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Abstract
We present a general analysis of the bifurcation sequences of 2 : 2 resonant
reversible Hamiltonian systems invariant under spatial Z2 ×Z2 symmetry. The
rich structure of these systems is investigated by a singularity theory approach
based on the construction of a universal deformation of the detuned Birkhoff
normal form. The thresholds for the bifurcations are computed as asymptotic
series also in terms of physical quantities for the original system.
Mathematics Subject Classification: 34C29, 34C99, 34J40
PACS numbers: 05.45.-a

1. Introduction

We consider the problem of determining the phase-space structure of a Hamiltonian describing
a 2 : 2 resonance. With this we mean a Hamiltonian dynamical system close to an equilibrium
with almost equal unperturbed positive frequencies and which is invariant with respect to
reflection symmetries in both symplectic variables in addition to the time reversion symmetry.
We aim at a general understanding of the bifurcation sequences of periodic orbits in general
position from/to normal modes, parametrized by an internal parameter (the ‘energy’) and by
the physical parameters: the independent coefficients characterizing the nonlinear perturbation
and a ‘detuning’ parameter associated with the quadratic unperturbed Hamiltonian.

Among low-order resonances (see, e.g., [39]) the symmetric 1 : 1 resonance plays a
prominent role. The general treatment is attributed to Cotter [14] in his PhD thesis, but
several other works explored its generic features [7, 37, 38, 42]. Particular emphasis has been
given to the symmetric subclass which is the subject of this paper. In particular, we recall the
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works of Kummer [31], Deprit et al [18, 19, 33] and Cushman and Rod [17]. The connection
of equivariant singularity theory and bifurcation of periodic orbits was made for the first time
in [23] for Z2-equivariance and in [40] for S1-equivariance. Broer et al [7] exploit equivariant
singularity theory with distinguished parameters to study resonant Hamiltonian systems. We
proceed on the same ground to detail the application of an equivariant singularity analysis to
the generic unfolding of a detuned 1 : 1 resonance invariant under Z2 × Z2 mirror symmetries
in space and reversion symmetry in time.

Among several areas of application in physics, chemistry and engineering, there is great
relevance in the application of resonance crossing to galactic dynamics [2,44]; recent treatments
have been given in [34, 35]. We consider systems in two degrees of freedom, therefore, in
order to classify the dynamics with singularity theory, we need to perform a preliminary
transformation by constructing a normal form of the physical source problem [10, 22].

After the normalization procedure, the system acquires an additional (formal) S1

symmetry. Using regular reduction [15], we divide out the S1 symmetry of the normal
form obtaining a planar system: this allows us to apply singularity theory to get a universal
unfolding [7, 8].

Actually we have to respect the symmetries and reversibility of the original system,
implying the invariance of the planar system with respect to the Z2 ×Z2 action on R2 and thus
we are lead in the framework of Z2 × Z2-equivariant singularity theory. The momentum
corresponding to the S1 symmetry serves as the internal ‘distinguished’ parameter [6, 9].
The planar system can be further simplified into a versal deformation of the germ of the
singularity [20]. The basic classification proceeds by examining the inequivalent cases
corresponding to the two sign combinations of the quartic terms in the germ [26,27]. In [25,41]
it is shown that after S1-reduction one actually obtains Z2-invariant bifurcation equations.
In the discussion in section 5 we see the form taken by these equations in the present
context.

The simplifying transformations inducing the planar system from its universal deformation
are explicitly computed, so that we are able to obtain the bifurcation sequences of the detuned
2 : 2 normal form. Deformation parameters are determined by the coefficients of the quartic
terms: they fix the qualitative picture whereas the inclusion of higher-order terms gives only
small quantitative effects which do not change the qualitative overall results. This allows
us to pull back the bifurcation curves to the original parameter-energy space [19, 31, 33]. In
particular, we find out the physical energy threshold values (depending on the coefficients of
the original system and on the detuning parameter) which determine the pitchfork bifurcation
of periodic orbits in general position (namely loop and inclined orbits in the present case)
from/to the normal modes of the original system.

The plan of the paper is the following. In section 2 we introduce the model problems and
their Birkhoff normal forms; in section 3 we perform the reduction to the planar system and
derive its central singularity; in section 4 we introduce the versal deformation and describe
the algorithm to induce the models from it; in section 5 we classify possible dynamics by
identifying the bifurcation sequences; in section 6 we discuss the implications of these results
for the original physical models; in the appendix we provide the normal forms and list the
explicit values of coefficients appearing in the transformation series.

2. The model and its normal form

Let us consider a two-degrees of freedom system whose Hamiltonian is an analytic function
in a neighbourhood of an elliptic equilibrium and symmetric under reflection with respect to
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both symplectic variables. Its series expansion about the equilibrium point can be written as

H(p, x) =
∞∑

j=0

H2j (p, x), (1)

where each term is a homogeneous polynomial of degree 2(j+1) exhibiting two Z2 symmetries,
denoted S1 and S2:

S1 : (x1, x2, p1, p2) → (−x1, x2, −p1, p2) (2)

S2 : (x1, x2, p1, p2) → (x1, −x2, p1, −p2) (3)

and the time reversion symmetry

T : (x1, x2, p1, p2) → (x1, x2, −p1, −p2). (4)

To take into account the presence of reflection symmetries, we will speak of a 2 : 2
resonance. We remark that the Hamiltonian function (1) could also be invariant under other
transformations, such as reflections acting on the x and not on the p and vice versa. Our choice
to consider reflection symmetries (2) and (3) lies in the Lagrangian description of a reversible
system, giving up using all possibilities of the Hamiltonian description [5].

