber of steps of order O(logN)
It was however known a classical probabilistic algorithm that achieves this
goal, not exactly, but with probability of order O(1/ logN).
D. Simon [Sim94] proposed a quantum algorithm that allows to nd, using
O(logN) operations and with probability of order O(1/ logN), the period
of an arbitrary function f : {0, . . . ,N 1} {0, . . . ,N 1} each value of
which can be calculated with an algorithm of complexity of order O(logN)
(with respect to some standard measure of complexity).
P. W. Shor [Sho94a] applied Simon’s period nding algorithm to the func-
tion a 7 ya (mod N) to construct a quantum factorization algorithm which
needs a number of steps of the same order of magnitude as the classical
probabilistic algorithm and achieves the same result with a probability of
the same order of magnitude.

Contrarily to the classical probabilistic algorithm, Simon’s (hence
Shor’s) algorithm is based on additional physical assumptions the experi-
mental veri cation of some of which is at the moment not available.
The goal of the present note is to point out some of these assumptions.
Some of the considerations in the present notes are contained in the un-
published lectures of the author at the Volterra-CIRM International School
"Quantum Computer and Quantum Information", Trento, July 25-31, 2001.

2. Simon’s period- nding quantum algorithm

Given N N let f : {0, 1, . . . , N 1} {0, 1, . . . ,N 1} be a periodic
function with period r, i.e. r is the smallest number in the domain of f
such that

f(x) = f(x+N r) ; x {0, 1, . . . , N 1} (1)

where the symbol +N denotes addition modulo N .
Since addition is taken modulo N , if (1) is satis ed by r, then it is also
satis ed by N r. Thus by de nition of period, one must have

r N r r N/2

Suppose that we know that f is an e ciently computable function, i.e.
that, for each x, f(x) can be e ciently computed (i.e. in a number of steps
which is polynomial in the number of digits of x).
If these are the only informations on f , the only way to nd exactly the
period is to carry out an exhaustive search. This requires to calculate f(x)
for a set of x of cardinality N/2. This algorithm is exponential in the
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number of bits required to specify N , which is of order logN .
In absence of exact results one turns to probabilistic algorithms, either
classical or quantum.
As we have seen the performances of the two are essentially the same.

2.1. Ingredients of Simon’s quantum period nding
algorithm (QPFA)

The state space of this algorithm is

H2n H2n (C2) n (C2) n (2)

where H := C2 is the so—called q—bit space (the reason why, in (2), one
uses two copies of the space H2n is explained in Step (3) of the algorithm
described in section (2.2)).
In the space C2 we x the computational basis,

|0i := 0

1

¶
; |1i := 1

0

¶
which induces the basis (still called computational) in (C2) n

| 1i · · · | ni =: | 1, . . . , ni ; j {0, 1} (3)

Identifying the binary string ( 1, . . . , n) to the binary expansion of a nat-
ural integer through the formula

x =
NX
j=1

j2
j 1 ; x {0, . . . , N 1 = 2n 1}; j {0, 1} (4)

and extending this notation to the corresponding vectors:

|xi = | 1, . . . , ni ; x {0, . . . , N 1}; j {0, 1} (5)

we will use both the binary and the decimal notation so that the vectors of
the form

|xi |yi = | 1, . . . , ni | 1, . . . , ni ; x, y {0, . . . ,N 1}; j , j {0, 1}
(6)

de ne the computational basis for the state space C2n C2n .
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2.2. Steps of Simon’s quantum period nding algorithm
(QPFA)

Step (1).

The initial state of the quantum system is,

|0in |0in C2
n

C2
n

CN CN (7)

i.e. all 2n q—bits are in the state |0i.
Step (2).
Apply to the initial state the unitary operator

UH := H
n 1

where H is the discrete Fourier (or Hadamard) transform on C2 de ned by
linear extension of the map:

|0i 7 1

2
(|0i+ |1i) ; |1i 7 1

2
(|0i |1i)

and

H n := H H · · · H n—times

Since

H n|0in = 1

N

N 1X
x=0

|xi

the action of UH brings the initial state to

o := UH |0in =
1

N

N 1X
x=0

|xi|0in (8)

Step (3a).
Among the unitary extensions of the partial isometry de ned by

|xi|0i 7 |xi|f(x)i ; x {0, . . . , N 1} (9)

choose one, denoted Uf , that can be physically realized.
Step (3b).
Realize the physical implementation of Uf .
Step (3c).
Apply to the state (8) the unitary operator Uf . This gives

