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ABSTRACT

Structural information is crucial in ribonucleic acid
(RNA) analysis and functional annotation; neverthe-
less, how to include such structural data is still a de-
bated problem. Dot-bracket notation is the most com-
mon and simple representation for RNA secondary
structures but its simplicity leads also to ambiguity
requiring further processing steps to dissolve. Here
we present BEAR (Brand nEw Alphabet for RNA), a
new context-aware structural encoding represented
by a string of characters. Each character in BEAR
encodes for a specific secondary structure element
(loop, stem, bulge and internal loop) with specific
length. Furthermore, exploiting this informative and
yet simple encoding in multiple alignments of related
RNAs, we captured how much structural variation is
tolerated in RNA families and convert it into tran-
sition rates among secondary structure elements.
This allowed us to compute a substitution matrix for
secondary structure elements called MBR (Matrix of
BEAR-encoded RNA secondary structures), of which
we tested the ability in aligning RNA secondary struc-
tures. We propose BEAR and the MBR as powerful
resources for the RNA secondary structure analy-
sis, comparison and classification, motif finding and
phylogeny.

INTRODUCTION

Ribonucleic acids (RNAs) are complex molecules that can
fold, globally or locally, into intricate secondary and ter-
tiary structures. In recent years, RNA molecules are reveal-
ing a new central (1), but not yet completely elucidated,
role in regulation (2–4), especially in higher organisms (5).
The genome contains a relatively well-established number
of protein-coding genes and a still uncertain number of
several classes of genes expressing non-coding transcripts
(6,7). Their functions are often not directly associated with
their sequence but in many cases are critically dependent

upon their secondary and tertiary structures (8–12), and,
accordingly, the need for developing instruments for their
functional characterization is becoming more pressing. Se-
quence and structure comparison plays an important role in
annotating ncRNAs and also in many other analyses such
as RNA alignment and classification, sequence/structure
recurrent motifs finding and phylogenetic inference. In par-
ticular, the secondary structure of RNA molecules is often
more conserved than their primary sequence (13) and in
the analysis of homologous RNAs the importance of sec-
ondary structure information increases with decreasing se-
quence identity (below 50–60%) (14). Hence, encoding the
secondary structure in comparison tools is needed in order
to exploit also structural information.

The most common encoding for the RNA secondary
structure is the dot-bracket notation, consisting in a bal-
anced parentheses string composed by a three-character al-
phabet {.,(,)}, that can be unambiguously converted in the
RNA secondary structure. Its characters code for an un-
paired base ‘.’, an open base pair (BP) ‘(’ and a closed
BP ‘)’. Considering the simple information provided by a
three-character alphabet, processing steps are required to
map each nucleotide into the structural element it belongs
to. In other words, this simple representation stores no di-
rect information about the structural context of the nu-
cleotide, which must be extracted by means of ad hoc post-
processing procedures. Several approaches have been devel-
oped that use the dot-bracket notation to improve RNA
secondary structure analysis and comparison. Among oth-
ers, Sankoff’s dynamic programming algorithm (15) was the
first exhaustive method for structural RNA alignment but
its high computational complexity (O(N

∧
6) in time and

O(N
∧

4) in space) limits its usage in high-throughput set-
tings. Lower complexity has been reached by different meth-
ods using different approaches: dynamic programming (16–
18), formal grammars (19) and genetic algorithms (20,21).
Moreover, other encodings were proposed to overcome the
above-mentioned drawbacks of the dot-bracket notation,
such as motif description (22,23) and tree-based encodings
(24,25). By using a tree-based approach, the topology of the
RNA secondary structure is encoded using a graph, instead
of a string, increasing the information stored in the encod-
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ing but the algorithmic complexity of the comparison as
well. The motif description approach, instead, often does
not allow fast and automatic encoding procedures, requir-
ing the user to choose the best descriptor. Hence, we argue
that a new and more comprehensive approach to describe
RNA secondary structure, that can be also applied to com-
pare RNAs without increasing the algorithmic complexity,
would be useful per se and also instrumental to complement
other methods for RNA study and analysis.

In this work, we present a new encoding for RNA sec-
ondary structure called BEAR (Brand nEw Alphabet for
RNA). Within a simple string of characters, the BEAR en-
coding allows one to store information about RNA sec-
ondary structure. BEAR unambiguously associates with
each nucleotide in an RNA sequence its secondary struc-
ture. Differently from the dot-bracket notation described
above, the assignment of each nucleotide to the secondary
structure element (SSE) it belongs to allows one to discrim-
inate nucleotides described with the same symbol (a dot or
a bracket) but belonging to a different SSE. For instance,
the BEAR encoding easily discerns unpaired nucleotides
belonging to a loop and a bulge. These features allow one
to compute appropriately the statistics upon the accepted
variations in families of homologous RNAs and offer novel
perspectives for methods analyzing the evolution of these
complex molecules.

The development of a structural alphabet to encode sec-
ondary or tertiary structures into a string has been success-
fully applied also in the context of protein structure (26–29).
The underlying idea is to encode fragments of the protein
backbone using protein blocks (PBs), defined in terms of the
phi and psi dihedral angles. This kind of structural encod-
ing has found applications in binding site signature identi-
fication (30), structure prediction from sequence (31,32) or
peptide design (33). It was shown that using PBs improves
protein structure comparison in terms of time and accuracy
(34).

In this perspective, we showed how, using our encoding,
it is possible to extract information about ‘transition rates’
between RNA sub-structures with different length and type
in related RNAs, obtaining a substitution matrix for SSEs.
The definition of a substitution matrix for RNA SSEs al-
lows the extension of the benefits of the new encoding also
to methods for RNA global, local or multiple alignment, for
the identification of recurring secondary structure patterns,
for the application of a PSSM (position-specific scoring ma-
trix) approach and in general to analyze RNA secondary
structures based on statistical preferences. To support these
ideas, we show the reliability and usefulness of the approach
by performing pairwise global RNA alignments using the
previously computed substitution matrix, obtaining, even
with the simplest possible algorithm (an opportunely mod-
ified Needleman–Wunsch algorithm), an alignment accu-
racy comparable to the state-of-the-art methods, which are
nevertheless associated with a higher computational com-
plexity.