We assume the zero-order term H0 to be in the positive definite form

H0(p, x) = 1
2ω1(p

2
1 + x2

1 ) + 1
2ω2(p

2
2 + x2

2 ), (5)

where the two harmonic frequencies ω1 and ω2 are generically not commensurable. In
unperturbed harmonic oscillators frequency ratios are fixed. However, the nonlinear coupling
between the degrees of freedom induced by the perturbation causes the frequency ratio to
change. Therefore, even if the unperturbed system is non-resonant, the system passes through
resonances of order given by the integer ratios closest to the ratio of the unperturbed frequencies.
This phenomenon is responsible for the birth of new orbit families bifurcating from the normal
modes or from lower-order resonances [3, 11, 13, 43]. Therefore, to catch the main features
of the orbital structure, it is convenient to assume the frequency ratio not far from 1 and then
approximate it by introducing a small ‘detuning’ δ [43], so that

ω1 = (1 + δ)ω2. (6)

Hence, after a scaling of time

t −→ ω2t, (7)

so that
1
ω2

H .= H =
∞∑

j=0

H2j , (8)

the unperturbed term turns into

H0(p, x) = 1
2

(
p2

1 + p2
2 + x2

1 + x2
2

)
(9)

and we can construct a 2 : 2 detuned normal form by proceeding as if the unperturbed harmonic
part would be in exact 1 : 1 resonance and including the remaining part, which we assume of
second order, inside the perturbation.

In practice, working with formal power series the expansions are truncated at some
jmax

.= N . If we truncate the normalization procedure to the minimal order required, i.e.
N = 1 [12], the system turns out to be already reduced to the universal unfolding. At order
N > 1 this is not true anymore and we need the algorithms described in sections 3–4. In the
following we truncate at order N = 2 (i.e. including terms up to the sixth degree), but the
procedure can be iterated to arbitrary higher orders.
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For sake of clarity we consider the natural case, so that the higher-order terms in the
Hamiltonian H read

H2j =
j+1∑

k=0

v2k,2(j+1−k) x2k
1 x

2(j+1−k)
2 , (10)

where v2k,2(j+1−k), with j ∈ N, 0 ! k ! j + 1, are physical coefficients which may depend on
the detuning [16] and in this respect we keep terms of this kind resulting from rescaling. The
general (not natural) case can be treated in an analogous way.

Proceeding with a Birkhoff normalization procedure [4, 10, 22] up to order N , we obtain
the ‘normal form’

K(J1, J2, 2φ1 − 2φ2) =
N∑

j=0

K2j , (11)

where we have introduced the action-angle(-like) variables with the transformation:

x$ =
√

2J$ cosφ$, p$ =
√

2J$ sin φ$, $ = 1, 2. (12)

This Hamiltonian is in normal form with respect to the quadratic unperturbed part H0 that in
these coordinates reads

HAA
0 = K0 = J1 + J2

.= E . (13)

We remark that for the computation of (11) and results thereof, the use of algebraic manipulators
like MATHEMATICA® is practically indispensable: in appendix A we report the terms up to second
order of this and the transformed normalized functions. After the normalization, the system
has acquired an additional S1 symmetry. The corresponding conserved quantity is given by
H0 = E . This enables us to formally reduce (11) to a planar system. It is well known [34,43,44]
that, in addition to the normal modes, periodic orbits ‘in general position’ may appear. They
exist only above a given threshold when the normal modes suffer stability/instability changes.
This phenomenon can be seen as a bifurcation of the new family from the normal mode when
it enters in 1 : 1 resonance with a normal perturbation (or as a disappearance of the family in
the normal mode). The phase between the two oscillations also plays a role. These additional
periodic orbits are, respectively, given by the conditions φ1 − φ2 = 0, π (inclined orbits) and
φ1 − φ2 = ±π/2 (loop orbits): therefore both families give two orbits. We are going to
investigate the general occurrence of these bifurcations as they are determined by the internal
and external parameters. In practice we analyse the nature of critical points of an integrable
approximation of the iso-energetic Poincaré map provided by the phase-flow of a planar system
obtained through reduction and further simplification of the normal form.

3. Reduction to the central singularity of the planar system

We perform the following canonical transformation [7]





J1 = J

J2 = E − J

ψ = φ1 − φ2

χ = φ2

(14)

and, since χ is cyclic and its conjugate action E is the additional integral of motion, we may
introduce the effective Hamiltonian

K̃(J, ψ; E, δ) = E +
N∑

j=1

(
Aj (J ; E, δ) + Bj (J ; E, δ) cos 2ψ

)
, (15)
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where Aj , Bj are homogeneous polynomials listed in section A.2 in the appendix for N = 2.
We get a one degree of freedom system: in the following we refer to it as the 1DOF system.