Uf o =: =
1

N

N 1X
x=0

|xi|f(x)i (10)
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Step (4a).
Fix arbitrarily u {0, . . . , N 1} and construct the lter de ned by the
projection

P := 1n |uihu| (11)

Step (4b).
Apply the lter (11) to the quantum state described by the vector (10). This
amounts to lter all the elements of the ensemble (10) for which f(x) = u
and to suppress all the remaining ones.
Theoretical conclusion from Step 4b
By by applying the Luders—Zumino formula of the quantum theory of mea-
surement quantum information theorists conclude that the new quantum
state of the total system is the one associated to the vector:

| ih | := P | ih |P
Tr(P | ih |) =

|P i
kP k

hP |
kP k (12)

where is de ned by (10) so that:

P =
1

N

N 1X
x=0

hu|f(x)i|xi|ui = 1

N

X
x {0,1,...,N 1},f(x)=u

|xi|ui (13)

Notice that

kP k2 = |{x {0, 1, . . . , N 1}, f(x) = u}|
N

=
|f 1(u)|
N

(14)

We will discuss only the case in which f satis es the following additional
conditions:

Assumption 2.1. If f is injective on the interval [0, r).

Assumption 2.2. r divides N exactly, i.e. independently of u
{0, . . . , N 1}

|f 1(u)| =:M = N/r N (15)

In this case from (13), (14) one deduces that

=
P

k P k =
1

N

N 1X
x=0

hu|f(x)i
k P k |xi|ui =

1

M

M 1X
j=0

|du + jri|ui (16)

where du + jr, for j = 0, 1, 2 . . .M 1, are all the values of x for which
f(x) = u and du < r.
Step (5a).
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Construct an apparatus implementing physically the unitary operator
UFT 1n, where UFT is the discrete Fourier transform, given by:

UFT |xi = 1

N

N 1X
k=0

ei2 kx/N |ki

Step (5b).
Apply to the unitary operator UFT 1n. This leads to the state

1p
N/r

N/r 1X
j=0

UFT |du + jri|ui

=
1

N

1p
N/r

N/r 1X
j=0

N 1X
k=0

ei2 kdu/Nei2 kjr/N |ki|ui

=
1

r

N 1X
k=0

1p
N/r

N/r 1X
j=0

ei2 jrk/N ei2 kdu/N |ki|ui

= (UFT 1n) (17)

Since, if kr/N is not an integer, then

N/r 1X
j=0

ei2 jrk/N =
ei2 (N/r)rk/N 1

ei2 rk/N 1
= 0

the non zero terms in the j—sum are precisely those for which

kr/N N

i.e. those for which k is a multiple of M = N/r. Summing up: at the end
of the 5—th step the state of the quantum system is:

:= (UFT 1y) =
1

r

X
{k {0,...,N 1}:k is a multiple of M=N/r}

|ki|ui (18)

Step (6).
The nal step of the algorithm is usually described in the quantum com-
puter literature as follows (see [St97]):
. . . The nal state of the x register is now measured, and we see that the
value obtained must be a multiple of w/r . . . (In our notations w/r = N/r)
In other words, as a result of a measurement, one obtains an integer k sat-
isfying

k = N/r = M k/N = /r (19)
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for some unknown integer {0, 1, . . . , r 1}. Thus, if we make many of
these measurements, we have a non zero probability to nd a which is
coprime to r.
Because of (18), in the relation (19), all these multiples will arise with equal
probability (1/r). Therefore one can apply the estimate (29), with and r
replacing y and N respectively, and deduce that

P ({ {2, . . . , r 1} : is coprime to r} ) 1

log r
(20)

If is coprime to r, we reduce the fraction k/N to an irreducible fraction
and this gives and r separately.
If we repeat the measurement of the |ki—basis h = O(log r) O(logN)

times, this will give h possible candidates, r1, . . . , rh, for the period and the
estimate (20) shows that, with high probability, one of them should be the
desired period.