MATERIALS AND METHODS

Selection and folding of RNA families from the Rfam
database

Rfam is a manually curated collection of RNA families
(13); RNAs belonging to the same family share a similar
secondary structure and generally also the same function.
Families are populated starting from a set of manually cu-
rated RNAs, then alignment tools are used to increase the
number of RNA sequences in the families. Finally, a mul-
tiple sequence alignment (called ‘seed’ alignment) is pro-
duced for each family along, for most families, with a con-
sensus secondary structure.

First, we selected all Rfam (release 10.1) families an-
notated with a consensus secondary structure. Next, we
selected all families with a multiple sequence alignment
and reported per-column conservation. Then, we removed
highly similar sequences (more than 50% sequence identity)
from the data set by using BLASTClust (35) and filtered
off all those families with less than five members remaining.
The total number of Rfam families satisfying these criteria,
which were used to analyze intra-family variations of SSEs,
is reported in Supplementary Table S1 in the Supplemen-
tary materials.

To fold each Rfam RNA we used the RNAfold program,
included in the Vienna package (36). We used as structural
constraints for the folding the consensus secondary struc-
ture of all the positions annotated as highly conserved in
the Rfam seed alignment. We argue that using this strategy
we would be able to predict more reliable secondary struc-
tures and, at the same time, allowing sufficient freedom to
the folding algorithm in order to capture variations between
RNAs in the same family.

The BEAR encoding

In the BEAR encoding, different sets of characters are asso-
ciated with the different RNA basic structures (loop, inter-
nal loop, stem and bulge). Let L, I, S and B denote the set
of characters for loop, internal loop, stem and bulge respec-
tively; for example, L is the alphabet of the loop-associated
characters {L1, L2, . . . , Ln} defining loops with different
length: L3 would be a three-residue loop, L4 a four-residue
loop and so on. Similarly, the sets of characters describing
stems and internal loops also contain length information
(Figure 1A). We translated into the BEAR encoding both
hairpin structures, from now on ‘non-branching structures’
(26) and ‘branching’ SSEs, e.g. the closing stem of a multi-
loop. More in detail, a non-branching structure ‘NB’ is the
maximal set of BPs (i,j) containing a loop, such that for
all (i, j ), (i ′, j ′) ∈ NB : i < i ′ < j ′ < j ; all sets of BPs not
containing a loop are defined as branching. A different set
of characters was used for branching and non-branching
SSEs, since we observed differences in frequencies, transi-
tion rates and length distributions. Therefore, each L, I,
S, B set of characters is defined as the union of charac-
ters associated with non-branching and branching struc-
tures (e.g. S = Sn ∪ Sb where Sn and Sb indicate the set of
characters for non-branching and branching stem struc-
tures, respectively). Then, the BEAR alphabet � is defined
as {L ∪ I ∪ S ∪ B}.
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Figure 1. The BEAR encoding. (A) The BEAR structural alphabet. Dif-
ferent sets of characters are associated with the different RNA basic struc-
tures (loop, internal loop, stem and bulge on the right side of a stem, and
bulge on the left side, denoted here as L, I, S,BL and BR, respectively), with
different characters used for basic structures of different length. (B) RNA
hairpin with the constituent substructures (loop, stem, bulges and internal
loop) highlighted in different colors. On the top right, the BEAR char-
acters corresponding to each substructure, shown with the same colors.
On the bottom right, the hairpin RNA sequence is shown associated with
its dot-bracket and its BEAR secondary structure descriptions. (C) Con-
version into BEAR of an RNA secondary structure. An RNA secondary
structure, extracted from Rfam, is shown, containing four non-branching
structures depicted in boxes. The resulting BEAR conversion of the non-
branching and branching structures is shown in blue below the secondary
structure. A ‘:’ character is assigned to the remaining nucleotides that do
not belong to non-branching or branching structures (reported in black).

Let s denote one of the possible RNA basic structures
(loop, stem, internal loop and bulge) and l denote the length
of s. Then, we define m(s, l) = c as the mapping function of
every possible pair (s, l) to the corresponding BEAR char-
acter c ∈ β.

The translation from the dot-bracket representation into
the BEAR encoding can be summarized in two steps (Fig-
ure 1):

(i) identify RNA basic structures along with their length by
scanning the string of dot-bracket characters;

(ii) translate, using the mapping function m, the information
about length and structure type into a BEAR character.

The BEAR translation requires linear time, therefore its
application even to large sets of RNAs is fast. The output
string of BEAR characters has the same length of the nu-
cleotide sequence. An example of the conversion of a sec-
ondary structure into BEAR is shown in Figure 1B. We
did not translate into the BEAR encoding some branch-
ing SSEs not representable with the dot-bracket notation,
such as pseudo-knots. Additionally, we used a special char-
acter, ‘:’, to describe nucleotides belonging to unpaired re-
gions not belonging to loops, internal loops or bulges. As
a consequence, the resulting encoding for RNA secondary
structures will be a combination of BEAR-encoded struc-
tures separated by ‘:’ characters (see Figure 1C for an ex-
ample).

In order to determine the cardinality of the alphabets,
that is the maximal encoding length for stems, loops and

internal loops, we calculated the distribution of the length
of these RNA sub-structures in a selection of Rfam fam-
ilies (13) (Figure 2A). We used the value of the 95th per-
centile of each distribution as upper limit for the associ-
ated basic structure descriptor (stem: 10; loop: 16; internal
loop 10; stem in a branching structure: 10; internal loop
in a branching structure: 16). All the sub-structures with a
length higher than the threshold were grouped and encoded
using a sub-structure-specific character. The software that
converts from the dot-bracket notation to BEAR encoding,
taking as input the RNA sequence and secondary struc-
ture, is freely available at http://bioinformatica.uniroma2.it/
BEAR/BEAR Encoder.zip.