We now perform a further reduction into a planar system, viewing E as a distinguished
parameter [8].

Remark 1. The adjective distinguished refers to the fact that E stems from the phase space of
K̃ and is a parameter only for the 1DOF system, not for the original one.

The planar reduction is obtained via the canonical coordinate transformation [31]
{

x =
√

2J cosψ,

y =
√

2J sinψ,
(16)

so that the Hamiltonian function K̃ is converted into the planar Hamiltonian

K(x, y; E, δ) =
3∑

i=0

3−i∑

j=0

c2i,2j x
2iy2j + h.o.t., (17)

where c2i,2j = c2i,2j (E, δ). The actions (2) and (3) reduce to (x, y) → (−x, −y) and the time
reversion symmetry reduces to (x, y) → (x, −y). Therefore, the planar Hamiltonian turns out
to be invariant under a Z2 × Z2 action on R2.

Remark 2 (Singular circle). The coordinate transformation (12) is singular at the coordinate
axes J1 = 0 and J2 = 0. After the transformation (14), these axes, respectively, become J = 0
and J = E . The first singularity is removed by introducing the Cartesian coordinates (16) in
the plane. The second singularity is called ‘singular circle’ and is given by

x2 + y2 = 2E . (18)

On this circle J2 = 0 so that the coordinate φ2 is ill defined and therefore ψ is. In particular,
this implies that K̃ is constant on this circle.

Since the system is planar now, we may use general (Z2 × Z2-equivariant) planar
transformations for further reductions, as opposed to just the canonical ones [7]. The resulting
system is not conjugate but equivalent to the original one. At this point the system depends
on a distinguished parameter E , a detuning parameter δ and several ordinary coefficients. The
parameters are supposed to be small. We look at the degenerate Hamiltonian that results when
δ = 0 (resonance) and E = 0 (the diameter of the singular circle vanishes). This is called the
central singularity, also known as the organizing centre.

At the singular values of the parameters we have that K reduces to

Ks(x, y)
.= K|δ=0,E=0(x, y) = s4,0x

4 + s2,2x
2y2 + s0,4y

4 + h.o.t., (19)

where si,j = ci,j (0, 0). In particular

s4,0 = A − 3C, s2,2 = 2(A − 2C), s0,4 = A − C (20)

where

A = 3
8
(v4,0 + v0,4), C = 1

8
v2,2. (21)

The constant term c0,0 can be neglected and, by a simple scaling transformation, Ks can be
turned into

K′
s(x, y) = ε1x

4 + µx2y2 + ε2y
4 + h.o.t., ε1, ε2 ∈ {−1, 1}, (22)

where

µ = 2(A − 2C)√
|(A − 3C)(A − C)|

, ε1 = A − 3C

|A − 3C|
, ε2 = A − C

|A − C|
. (23)
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Remark 3 (Non-degeneracy conditions). This is possible provided that the coefficients of
x4 and y4 in K′

s are not zero. This translates into the non-degeneracy conditions

A − 3C (= 0 and A − C (= 0. (24)

The sign of ε1 and ε2 is determined by the sign of A − 3C and A − C, respectively. In the
following, we will look for a transformation which brings the system at the central singularity
into the standard form (25). If conditions (24) are not satisfied this is not possible: a reduction
of (19) may still be possible; however, we may have to retain sixth degree (or even higher)
order terms in the central singularity.

We now start the procedure of simplifying the reduced normal form by following the so
called BCKV-restricted reparametrization method [6]. As first step in the process of obtaining
the versal deformation, we look for a near identity planar morphism )(x, y) which brings the
system at the central singularity into the polynomial form

f (x, y)
.= ε1x

4 + µx2y2 + ε2y
4. (25)

This morphism has to respect the Z2 × Z2 symmetry (x, y) → (±x, ±y). The following
proposition [7] ensures the existence of the transformation we are looking for.

Proposition 1. The germ g(x, y) = ε1x
4 + µx2y2 + ε2y

4+ h.o.t., with εi = ±1, is Z2 × Z2

isomorphic to f (x, y) = ε1x
4 + µx2y2 + ε2y

4, provided that µ2 (= 4ε1ε2.

For our system the condition

µ2 (= 4ε1ε2 (26)

is equivalent to require that C (= 0. Making this assumption, we are able to compute )

using the iterative procedure described in [8] here adapted to our symmetric context. We set
)

(1)
1 (x, y) = x, )(2)

1 (x, y) = y and assume that for some k

K′
s ◦ )k = ε1x

4 + µx2y2 + ε2y
4 + O(|x, y|2(k+2)).

Then we set

)
(1)
k+1 = )

(1)
k +

∑

i

α
(1)
i P

(k+1)
i (27)

)
(2)
k+1 = )

(2)
k +

∑

i

α
(2)
i Q

(k+1)
i , (28)

where {P (k+1)
i }, {Q(k+1)

i }, respectively, span the space of two variables monomials of degree
k +1, invariant under the Z2 actions (x, y) → (x, ±y) and (x, y) → (±x, y). The coefficients
α

(j)
i are to be found in order to cancel the terms of order O(|x, y|2(k+2)) in K′

s . This translates
into a set of linear equations for the real numbers α

(j)
i . By the existence of the reducing

transformation, this set of equations is never over determined and can always be solved if (26)
is satisfied.