3. Complexity considerations on Simon’s quantum period
nding algorithm (QPFA)

Step (1).
The initial state of the quantum system must be physically prepared so
that all 2n q—bits are in the state |0i.
An interesting n has an order of a few thousands bits.
Step (2).
The unitary operator UH := H n 1 must be:
— constructed
— applied to the initial state
Step (3a).
One can appeal to a theorem of K.R. Parthasarathy [KRP01a] to conclude
that, for any given function f , all the unitary extensions of the partial isom-
etry de ned by (9) can be physically realized by means of quantum gates,
i.e. unitary operators acting only on a single pair of q—bits.
However the same theorem gives an upper estimate, on the number of gates
to be used, which is exponential in the number of factors. In our case this
number is 2n.
Therefore, in absence of a proof that, among all the unitary extensions of
the partial isometry de ned by (9), there exists at least one that can be
physically realized by a number of quantum gates which is polynomial in
2n, it makes no sense to speak of the practical realizability of the algorithm.
Step (3b).
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Even in presence of such a proof the actual physical implementation of the
unitary operator might be a formidable task, given the fact that the q—bits
involved are of order of thousands.
An alternative way could be the discovery of a physically realizable inter-
action (Hamiltonian) embedding the given unitary in a continuous time
evolution. But, even supposing that this can be done, the continuous time
evolution will create serious problems due to the extreme non robustness
of the algorithm against small perturbations of the unitary operator Uf .
Step (3c).
Even supposing that the above problems can be solved, the concrete ap-
plication of the unitary operator Uf to the state (8) is a problem whose
solution requires additional costs in terms of time and of experimental work
to be done.
Step (4a).
The lter de ned by the projection (11) must be constructed.
Step (4b).
The above comment, on the cost of the concrete realization of Step (3c),
also holds for the application of the lter (11) to the quantum state de-
scribed by the vector (10).
Theoretical conclusion from Step 4b
This conclusion heavily depends on the application of the Luders—Zumino
formula of quantum measurement theory. This is quite di erent from the
original von Neumann formula and implies that, after an incomplete mea-
surement on a quantum system in a pure state, the system will still remain
in a pure state.
Although not logically impossible, such a situation is against physical in-
tuition because an incomplete measurement by de nition does not produce
maximal information while, in quantum mechanics, a pure state de nes a
situation of maximal information.
Only some very strong experimental evidence could prove that this natural
intuition is wrong.
Step (5a).
One must construct an apparatus implementing the discrete Fourier trans-
form on arbitrary quantum states (see above comments to Step (3c)).
Step (5b).
One must apply the above apparatus to the quantum state given by (16)
(see above comments to Step (3c)).
Step (6).
Taken literally, the statement . . . The nal state of the x register is now
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measured . . . , means that the last step of the algorithm consists in the de-
termination of a quantum state.
But it is well known such a determination, in a space of dimension d re-
quires an order of d measurements (d2 in case of a mixture).
In our case d = 22n, i.e. it is exponential in n.
One might try a probabilistic approach, choosing at random a k

{0, . . . , N 1} and evaluating experimentally the transition probability
|hk, i|2, which will be zero unless k is a multiple of M = N/r. But, in
the interesting cases, r is of the same order of magnitude of N so that
M = N/r is much smaller. This means that on average the number of
trials to be done, before a multiple of M = N/r appears, is of order N .
Since N = 2n, this is again exponential in n.

4. Classical reduction of the factorization problem to
period nding

Lemma 4.1. Let x N and de ne x1 := x+ 1 ; x2 := x 1 then 2 is
the only possible common divisor of x1 and x2. In particular, if x1, x2 are
both odd, then they have no common divisors.

Proof Up to exchange odd indices we can assume that

x1 > x2

Suppose that n N is a common divisor of x1, x2. Then there are natural
integers x11, x

1
2 such that

x+ 1 = nx11 ; x 1 = nx12

nx12 + 2 = nx
1
1 x12 +

2

n
= x11

but 2/n Z n = 1, 2. Thus 2 is the only possible common divisor for
x+ 1 and x 1.

Lemma 4.2. Let x {2, . . . , N 2} be any solution of the equation
x2 = 1 (mod N) (21)

such that (x± 1) 6= 0 (mod N) and de ne x1, x2 {2, . . . , N 1} by
x1 = x+ 1 (mod N) ; x2 = x 1 (mod N) (22)
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Denote gcd(x,N) the greatest common divisor of x and N.
Then the following factorization of N :

N = gcd(x1,N) · gcd(x2, N) (23)

takes place and is not trivial (i.e. both factors are 6= 1).
Proof. In view of (22), (21) is equivalent to

x1x2 = (x+ 1)(x 1) = x2 + x x 1 = 0 (mod N) (24)

which means that the product x1x2 = (x+ 1)(x 1) is a multiple of N .
By construction both x1 and x2 can be identi ed to numbers satisfying

1 < x1, x2 < N (25)

and we know that there exist an integer 1 such that

x1x2 = N

For j = 1, 2 denote

gj := gcd(xj , N)