Substitution matrix of RNA SSEs

To build an SSEs substitution matrix, we started from a
set of highly structured families reported by Meyer et al.
in 2011 (37) in order to have a higher number of evidences
for all the possible substitutions between RNA SSEs. In
that work, a family is considered highly structured if all of
its members have a high number of non-branching struc-
tures. To further increase the cardinality of the data set, we
scanned Rfam looking for families having a number of non-
branching structures similar to those used in the work of
Meyer et al., which have seven non-branching structures on
average, with a standard deviation of 2. Hence, we looked
for Rfam families with a mean number of non-branching
structures between 5 and 9 and whose mean number of
BEAR characters, different from ‘:’, was higher than 67%.
The list of Rfam families used to build the SSE substitution
matrix is reported in the Supplementary materials (Supple-
mentary Table S2). Each RNA in the selected RNA fam-
ilies was folded as described, and its secondary structure
converted into the BEAR encoding. Then, we mapped ev-
ery BEAR character to its corresponding nucleotide in the
multiple sequence alignment, obtaining a multiple BEAR
alignment for each family. We used the same approach em-
ployed by Dayhoff (38) to compute a substitution matrix
for the BEAR characters. We computed the observed fre-
quency of substitution of BEAR characters in the multiple
sequence alignments and computed the substitution matrix
as follows:

SMi, j = log
(

observed frequency
expected frequency

)

Here, the observed frequency is the number of pairs of
BEAR characters found in the alignment over the total
number of pairs and the expected frequency is the prod-
uct of the frequency of each member of the pair. From now
on we refer to the substitution matrix of BEAR characters
as MBR (Matrix of BEAR-encoded RNA secondary struc-
tures). A pseudo-count of 1 is used to initialize the observed
pairs in order to avoid taking the logarithm of zero when
there are no counts for a specific pair of characters in the
alignments. The full pipeline is summarized in Figure 3.

To test the MBR performance in capturing secondary
structure similarities, we created additional control matri-
ces, each one associated with a different information con-
tent. The ‘positive diagonal’ matrix assigns a positive score
to identical aligned BEAR characters and a negative score
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Figure 2. (A) Length distribution of stems, loops and internal loops detected in Rfam. (B) Inverse correlation between length variation and log-odds
score. For each Rfam RNA, we extracted the length of stems, loops and interior loops, counted the number of transitions from an RNA sub-structure to
another of the same type but with different length for each aligned RNA sequence pair in Rfam (e.g. from a stem of length 1 to a stem of length 2, from
a stem of length 1 to a stem of length 3 and so on for all possible combinations) and grouped together transitions having the same length difference (e.g.
transitions from a stem of length 1 to a stem of length 3, from a stem of length 2 to a stem of length 4, from a strand of length 3 to a strand of length 5 and
so on were collected together in the same group containing all transitions of size 2). The frequency of each transition group was then computed as log-odd
scores. The three distributions in the figure show the log-odds scores for any variation in size for stems (blue curve), loops (red) and internal loops (yellow),
respectively, and highlight an inverse relationship between the length variation in each class of SSEs and its frequency in the data set of RNA alignments.

to all other substitutions. The ‘positive group’ matrix as-
signs a positive score to substitutions between characters
encoding for the same RNA secondary structure type (e.g.
all stems), disregarding possible differences in length, and a
negative score elsewhere. Finally, two randomized versions
of the MBR were generated, one having shuffled rows and
the other by shuffling the entire matrix.

Structural alignment algorithm

We employed the Needleman–Wunsch algorithm (39) to
test the usefulness of BEAR encoding combined with the
MBR. The Needleman–Wunsch algorithm performs the
global alignment of two sequences, requiring O(nm) time,
where n and m represent the length of the input sequences.
In our case, the input sequences are the BEAR encodings
of two RNAs, thus only structural information is used to
compute the alignment. Consequently, we modified the al-
gorithm in order to let it take as input BEAR encodings
along with nucleotide sequences.

Test data sets and algorithms

We built four different data sets to test the performance
of our implementation of the Needleman–Wunsch al-
gorithm based on the BEAR encoding and the MBR.
We retrieved known RNA secondary structures from the
RNA STRAND (40) and RNAspa data sets (41). RNA
STRAND integrates information about known RNA sec-
ondary structure of any type and from different organisms
retrieved from several public databases. Instead, RNAspa
data set is a collection of curated secondary structures from
Rfam.

Data sets of curated sequence alignments were retrieved
from RNASTAR (42) and BRAliBase II (14). BRAliBase
II is a collection of RNA alignment data sets proposed for
benchmarking of alignment algorithms. Among the avail-
able data sets supplied by BRAliBase, we selected the data
set 2 since it is the only one that includes pairwise align-
ments. RNASTAR includes refined Rfam alignments that
were manually curated using structural information from
the PDB (Protein Data Bank) (43). Since these curated data
sets of alignments do not provide secondary structure anno-
tation, we combined together structural data sets and sec-
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Figure 3. MBR construction and testing pipeline. We started from Rfam
10.1, selecting families for which a consensus structure and a per-column
conservation is reported. Conserved positions in the Rfam multiple align-
ments were used to select structural constraints that guided RNAfold. The
resulting secondary structures for each member of the Rfam families were
converted into BEAR. A set of Rfam families having high density of SSEs
was used to compute SSEs substitution frequencies and build the MBR
(the training set). From the remaining families, pairwise alignments were
randomly sampled and used to test the ability of MBR in reconstructing
the alignment.

ondary structure data sets to obtain a collection of curated
alignments of known RNA structures. In particular, we
used RNA STRAND secondary structure for RNASTAR
alignments, RNAspa secondary structure for BRAliBase
alignments and finally the remaining RNAs in RNAspa for
Rfam alignments (Supplementary Table S3 in the Supple-
mentary materials reports the number of RNAs and align-
ments in each data set).

Moreover, we randomly selected pairwise alignments
from the RNA families, filtered and folded as described
above (excluding those used to compute the substitution
matrix), to create a fourth additional data set called RRS
(Rfam Random Sampling).