If we compute ) up to order 2 in k we get the following proposition.

Proposition 2. Let us consider the planar Hamiltonian K. Except for the exceptional values
C = A, C = A/3 and C = 0, there exists a coordinate transformation ) : R2 → R2 such
that Kb

.= K ◦ ) is of the form

Kb(x, y; E) = (a1E + a2E2 + b1E + b2)x
2 + (a3E + a4E2 + b3E + b4)y

2

+ (ε1 + a5E + b5)x
4 + (µ + a6E + b6)x

2y2

+ (ε2 + a7E + b7)y
4 + h.o.t., (29)
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where ai are coefficients and bi are parameters linearly depending on δ and vanishing at
δ = 0. They are listed in appendix A.2. Neglecting terms of O(|x, y|5) the following is a
suitable transformation ):

) :





x → x + ε1(2ε2s2,4−µs0,6)µ+2µs6,0−4ε1s4,2

4ε1ε2(4ε1ε2−µ2)
xy2 − s6,0ε1

4 x3

y → y + ε2(+2ε1s4,2−µs6,0)µ+2µs0,6−4ε2s2,4

4ε1ε2(4ε1ε2−µ2)
x2y − s0,6ε2

4 y3.
(30)

Proof. The existence of ) is a consequence of proposition 1. The conditions on C are
consequence of the non-degeneracy conditions (see remark 3 and of condition (26)). The
explicit expression of the transformation up to and including terms of O(|x, y|3) has been
obtained by exploiting the algorithm described above up to k = 2.

"

4. Inducing the system from a universal deformation

The theory ensures that there exists a Z2 × Z2-equivariant morphism φ which induces the
reduced normal form Kb from a universal deformation. In [8] an algorithm is discussed in
order to compute φ in the presence of a Z2 symmetry, (x, y) → (x, ±y). In the following, we
adapt the algorithm to our symmetric context.

4.1. The universal deformation

Let us denote with U the space of all differentiable germs of two variables invariant under the
action of the group

+ = {Id, S1, S2, S1 ◦ S2}
and vanishing at the origin. Moreover, let us consider the group G of origin preserving +-
equivariant C∞ maps on U with action on U by composition to the right. We denote by
ξ : G×U → U a smooth action of G on U . For a given point f ∈ U , the action ξ gives rise to
an orbit, in this notation given by Gf and let Tf (Gf ) be the tangent space to this orbit at the
point f . The codimension of Tf (Gf ) in Tf (U) is also called the codimension of f . In case
f is given by (25), the codimension of Tf (Gf ) is finite and

F(x, y) = ε1x
4 + (µ + u3)x

2y2 + ε2y
4 + u1x

2 + u2y
2 (31)

is a universal deformation of f [7]. This implies that there exists a Z2 × Z2-equivariant
morphism φ which induces Kb from F . Such a transformation can be very useful in
applications, since it allows one to reduce the number of parameters to the minimal. Therefore,
in the following, we aim at the explicit computation of φ.

Since the tangent space has finite codimension, we get that for every g ∈ U there exist
+-invariant germs Qi (x, y) and real numbers Ri such that

g(x, y) =
∑

i

Qi (x, y)Ti(x, y) + R1x
2 + R2y

2 + R3x
2y2, (32)

where Ti is a system of generators of Tf (Gf ). Equation (32) is the so-called infinitesimal
stability equation [9], where Qi and Rj are, in general, unknown quantities. In the particular
case f = ε1x

4 + µx2y2 + ε2y
4, a system of generators is given by [36]

T1(x, y) = x
∂f (x, y)

∂x
= x(4ε1x

3 + 2µxy2),

T2(x, y) = y
∂f (x, y)

∂y
= y(2µx2y + 4ε2y

3).
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Now, suppose that we are able to solve equation (32): then we can construct the transformation
φ using an iterative algorithm. For simplicity of notation we define c = (E, c1, . . . , cq) where
ck(k = 1, ..., q) are the set of physical parameters (a, b) in Kb, u = (u1, u2, u3), z = (x, y)

and look for a transformation

φ : R2 × Rq+1 → R2 × R3

(z, c) → (θ(z, c), ρ(c)) (33)

where θ : R2 × Rq+1 → R2 is a diffeomorphism which acts as a (parameter depending)
coordinate transformation and ρ : Rq+1 → R3 acts as a reparametrization.