Then

xj = gjyj

where yj does not divide N . In these notations

g1y1g2y2 = N

and, since y1y2 does not divide N , it must divide . Therefore

g1g2 =
y1y2

N =: 0N

where 0 := /y1y2 N. But g1 and g2 divide N and, being x1 and x2
both odd, they have no common factor. Thus their product divides N so
that

1 = 0 N

g1g1

¶
Since both 0 and N/g1g2 are integers, this identity is possible if and only
if

0 = N/g1g2 = 1

which is the factorization (23). Finally g1 cannot be 1 because otherwise
x1 has no common factor with N and therefore the product x1g2y2 cannot
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be a multiple of N . Since g1 and g2 enter symmetrically in the argument,
this factorization (23) is non trivial which is the thesis.
The following Lemma clari es the connections between the factorization
and the period— nding problem.

De nition 4.1. Let V be a vector space. a function V : V V is called
periodic if there exists a vector r V such that

F (x+ r) = F (x) ; x V (26)

If V is a ring identi ed to a totally ordered set (e.g. {0, 1, . . . , N} for some
N N) then the smallest r satisfying (4.1) is called the period of F .

Lemma 4.3. If y N is such that the function

F (a) := ya (mod N) ; a {0, 1, . . . , N 1} (27)

has an even period r, then yr/2 is a solution of (21).

Proof. Under our assumptions r/2 N and

(yr/2)2 = yr = 1 (mod N) (28)

4.1. Classical probabilistic factorization algorithms

De nition 4.2. y N is called coprime to N N if y and N have no non
trivial common factors.
In this case the minimum r N which satis es (28) is called the order of
y(mod N) and denoted ry,N .

Remark. Otherwise stated, the order of y(mod N) is the period of
the function a {0, 1, . . . , N 1} 7 ya (mod N). If y N is coprime to
N N, then ry,N is well de ned by Euler theorem and coincides with the
period of the function (27).
It is known from number theory that, denoting P the uniform measure on
the set {0, 1, . . . , N 1}, i.e.

P (x) := 1/N ; x {0, 1, . . . , N 1}
as a probability space with , one has:

P ({y {0, 1, . . . , N 1} : y is coprime to N} ) 1

lgN
(29)

This means that the overwhelming majority (more than N/ logN) of num-
bers in {0, 1, . . . , N 1} are coprime withN . This fact suggests the following
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probabilistic strategy to look for solutions of the factorization problem.
— Pick at random, with uniform distribution, an y {0, . . . , N 1}.
— By the above discussion the probability that, in O(logN) independent
extractions, y is coprime to N is high.
— If y is coprime to N and ry,N is even, the number x = yry,N/2 is a solution
of equation (21).
— If x is not a trivial solution, then by Lemma (4.2) we have a nontrivial
factorization of N .
Since y {0, 1, . . . , N 1} is picked at random, the probability to have
such a nontrivial factorization of N is equal to the joint probability of the
following three events:

[y is coprime to N] [ry,N is even] [yry,N/2 6= ±1(mod N)] (30)

Let us introduce the following assumption.

Assumption 4.1. With respect to the uniform distribution on {0, . . . ,N
1}, the events

[y is coprime to N] and [ry,N is even] [yry,N/2 6= ±1(mod N)]
are independent.

Under the above assumption the probability of the event (30) becomes
equal to

P ([y is coprime to N])P
³
[ry,N is even] [yry,N/2 6= ±1(mod N)]

´
and the estimate (29) implies that this is

P
¡
[y : ry,N is even and yry,N/2 6= ±1(mod N) ] | [y is coprime to N]

¢
lgN

(31)
where P (·|·) denotes conditional probability. This conditional probability
is estimated by the following theorem of number theory.

Theorem 4.1. Let N be odd with k 2 di erent primes in its factoriza-
tion. Then, one has:

P
³
[y : ry,N is even and yry,N/2 6= ±1(mod N) ] | [y is coprime to N]

´
1

1

2k 1
(32)
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In particular the probability of the event (30) is estimated by

P ([y : ry,N is even; yr/2 6= ±1(mod N ]) and gcd(y,N) = 1)
1

1

2k 1

¶
1

lgN

1

2 lgN

Once this problem is solved, one picks y at random and calculates ry,N
according to Theorem (4.1).
In O(logN) trials, the probability that the pair (y, ry,N ) satis es (30) in
greater than 1/2 lgN .
Given a pair (y, ry,N ), satisfying (30), one solves the factorization problem
using Lemma (4.2).
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