We compared the results obtained using the Needleman–
Wunsch + MBR with those obtained using other six align-
ment methods, namely a sequence-only version of the
Needleman–Wunsch, as implemented in the ‘needle’ tool
from the EMBOSS package (44), LocARNA (18), RNAS-
TraT (25), RNAdistance and RNAforester (both included
in Vienna package) and gardenia (24).

We used the sum-of-pairs score (SPS) (14) as a measure to
evaluate the performances of the alignment methods. SPS
is defined as the number of ‘correct pairs’ (pairs found in
the reference alignment) over the total number of ‘predicted
pairs’ (pairs found in the alignment computed by one of the
tested algorithms), and it can be considered as a measure
of the sensitivity of a pairwise alignment method. An SPS
score of 0 indicates two completely different alignments;
conversely, a score of 1 indicates an identical alignment.

Including sequence information into the structural alignment
algorithm

A sequence similarity contribution can be included into
the Needleman–Wunsch scoring function, by including se-
quence information in the function that fills in the dynamic
programming matrix. In particular, we add a new term
when moving from cell i-1,j-1 to i,j:

Score = max

{ Fi−1, j−1 + S(Ai , Bj ) + BONUS(NAi , NBj )
Fi, j−1 + G
Fi−1,i + G

where NAi and NAi identify the nucleotides associated with
BEAR character in Ai and Bj, respectively. BONUS is a
function assigning a positive score if NA and NB are identi-
cal:

BONUS(NAi , NBj ) =
{

i ∈ Q+ when NAi == NBj

0 otherwise

where i can be any positive rational number. The higher the
‘bonus’, the more the sequence will influence the alignment.
Different values for the i parameter were tested (Supple-
mentary Figure S1), and the one leading to better alignment
accuracy in all tested data sets was chosen.

Secondary structure recovery and structural distance

In order to verify the ability of MBR to recover sec-
ondary structure information, that is to say the ability of the
method to correctly align conserved secondary structures,
we computed the structural conservation index (SCI) (45)
of the resulting pairwise alignments. SCI is defined as the
ratio between the consensus minimum free energy (MFE)
of the consensus alignment normalized by the average MFE
or the single sequences:

SCI = Econs

Ēsingle

We used RNAalifold in the Vienna package to compute
the MFE for the consensus alignment and RNAfold for the
individual sequences. Generally, SCI ranges from 0 to 1,
where 0 indicates lack of structural conservation and 1 per-
fect structure conservation. The presence of compensatory
mutations is interpreted as ‘bonus’ by the algorithm com-
puting the consensus energy, in some cases leading to an
SCI higher than 1. Other important factors influencing the
SCI are the length of the alignments and non-compatible
BPs.

Finally, we tested whether the MBR can be used to es-
timate the structural distance between two BEAR-encoded
RNA secondary structures. We introduced a distance score
based on the BEAR characters, defined as the weighted sum
of the aligned pairs substitution scores, when both charac-
ters belong to a stem structure:

dbear(S1, S2) =
∑

i MBR(S1i , S2i ) ∗ δ(S1i , S2i )∑
i δ(S1i , S2i )

where S1 and S2 are a pair of BEAR-encoded RNAs,
MBR(S1i , S2i ) is the MBR substitution score of the BEAR
character in position i of each RNA and δ(S1i , S2i ) is a
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function returning 1 if S1i and S2i belong to a stem struc-
ture; 0 otherwise. This score ranges from negative to positive
values with no upper or lower limits. The lower the score,
the more different are the structures compared, while posi-
tive values indicate similar structures. A score equal of 0 in-
dicates that the two structures do not share sub-structures.
We computed the Pearson correlation coefficient between
this distance score and all distances computed by RNAdis-
tance (namely weighted tree, weighted string, full tree, full
string, HIT (Homeomorphically Irreducible Tree) tree and
HIT string) and with that of RNAforester. As compari-
son, we also computed the Pearson correlation between the
RNAdistance distances and the BP distance, defined as the
fraction of BPs not shared by the two structures and re-
ported in (45) to be a good measure of RNA structural dis-
tance.

RESULTS

Overview

We developed a new structure-aware encoding called BEAR
for RNA secondary structure allowing the mapping of each
nucleotide to the secondary structure it belongs to. Using
this encoding, we analyzed the distribution and conserva-
tion of RNA SSEs in multiple alignments extracted from
Rfam. By doing so, we highlighted regularities in the pat-
tern of substitution rates between BEAR-encoded struc-
ture elements and showed that a substitution matrix that
captures transition rates between SSEs (loop, stem, bulge
and internal loop) can be computed. The MBR (Matrix
of BEAR-encoded RNA secondary structures) represents
tolerated changes in SSEs in related RNAs. We tested the
approach analyzing the contribution of the MBR matrix
in calculating RNA secondary structure alignments using
a simple variant of the Needleman–Wunsch algorithm and
obtained on different data sets results comparable to those
obtained by other state-of-the-art methods (listed in the
Materials and Methods section) which are computation-
ally more complex. We propose that the BEAR encoding
and the MBR matrix can be the basis for several kinds of
RNA analyses (e.g. comparative, evolutionary and func-
tional) and can additionally be included into the available
more sophisticated methods and help them improving their
performances.

The BEAR encoding

We developed a new encoding for the RNA secondary struc-
ture called BEAR. The BEAR encoding not only stores in-
formation about the ‘paired’ or ‘unpaired’ status of a nu-
cleotide but also takes into account the SSE to which the
nucleotide belongs. As a consequence, the BEAR encod-
ing is a structure-aware representation. In BEAR, we intro-
duce an alphabet in which each nucleotide is represented by
a character that carries information about the length and
type of the structural element the nucleotide belongs to (see
the Materials and Methods section and Figure 1). With this
new encoding, for example, an unpaired nucleotide in a loop
and an unpaired nucleotide in a bulge are represented with
different characters, making it possible and immediate to
discriminate among them.