Suppose that we have an algorithm that solves the infinitesimal stability equation modulo
terms of order O(zd), d # 2. The basic idea is to expand θ and ρ as formal power series in
the parameters c [30]:

θ(z, c) =
∑

j!0

θj (z, c), ρ(c) =
∑

j!0

ρj (c)

where θj and ρj are homogeneous of degree j in c. Let us denote

θ l(z, c)
.=

l∑

i=0

θi(z, c) ρl(c)
.=

l∑

i=0

ρi(c)

and set θ0(z) = z, ρ0(c) = 0. Suppose that we are able to compute θ up to order l in c, that is
we are able to find θ l and ρl which solve

G(z, c) = F(θ l(z, c), ρl(c)) + O(cl+1) + O(zd), (34)

where G(z, c) is a versal deformation of f (z). Then

F(θ l+1, ρl+1) = F(θ l + θl+1, ρ
l + ρl+1

= F(θ l, ρl) + DzF(θ l, ρl)θl+1 + DuF(θ l, ρl)ρl+1

+ O(|θl+1|2) + O(|ρl+1|2)
= F(θ l, ρl) + DzG(θl, ρl)θl+1 + DcF(θ l, ρl)|c=0 · ρl+1 + O(cl+2),

where we obtain the last equality using the estimates θ l(z, c) = z + O(c), θl+1(z, c) = O(cl+1)

and F(z, c) = f (z) + O(c). Thus, we have

G(x, y, c) − F(θ l(x, y, c), ρl(c)) = θl+1,1(x, y, c)
∂f

∂x
+ θl+1,2(x, y, c)

∂f

∂y
+ ρl+1,1x

2

+ ρl+1,2y
2 + ρl+1,3x

2y2 + O(cl+2) + O(|x, y|d).
(35)

This equation has a structure similar to the following one:

g(x, y, c) = xQl+1,1(x, y, c)
∂f (x, y)

∂x
+ yQl+1,2(x, y, c)

∂f (x, y)

∂y

+ Rl+1,1(c)x
2 + Rl+1,2(c)y

2 + Rl+1,3(c)x
2y2. (36)

We can solve (36) for the unknowns Ql+1,i and Rl+1,j by equating the coefficients of the
monomials cα = cα1

1 · · · cαs
s on the left- and right-hand sides with the condition α1 + . . . +αs =

l + 1. In such a way we have to solve several equations of the form (32). Thus, if we are able to
solve the infinitesimal stability equation, we can find Q1(x, y, c) and Q2(x, y, c) by solving
(36). If we take θl+1,1 = xQl+1,1, θl+1,2 = yQl+1,1 and ρl+1,i = Rl+1,i , we find θ and ρ up to
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order l + 1 in c. In particular we have an explicit expression for the parameters ui in terms of
c, that is

ui =
l+1∑

j=1

Rj,i + O(cl+2), i = 1, 2, 3.

An algorithm to solve the infinitesimal stability equation, the so-called division algorithm [9]
is presented in section 4.3. Using the division algorithm to solve equation (35) gives the
transformation inducing G from F . Namely, the following proposition holds.

Proposition 3. Let Kb be as in (29) with central singularity at E = b1 = b2 = ... = 0 given
by f (x, y) = ε1x

4 + µx2y2ε2 + ε2y
4, εi = ±1 for i = 1, 2 and µ2 (= 4ε1ε2. There exists a

diffeomorphism θ and a reparametrization ρ such that

Kb(x, y) = F(θ(x, y, E, bi), ρ(E, bi)) (37)

with θ(x, y, 0) = (x, y), ρ(0, . . . , 0) = (0, 0, 0) and

F(x, y, u) = f (x, y) + u1x
2 + u2y

2 + u3x
2y2.

Modulo O(|E, bi |3)+ O(|x, y|3), the coordinate transformation θ reads

x → x

(
1 + ε1

b5

4
+ ε1

a5E
4

−
3b2

5

32
− 3a5b5E

16
−

3a2
5E2

32

)
(38)

y → y

(
1 + ε2

b7

4
+ ε2

a7E
4

− 3b2
7

32
− 3a7b7E

16
− 3a2

7E2

32

)
(39)

and, modulo O(|E, bi |3) the reparametrization ρ is given by

u1 = b2 +
(

a1 + b1 − ε1
a5b2

2
− ε2

a1b5

2

)
E − ε1

b2b5

2
+

(
a2 − ε1

a1a5

2

)
E2 (40)

u2 = b4 +
(

a3 + b3 − ε2
a7b4

2
− ε2

a3b7

2

)
E − ε2

b4b7

2
+

(
a4 − ε2

a3a7

2

)
E2 (41)

u3 = b6 − ε1
b5b6

2
− ε2

b6b7

2
+

1
2

(
3b2

5

4
− ε1b5 +

3b2
7

4
− ε2b7 + ε1ε2

b5b7

2

)
µ

+
[
a6 − ε1

a6b5

2
− ε1

a5b6

2
− ε2

a7b6

2
− ε2

a6b7

2

+
(

3a5b5

8
− ε1

a5

2
+

3a7b7

8
− ε2

a7

2
+ ε1ε2

a7b5

4
+ ε1ε2

a5b7

4

)
µ

]
E

−
[
ε1

a5a6

2
+ ε2

a6a7

2
−

(
3a2

5

8
− 3a2

7

8
− ε1ε2

a5a7

4

)
µ

]
E2. (42)

Proof. For µ2 (= 4ε1ε2, since F is a versal deformation of the germ ε1x
4 + µx2y2 + ε2y

4 the
existence of θ and ρ follows trivially. By applying the iterative procedure described above to
compute θ and ρ, at each step we have to solve an equation of type (36). This can be carried
out by exploiting the division algorithm described in section 4.3. In general, we need to know
G up to order L + 3 in order to compute θ only up to degree L since the first derivatives of the
singularity are of degree 3. Similarly, in order to fix ρ, it suffices to know G up to degree four
in (x, y) since the maximum degree of the deformation directions (namely x2, y2 and x2y2)
associated with ρ1, . . ., ρ3 is four. Therefore, for Kb as in (29) the computation can be done up
to and including terms of the first order in (x, y) and the second order in the parameters (E, bi)

for θ and up to and including O(|E, bi |2) for ρ. With a little computer algebra we obtain the
transformations (38)–(39) and (40)–(42).