Analysis of secondary structure variation in subsets of the
Rfam database

The Rfam database (13) classifies non-coding RNAs in fam-
ilies whose members possess a similar secondary structure,
suggesting evolutionary relationships and similar functions.
Rfam provides a consensus secondary structure for each
family. We chose to use this information as a structural
constraint to guide the secondary structure folding, as de-
scribed in the Materials and Methods section.

After folding all the RNAs surviving a redundancy re-
duction in all Rfam families selected using criteria described
in the the Materials and Methods section, we translated all
the secondary structures into BEAR encoding. Then, we
looked for trends in SSE types and sizes, and their vari-
ation within families. Since Rfam stores families of struc-
turally related RNAs, likely to be functionally related and
homologous, we ran quantitative analysis on Rfam in order
to find global rules shared among RNAs that could help in
the characterization of their secondary structures with the
aim of measuring in statistical terms how these structural
elements differ in related RNAs.

We focused on the distributions of the length of the sec-
ondary structure basic elements defined in the BEAR algo-
rithm, namely loops, stems, bulges and interior loops. First,
we extracted information about the length of stems, loops
and interior loops, for every RNA in Rfam (Figure 2A).
Then, we counted the number of transitions from an RNA
sub-structure to another of the same type but with different
length for each aligned RNA sequence pair in Rfam (e.g.
from a stem of length 1 to a stem of length 3, in all com-
binations found). The results of this analysis (Figure 2B)
highlight an inverse relationship between the length varia-
tion in each class of SSEs and its frequency in the data set
of RNA alignments. This relation is somehow expected (i.e.
related RNAs are more likely to contain similar SSEs hav-
ing comparable size), but has never been exploited so far
to gain a better performance in an RNA alignment. These
observations suggest that within an RNA family, extension
or shortening of sub-structures is tolerated to a certain ex-
tent, and the larger the length variation, the smaller is its ob-
served frequency. On the other hand, transitions from one
type of SSE to a different one (e.g. from a stem to a loop,
from a loop to an interior loop and so on) can occur but are
more rarely observed (Supplementary Table S4).

MBR substitution matrix

The results described in the previous paragraph proved the
possibility of extracting general information about RNA
structure variation in related RNA families that can be used
to compare RNA secondary structures, by calculating the
frequency of transitions from an RNA structure to another.
Computing such kind of transition frequencies between
SSEs would allow the creation of a structural substitution
matrix, similar in principle to those that are broadly used
to compute DNA/RNA and protein sequence alignments,
but based in this case on variations not at the primary but at
the secondary structure level. Similar approaches have been
successfully applied on proteins. With reference to this, the
work of Ku and Hu (46) is particularly interesting because,
after encoding the protein secondary structure as fragments
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Figure 4. Graphical representation of the MBR. This figure shows a sub-
set of rows/columns of the MBR matrix, using a color-coding to show sub-
stitution rate patterns: color scale represents log-odds scores from lower
(blue) to higher (red). Rows and columns are elements of RNA secondary
structure of different length and every cell stores the log-odds value for the
substitution of one element with another element. The cells in the principal
diagonal always have the highest value in the respective row and column.
Substitutions between elements belonging to the same group (i.e. stems,
loops and interior loops) display higher log-odds values than substitutions
between elements belonging to different groups. The ‘. . . ’ notation indi-
cates that some rows/columns were omitted from the graphical matrix rep-
resentation.

of the protein backbone defined in terms of phi and psi dihe-
dral angles, they computed a substitution matrix of protein
structural elements, called TRISUM, using a self-training
strategy.

We created a substitution matrix called MBR (Matrix of
BEAR-encoded RNA) using a subset of Rfam families; in
particular, we chose those families characterized by a high
number of SSEs (Supplementary Table S2). Members of
the selected families were folded using a constrained ap-
proach as described in the Materials and Methods section.
We used the new BEAR codification to determine transi-
tion rates among secondary sub-structures belonging to the
same or to different RNA structural elements aligned in the
same family of homologous sequences. The MBR is com-
puted, following the classic Dayhoff approach (28), as log-
odds scores, by normalizing the observed frequency of tran-
sition between two elements by the expected transition fre-
quency, obtained as the product of the frequencies of the
two elements in the data set. Substitution frequencies were
computed in MBR for all BEAR characters representing
different structural elements (stems, loops, bulges and in-
terior loops) and their lengths, for all branching and non-
branching structures. A color-coded representation of the
MBR is shown in Figure 4. The full MBR is available in the
Supplementary materials.

Using the MBR to align RNA structures

As stated before, the substitution frequencies in MBR cap-
ture the type and amount of structural variation that struc-

turally similar, homologous and/or functionally related
RNAs can tolerate. Therefore, among other applications,
MBR rates can be used to align the SSEs of two related
RNAs encoded using the BEAR representation, in a similar
way in which amino acid or nucleotide substitution matrices
are used to align two protein or RNA primary sequences.
This approach can improve many RNA analyses such as
clustering, phylogeny and sequence alignments. We decided
to test the reliability of the information obtained with the
BEAR encoding by performing pairwise RNA structural
alignments. As described in the the Materials and Meth-
ods section, we decided to employ the simplest way to align
strings of characters and used a modified version of the
Needleman–Wunsch algorithm capable to handle the MBR
to obtain a global alignment of two BEAR-encoded RNAs.
In order to check the consistency of the proposed encoding
and associated substitution matrix, we created four different
control matrices: (i) a ‘positive diagonal’ matrix (all iden-
tical BEAR characters are given the same positive score,
which is identical and negative for all other character pairs);
(ii) a ‘positive group’ matrix (all BEAR characters denot-
ing the same type of SSE, e.g. a stem, are given the same
positive score, which is identical and negative for charac-
ter pairs belonging to different groups); (iii) an MBR with
randomized rows; (iv) an MBR with randomized rows and
columns. The performances of these control matrices were
compared to that of the full MBR. The purpose of the first
two control matrices was to show the increase of the per-
formances with the increase of the structural information
carried by the matrix. Specifically, using the positive diag-
onal matrix, two equal BEAR characters are preferentially
paired with respect to other characters, while the pairing
of different BEAR characters is penalized. Using the posi-
tive group matrix, all the characters encoding for the same
RNA sub-structure, even if they belong to SSEs of different
length, are preferentially paired; the pairing between groups
of SSEs is penalized (i.e. the association of residues belong-
ing with stems of different length is positively scored, while a
pairing between a residue in a stem and a residue in a loop is
penalized). We expected this matrix to perform better than
the positive diagonal matrix.

The two randomized matrices were intended to confirm
the consistency of the scores in the MBR: by randomizing
the scores in the MBR we added different degrees of dis-
order depending on the type of randomization. We tested
the four control matrices and the full MBR on a data set
created by sampling the Rfam database by randomly ex-
tracting pairwise alignments from the seed multiple align-
ment of randomly selected families (excluding those used
to calculate the MBR), denoted from now on RRS (Rfam
Random Sampling). Figure 5 shows the results of the test,
measured as the fraction of aligned nucleotides in the ref-
erence alignment that are correctly aligned by the tested al-
gorithm (SPS). As expected, the performance of the positive
group matrix (second bar in the plot) is higher than that ob-
tained with the positive diagonal matrix (first bar), because
of the higher level of information. By contrast, the random-
ized matrices show poorer performances; in particular, the
per-row-randomized MBR (third bar) performs better than
the entirely randomized MBR (fourth bar), supporting the
consistency of the scores in the MBR original matrix.
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Figure 5. Alignment performances using different types of matrices. The
MBR and four other different matrices are used to align the structures
of pairs of RNAs sampled from Rfam using an implementation of the
Needleman–Wunsch algorithm able to receive as input the BEAR encod-
ing. ‘Positive diagonal’ is a matrix where a positive score is assigned to
identical characters, and a negative score everywhere else. ‘Positive group’
is a matrix where a positive score is assigned between elements of the same
type of RNA SS, and a negative one everywhere else. ‘Per row randomized
MBR’ and ‘Fully randomized MBR’ are matrices built using randomized
values of the MBR. More details can be found in the main text. The fifth
column shows the performance of the MBR matrix, without the sequence
BONUS. Sum-of-pairs (SPS), which is the fraction of correctly aligned nu-
cleotide pairs, is used as quality measure.

Comparison with other methods for the pairwise RNA align-
ment on data sets with curated structure information

To assess the contribution of reliable secondary structures
in correctly aligning RNAs, we created three additional
data sets where alignments were curated using structural
knowledge. By cross-referencing RNA secondary structure
repositories and curated alignments, we created three RNA
alignment data sets in which the alignments were manu-
ally curated and/or revised, and the RNA secondary struc-
tures were experimentally determined or manually curated
as well. We also included the above-mentioned RRS data
set that we used to test the different types of matrix.

We compared our results with those from other five
RNA structure-based alignment algorithms, namely Lo-
cARNA (18), RNAStrAT (25), gardenia (24), RNAforester
and RNAdistance, and with those from the sequence-based
Needleman–Wunsch algorithm (‘needle’). Despite all the
methods (except ‘needle’) use structural information to
compute the alignments, they are based on different ap-
proaches. In particular, gardenia, RNASTraT, RNAdis-
tance and RNAforester use a tree-based approach, while
LocARNA works by folding and aligning simultaneously
the input sequences. All the algorithms (except ‘needle’)
were fed with the curated secondary structures or (in the
case of RSS) with the sequence folded using conservation
constraints. In the case of LocARNA, these input struc-
tures are only used to compute the partition function from
which the algorithm computes the best consensus struc-
ture for the input sequences. In this aspect, LocARNA be-
haves differently from the other tested methods. By using
only primary sequence information, ‘needle’s’ results helped
us in discriminating the sequence and structural contribu-

Figure 6. (A) Alignment performance of the seven tested methods
on the four different data sets. We evaluated seven different alignment
methods, from left to right: a sequence-based Needleman–Wunsch (nee-
dle), our modified Needleman–Wunsch using the MBR including the
sequence BONUS (MBR+BONUS), then gardenia, RNAStrAT, Lo-
cARNA, RNAdistance and RNAforester. All methods were tested on the
four employed data sets; (B) Alignment performance of the five tested
methods when secondary structures are predicted using RNAfold.

tion in reconstructing the alignment. Nevertheless, even in
cases where two RNAs share a very similar secondary struc-
ture and a less similar sequence, which can frequently hap-
pen since the secondary structure evolves more slowly than
the primary (9), yet the primary sequence can help in ob-
taining a better alignment, especially in unstructured re-
gions. For this reason, our algorithm can additionally use
a numeric ‘bonus’ to include primary sequence information
by favoring the alignment of identical nucleotides, without
increasing the algorithm complexity. To find the optimal
value for this ‘bonus’, we tested all the data sets varying the
bonus weight from 0 to 1.1 (Supplementary Figure S1) and
checked how it affects the alignment accuracy. When perfor-
mances increase as the ‘bonus’, sequence information has a
positive contribution on the alignment. Even if the optimal
‘bonus’ varies in the different tested data sets, we selected
the value (0.1) that offers the best overall accuracy, and used
it for all the following tests.

Figure 6A shows the comparison of the performances of
the five programs on the above-mentioned data sets, mea-
sured as the fraction of aligned nucleotides in the refer-
ence alignment that are correctly aligned by each method.
In general, the alignments obtained using the Needleman–
Wunsch algorithm on the BEAR encoding using the MBR
are of similar quality, in some instances better than those
of the other considered methods. Results clearly show that
the performances strictly depend on the characteristic of
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the data set used. The BRAliBase data set contains only
transfer RNAs, which are known to have a more con-
served secondary than primary structure (47) and, as a con-
sequence, all the programs except ‘needle’ show approx-
imately the same good performances. The RNAspa and
RNA STRAND data sets contain different types of RNAs
but show the same trend as before. The low performance
of gardenia on the RNA STRAND data set is likely due
to non-canonical secondary structures stored in RNAS-
TAR database that we used to annotate RNAs in RNA
STRAND. For example, some RNAs stored in the RNAS-
TAR database do not follow the general constraints as-
sumed by many algorithms such as hairpins missing the
loop, and gardenia seems negatively affected by such incon-
sistencies, as opposed to the other tested algorithms.