"
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4.2. Solving the infinitesimal stability equation

We have seen in the previous section how to construct a transformation inducing (29) from the
universal deformation (31). Our method is based on the hypothesis that we are able to solve
the infinitesimal stability equation (32) up to a certain order in the variables (x, y). In this
section we present an algorithm to solve this equation. We take the basic ideas from [8, 9].

Let us define 0+ the finite-dimensional vector space of +-invariant power series on R2

truncated at order d . We can identify 0+ with the ring R+ of symmetric polynomial in two
variables of maximum degree d . Let us denote by zγ a monomial in R+ of total degree γ , that
is zγ = xγ1yγ2 , where 1 ! γ1 + γ2 = γ ! d. We can choose an ordering ≺ for monomials in
R such that zα ≺ zβ if either the total degree of zα is smaller than the total degree of zβ , or
the degree is equal but zα precedes zβ in lexicographic ordering. For example xy ≺ y2 since
xy ≺ yy.

Definition 1. Let f be a polynomial in R.

(i) MM(f ) is the minimal monomial occurring in f with respect to the monomial ordering
described above;

(ii) MC(f ) is the coefficient associated with MM(f );
(iii) MT (f ) is the term associated with MM(f ), that is MT (f ) = MC(f )MM(f );
(iv) A monomial zα is said to divide a monomial zβ if β − α is a vector with non-negative

entries, then zβ/zα = zβ−α .

If I = f1, . . . , fj is a set of polynomials in R+ , we denote by 〈I 〉 the ideal generated by I in
R+ . The basic idea of the algorithm is to solve the infinitesimal stability equation (32) through
several divisions of the polynomial f in the ring R+ by the ideal T generated by {MM(Ti)},
where {Ti} is a set of generators of the tangent space to the germ orbit we have described in
the previous section. However, in general, the remainder of such a division is not unique. We
need a set of generators for the ideal T which makes the output of such a division unique. This
can be carried out if we choose as a system of generators for T a Gröbner basis for T with
respect to the monomial ordering we have described above. In fact, we recall that a Gröbner
basis is, by definition, a set of generators for a given 〈I 〉 such that multivariate division of any
polynomial in the polynomial ring R+ gives a unique remainder.

Now, we are ready to present the algorithm.

4.3. Division algorithm

Input: integer d , power series f truncated at degree d, {g1, . . . , gk} Gröbner basis for the
ideal T .
Output: power series r, q1, . . . , qk truncated at degree d such that

f =
k∑

i=1

qigi + r modulo terms of degree dand higher.

Algorithm:
h ← g

Reduce h modulo terms of degree d and higher
r ← 0
qi ← 0
While h (= 0 do
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If MM(gi)|MM(h) for some i, then
qi ← qi + MT (h)/MT (gi)

← h − (MT (h)/MT (gi))gi

Reduce h modulo terms of degree d or higher
Else

r ← r + MT (h)

h ← h − MT (h)

End if
End while.

Now we have to keep in mind that we are working in the ring of symmetric polynomials,
thus we have to make sure that the output of the division algorithm respects the + invariance.
In the case we are studying this is easy to check. In fact, if + = Z2 × Z2 a polynomial in
R+ must be of even degree both in x and y. On the other hand, if we consider the germ
function g = ε1x

4 + µx2y2 + ε2y
4, we know that the corresponding invariant tangent space T

is generated by {2x(2ε1x
3 +2µxy2), 2y(2µx2y +2ε2y

3)} and a Gröbner basis for the ideal T is
GB =

{
2ε1x

4 + µx2y2, 2ε2x
4 + 2µx2y2, y6

}
(see, e.g., [8]). Thus, at every step the division

algorithm is nothing else but a division between monomials of even degree in both variables.
This implies that the outputs of the algorithm are necessarily polynomials of even degree both
in x and y and so they respect the + invariance. In other cases it could be not so easy and the
algorithm must be modified.

5. Bifurcation curves

From section 4 we know that, if condition (26) is satisfied,

F(x, y; u1, u2, u3) = ε1x
4 + (µ + u3)x

2y2 + ε2y
4 + u1x

2 + u2y
2 (43)

is a universal deformation of f (x, y). Therefore, there exists a coordinate transformation which
induces Kb from F . Such a transformation can be found by exploiting the algorithm described
in the previous section and is given in proposition 3. The phase flows of the corresponding
Hamiltonian vector fields being equivalent allows us to deduce the bifurcation sequence and
the corresponding energy critical values of the original system from the bifurcation analysis
of the simple function (43).

Let us now examine the possible inequivalent cases by considering the combinations of
the signs of ε1 and ε2.

5.1. ε1ε2 = 1.