RRS shows different characteristic when compared with
the other data sets. In particular, there is little difference be-
tween the performances of ‘needle’ over the structural meth-
ods. There are two main reasons that can explain this result:
first, Rfam contains multiple sequence alignments calcu-
lated using only primary sequence information; second, this
is the only data set with no curated secondary structures.
The results from RNAspa and RNA STRAND support the
two previous hypotheses considering that both use Rfam
alignments but ‘needle’ has lower performances than the
other methods, suggesting that not all the Rfam alignments
rely on the secondary structure and that it is sometimes
difficult to correctly fold Rfam family members even when
using conservation constraints. In contrast, RNAspa inte-
grates Rfam with curated secondary structures, and RNA
STRAND also takes advantage of curated secondary struc-
tures as well as curated Rfam alignments using known RNA
3D structures extracted from the PDB.

These results imply that structural information alone, or
augmented using little primary sequence information, is
sufficient for correctly aligning RNAs and that the BEAR
encoding and the resulting MBR matrix are able to capture
structural similarities between RNAs. As expected, when
the RNA secondary structure is predicted de novo (using
RNAfold) we witnessed a general performance drop for all
structure-based methods (Figure 6A), which often are less
accurate than the ‘needle’ sequence alignments. Hence, pre-
dicted secondary structures supply wrong information lead-
ing to poor alignments. LocARNA seems less affected by
imprecise secondary structures, likely because it computes
a consensus folding structure for the two input sequences
while aligning them. In other words, LocARNA does not
use the same structures used by other methods, even if these
structures were provided to the algorithm.

To further prove the importance of secondary structure
information in obtaining correct alignments, we tested the
alignment accuracy at different levels of sequence identity.
We merged the BRAliBase, RNA STRAND and RNAspa
data sets and divided the resulting data set into sequence
identity bins, by computing the sequence identity of the ref-
erence alignments. All the sequences having less than 50%
identity were grouped together into one bin. Results (Fig-
ure 7) show that our approach and RNAforester provide
the best performances when the identity is smaller than or
equal to 50%. On the contrary, LocARNA is the most ac-
curate when identity is higher than 50%. Likely, the main

Figure 7. Alignment performance at different levels of sequence identity.
The curated reference alignments were divided into bins at different lev-
els of sequence identity, and the alignment accuracy (evaluated as SPS) is
reported for each bin for all the employed alignment algorithms. All align-
ments having identity lower than 50% were grouped in the same bin.

reason of the LocARNA alignment accuracy decrease at
low sequence identity is that the lower the identity, the less
reliable are the structures computed by LocARNA during
the folding and aligning step. On the same lines, we verified
whether the alignment accuracy is dependent on how simi-
lar in length are the two input sequences. We first computed
the correlation between the length of the input sequences
and that of their curated alignment, to assess how much het-
erogeneous in length are the sequences in the alignments in
our data sets. In particular, given two aligned sequences, we
verified that there is no correlation (Pearson r = 0.05) be-
tween the absolute difference of their lengths and the differ-
ence between the length of their alignment and that of the
longer sequence, indicating that the input sequences length
difference is not related to how much ‘complex’ the align-
ment is. Then, we computed, for all the tested methods, the
average alignment SPS at different levels of size difference
between the two input sequences (Table 1), observing, for
our method, no correlation (Pearson r = −0.05), meaning
that the reconstructed alignment accuracy does not depend
on how similar the length of the RNAs is. In contrast, for
all the other tested methods, the more similar in size are
the input sequences, the more accurate is the reconstructed
alignment compared to the reference one.

Ultimately, in order to compute the structural accuracy
of each method, that is to say how well each method is able
to capture structural information within the sequences and
exploit it for a correct alignment, we computed the SCI.
SCI is defined as the ratio between the MFE of the ‘consen-
sus’ alignment and the mean MFE of the input sequences.
An SCI close to 1 means that the alignment captured the
structural characteristics of the input sequences. We di-
vided the reference alignments from the RNAspa, RNA
STRAND and BRAliBase data sets into sequence iden-
tity bins and then computed the mean SCI score for each
bin (Figure 8), first for the reference alignments (the light
green curve) and then for each of the tested methods. Re-
sults show how, in general, all the methods are equally able
to recover secondary structure information and that, even
with a coarse implementation of the Needleman–Wunsch
algorithm, our method shows results comparable to those
of the state-of-the-art. As expected, SCI scores obtained
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Table 1. Pearson correlation between alignment SPS and length difference of the input sequences

Pearson correlation

needle −0.37
MBR+BONUS −0.05
gardenia −0.42
RNAStrAT −0.10
LocARNA −0.58
RNAdistance 0.13
RNAforester −0.13

Figure 8. Structural conservation index (SCI) at different levels of se-
quence identity. All the data sets annotated with secondary structure infor-
mation were divided into sequence identity bins, and the mean SCI score
for each bin is reported for all tested methods.

when the sequence identity is low are higher than those
computed at high sequence identity, indicating a stronger
structural influence. LocARNA and gardenia show a differ-
ent trend compared with other methods because their SCI
scores are in some cases higher than the SCI of the refer-
ence alignments. In the case of gardenia, this is likely due to
random fluctuations caused by a smaller number of align-
ments in each bin compared to other methods, given the
already discussed problems with non-canonical secondary
structures. In the case of LocARNA, the SCI calculation is
likely biased by its approach for computing alignments. In-
deed, align-and-fold approach explores the partition func-
tion matrix looking for the best common secondary struc-
ture for the two input sequences and therefore leads to the
maximization of the numerator of the SCI score function.
As a consequence, with low sequence identity the SCI score
is always higher than 1 and also higher than the reference;
with higher sequence identity the score returns lower than
the reference score.