The fixed points of the function (43) are given by

(0, 0),

(

±
√

−ε1u1

2
, 0

)

,

(

0, ±
√

−ε2u2

2

)

, (44)



±

√
−u2 − ε2(−αu1+2ε1u2)

α2−4ε1ε2√
α

, ±
√

−αu1 + 2ε1u2√
α2 − 4ε1ε2



 , (45)

where α = µ+u3. In the case ε1ε2 = 1, the corresponding bifurcation curves in the parameter
space are given by u1 = 0, u2 = 0, 2u2 + αu1 = 0 and αu2 + 2u1 = 0. Using the parameters
ui found in (40), (41) and (42), we are able to express these bifurcation curves in terms of
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the detuning parameter δ and the distinguished parameter E . Namely, we have the following
proposition

Proposition 4. In the planar system Kb of proposition 2, bifurcations occur along the following
curves in the (δ, E) plane:

E = E1I
.= δ

2(2A − B − 6C)

+

(
136A2 + 34B2 + 280BC + 456C2 − 8A(17B + 70C) + 15v2,4 − 45v0,6

)
δ2

48(2A − B − 6C)3

(46)

E = E1L
.= δ

2(2A − B − 2C)

+

(
136A2 + 34B2 + 104BC + 72C2 − 8A(17B + 26C) + 3v2,4 − 45v0,6

)
δ2

48(2A − B − 2C)3

(47)

E = E2I
.= − δ

2(2A + B − 6C)

−
(
56A2 + 14B2 + 8A(7B − 74C) − 296BC + 1272C2 + 45v6,0 − 15v4,2

)
δ2

48(2A + B − 6C)3

(48)

E = E2L
.= − δ

2(2A + B − 2C)

−
(
56A2 + 14B2 + 8A(7B − 22C) − 88BC + 120C2 + 45v6,0 − 3v4,2

)
δ2

48(2A + B − 2C)3

(49)

where terms O(δ3) are neglected.

Remark 4. The fixed points of the planar system Kb correspond to fixed points for the 1DOF
Hamiltonian K only if they occur inside the singular circle, see remark 2. Moreover, the
distinguished parameter E is not negative, therefore the previous curves determine bifurcations
for the 1DOF system defined by K only for those values of the coefficients and of the detuning
parameter which makes (at least) the first-order terms non-negative (Arnold ‘tongues’).

In the following we clarify how the bifurcation curves given in proposition 4 have to be
interpreted in terms of the 1DOF system.

5.1.1. ε1 = ε2 = −1. To fix the ideas, let us consider the case C > 0 and ε1 = ε2 = −1,
which corresponds to A − 3C < A − C < 0, and let us assume that the detuning parameter is
not positive.

Remark 5. Notice that there is no loss of generality in assuming δ ! 0 (i.e. ω1 ! ω2). If in
the original phase space we exchange the axes, namely we perform the transformation

R1 : x1 → x2, x2 → x1, p1 → p2, p2 → p1 (50)

the Hamiltonian takes the form

H′ = 1
2
ω2(p

2
1 + x2

1 ) +
1
2
ω1(p

2
2 + x2

2 ) + v04x
4
1 + · · · .
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Figure 1. Bifurcation diagram in case A − 3C < A − C < 0 and δ < 0.

The detuning parameter becomes δ = ω2
ω1

− 1, which is opposite in sign with respect to the
definition (6). Thus, by applying the transformation (50), the case δ > 0 can be treated
straightforwardly starting from δ < 0.

In this case the deformation F becomes

F(x, y) = −x4 + µx2y2 − y4 + u1x
2 + u2y

2 + u3x
2y2. (51)

The critical points of the planar system are therefore given by (44) and (45) with ε1 = ε2 = −1.
The fixed points

(
±

√
u1

2
, 0

)
,

(
0, ±

√
u2

2

)
(52)

bifurcate from the origin when u1 = 0 and u2 = 0. These critical values of the unfolding
parameters, respectively, determine the bifurcation curves (46) and (47). For C > 0 and δ ! 0,
these critical values correspond to physical acceptable values if, respectively, B > 2(A − 3C)

and B > 2(A − C). Furthermore, for E ≈ 0, both u1 and u2 are negative and E1I < E1L.
Thus, the bifurcations of fixed points (52) occur according to the diagram given in figure 1,
from frame 1 to 3. The grey zone corresponds to not acceptable values of the parameters.
Concerning the critical points



±

√
u1 + α(−αu1−2u2)

−4+α2

√
2

, ±
√

−αu1 − 2u2√
−4 + α2



 , (53)

they determine the bifurcation lines (respectively, the dashed and dotted lines in figure 1)

αu2 = −2u1, 2u2 = −αu1. (54)

The expressions of these critical curves in the (δ, E) plane are given in (48) and (49).

Remark 6. The reduced system comes from a normalization procedure truncated to the fourth
order in ε, in which both E and δ are assumed to be of second order. Therefore, in the
computation of (48) and (49) from (54) we retain in α only terms O(|E, δ|), since α has to
multiply x2y2 which is a fourth-order term.