Using BEAR and the MBR as a measure of RNA structural
distance
The BEAR encoding and the MBR can capture tolerated
structural divergence between related RNAs. As such, it can
in principle be used for evaluating the structural distance be-
tween RNAs. We introduced a distance measure based on
the BEAR characters, defined as the weighted sum of the
aligned pairs substitution scores. This score can be either
positive, indicating two structures having similar structural
elements that in the MBR have high substitution scores,
or negative, indicating structures with low scoring elements
substitutions. Then, we computed the Pearson correlation
coefficient between this metric and all distances computed
by RNAdistance (namely weighted tree, weighted string,
full tree, full string, HIT tree, HIT string) and with that of

RNAforester. As comparison, we also computed the Pear-
son correlation between the RNAdistance distances and the
BP distance, defined as the number of base pairs not shared
by the two structures and reported in (45) to be a good
measure of RNA structural distance (Supplementary Fig-
ure S2). Results show that the distance based on BEAR is
highly correlated with the BP distance, but these two met-
rics show little correlation between all the distances com-
puted using RNAdistance and RNAforester. Among dif-
ferent metric measuring conservation of RNA secondary
structure, BP distance is one of the most accurate (45).
Hence, the high correlation between BP metric and BEAR
metric suggests the reliability and the potential of the lat-
ter. Indeed, BP distance simply counts the number of brack-
ets facing each other in the alignments while BEAR metric
is also able to quantify how similar are the structural ele-
ments whose brackets belongs to. These results suggest that
BEAR- and MBR-based distances can provide good esti-
mates of structural similarity and divergence.

DISCUSSION

The issue of taking into account secondary structure in
RNA alignments is a pressing one, given the higher diver-
gence rates of RNA sequence with respect to its structure.
This problem was approached before, with different degrees
of success, by a number of usually complex algorithms.
These methods, additionally, are in general not based on
models of RNA structural evolution and cannot be ex-
tended to large-scale analysis. The BEAR encoding and the
MBR, on the other hand, represent a way to capture, in a
rigorous and quantitative form, how structural variation is
tolerated in functionally related RNAs. By means of testing
the MBR to align RNAs we demonstrated the efficacy of the
approach that, even with a very simple implementation and
using little sequence information, can already provide accu-
rate structural alignments. Our algorithm has the smallest
complexity and fastest running time of all the tested meth-
ods (Table 2). From this starting point, more accurate algo-
rithms can be developed, as well as other algorithms to com-
pute, for example, local or multiple alignments. The simplic-
ity and effectiveness of the MBR approach make it suitable
for large-scale applications, such as finding the more struc-
turally similar RNA in large collections of RNAs given a
query. Tasks such as classification of RNAs into families
are also approachable. A major focus is certainly to identify
recurring patterns of local secondary structures, in order to
characterize collections of un-annotated RNAs. For exam-
ple, recent techniques to detect protein–RNA interactions,
such as CLIP-seq or PAR-clip (48,49), often highlight large
numbers of RNAs sharing the same function (i.e. binding

 at B
iblioteca A

rea B
iom

edica on A
pril 30, 2014

http://nar.oxfordjournals.org/
D

ow
nloaded from

 

http://nar.oxfordjournals.org/


Nucleic Acids Research, 2014 11

Table 2. Computational complexity and running times of the tested algorithms

Computational complexity Running time (s)

BRAliBase RNAspa
RNA
STRAND RRS

needle O(n∧2) 1.2 19.8 32.6 105.9
MBR+BONUS O(n∧2) 0.4 4.1 1.7 12.6
gardenia O(n∧4) 1.2 36.4 20.8a 327.1
RNAStrAT O(n∧4) 2.3 630.2 1498.3 11403.4
LocARNA O(n∧2(n∧2+m∧2)) 2.2 166.5 64.5 982.3
RNAdistance O(n∧3) 1.2 19.9 32.7 109.7
RNAforester O(|F1|*|F2|*deg(F1)*deg(F2)*(deg(F1)+deg(F2))b 3.3 1460 2654 2 days

For each data set, the running time (computed on a Intel R© CoreTM i7–2600K CPU @3.40 GHz with 16GB RAM) is reported in seconds employed to
process the whole data set. The modified Needleman–Wunsch algorithm that can take as an input BEAR strings and can use the MBR as a substitution
matrix was implemented in Java.
aAn output alignment was produced for only 70% of the total input.
b |Fi| is the number of nodes in the forest Fi; deg(Fi) is the degree of Fi.

the same protein partner), but the identification of the in-
teraction motif, which can be encoded (partially or totally)
in the structure, is often non-trivial.

Finally, the BEAR encoding is not only suitable for sub-
stitution matrix-like approaches but computational linguis-
tics techniques could be applied to it as well. Such kind of
approaches could not be applied to secondary structure de-
scribed using the dot-bracket notation or a tree-based rep-
resentation, while it perfectly fits into an informative string
of characters like in BEAR. The final goal is to find signal
and stretches of characters that could be used to classify and
annotate RNAs.

We provide a novel way to tackle all these issues, by re-
leasing to the scientific community the MBR (in the Supple-
mentary materials) and the software to compute the BEAR
encoding given the secondary structure (available upon re-
quest) that can be the basis for the development of new
methods but that can also be seamlessly integrated in ex-
isting methods to help them improve their performances.

AVAILABILITY

The program that encodes RNA secondary structure us-
ing the BEAR alphabet can be freely downloaded at http:
//bioinformatica.uniroma2.it/BEAR/BEAR Encoder.zip.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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A short survey on protein blocks. Biophys. Rev., 2, 137–147.

27. Gelly,J.-C., Joseph,A.P., Srinivasan,N. and de Brevern,A.G. (2011)
iPBA: a tool for protein structure comparison using sequence
alignment strategies. Nucleic Acids Res., 39, W18–W23.
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