The critical curves (48) and (49) correspond to acceptable values for B > 2(C − A) and
B > 2(3C − A). However, a little computer algebra shows that the critical points (53) fall on
the singular circle (18) (frame 4 in figure 1; the marked circle represents the singular circle),
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therefore in correspondence of these points the coordinate transformation (16) is not invertible.
On the other hand, the fixed points (52) could also fall on the limit circle. At first order in the
deformation parameters, this happens for

u1√
3C − A

= 4E,
u2√

C − A
= 4E . (55)

Solving equations (55) gives the first-order term in the detuning parameter of expressions (48)
and (49). This suggests that the critical curves (48) and (49) do not determine the bifurcation
of new fixed points for the reduced system defined by (15), but rather the disappearance of
fixed points (52). To verify this statement, we operate a different planar reduction, according
to {

x ′ =
√

2(E − J ) cosψ,

y ′ =
√

2(E − J ) sinψ.
(56)

In these coordinates the singularity at J2 = 0 is removed and we have a singular circle for
J1 = 0. Proceeding as in the previous section we get the universal deformation

F ′(x ′, y ′) = −x ′4 + (µ + u′
3)x

′2y2 − y ′4 + u′
1x

′2 + u′
2y

′2, (57)

where the expressions of the deformation parameters are still determined by proposition 3,
but the values of coefficients ai and parameters bi change in view of (56). They are listed in
appendix A.2.

The bifurcation diagram of (57) in the (u′
1, u

′
2) plane is still given by figure 1. However,

since both u′
1 and u′

2 turn out to be positive for δ ! 0 and E ≈ 0, in the (u′
1, u

′
2) plane the

bifurcation diagram should be read clockwise from 3 to 1. Solving u′
1 = 0 and u′

2 = 0 we find
the critical curves (48) and (49), which therefore must determine the disappearance of fixed
points (52) for the reduced Hamiltonian (15), as we claimed.

Remark 7. The bifurcation analysis of the reduced system has been performed by assuming
C > 0. For C < 0 the bifurcation diagram of the germ (43) remains the same given in
figure 1. However, since the distinguished parameter must be non-negative and now we have
E1L < E1I , the physical unacceptable zone would be given by panel 2 and the diagram should
be read clockwise starting from frame 1.

Finally, we obtain the following proposition (here and in the following we denote with
(kK), k = 1, 2, K = I, i, L, $, a given bifurcation: digit 1 or 2 denotes the normal mode
from (to) which the fixed point originates (or annihilates); the letter denotes the bifurcating
family (I , inclined, stable; i, unstable; L, loop, stable; $, unstable).

Proposition 5. Let us consider the 1DOF system K defined by (15), with C (= 0, A− 3C < 0,
A − C < 0 and non-positive detuning parameter δ. For sufficiently small values of |δ| the
following statements hold.
For C > 0,

(i) if B > 2(A − 3C): a pitchfork bifurcation (a pair of stable fixed points) appears at

E = E1I (1I ); (58)

(ii) if B > 2(A−C): a second pitchfork bifurcation (a pair of unstable fixed points) appears
at

E = E1L (1$); (59)

(iii) if B > 2(C −A): anti-pitchfork bifurcation (the pair of unstable fixed points disappears)
at

E = E2L (2$); (60)
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(iv) if B > 2(3C − A): a second anti-pitchfork bifurcation (the pair of stable fixed points
disappears) at

E = E2I (2I ). (61)

For C < 0 the bifurcations listed above occur, if the corresponding conditions on B are
satisfied, but in the different sequence given by (1L) − (1i) − (2i) − (2L).

5.1.2. ε1 = ε2 = 1. The case ε1 = ε2 = 1 follows similarly through the bifurcation analysis
of

−F(x, y) = x4 + (µ̃ + ũ3)x
2y2 + y4 + ũ1x

2 + ũ2y
2

where µ̃ = −µ, ũi = −ui , for i = 1, 2, 3. We attain the following proposition.

Proposition 6. Let us consider the 1DOF system defined by K, with non-positive and
sufficiently small detuning parameter, C (= 0, A − 3C > 0 and A − C > 0.

If C > 0 and conditions on B are satisfied in order to give positive values for the energy
thresholds, the full bifurcation sequence is given by (2L) − (2i) − (1i) − (1L);
if C < 0 and conditions on B are satisfied in order to give positive values for the energy
thresholds, the full bifurcation sequence is given by (2I ) − (2$) − (1$) − (1I ).

5.2. ε1ε2 = −1

5.2.1. ε1 = −ε2 = −1. This case corresponds to A− 3C < 0 and A−C > 0 and the versal
unfolding F turns into

G(x, y) = −x4 + (µ + u3)x
2y2 + y4 + u1x

2 + u2y
2. (62)

To fix the ideas, let us assume that A − 2C < 0 so that µ < 0. With α = µ + u3, the critical
points of (62) are then given by (0, 0) and

(
±

√
u1

2
, 0

)
,

(

0, ±
√

−u2

2

)

, (63)



±

√
u1 + α(−αu1−2u2)

4+α2

√
2

, ±
√

−αu1 − 2u2√
4 + α2



 . (64)

As we can see in figure 2, the bifurcation diagram of the system is now quite different from
the previous one. Again, we are interested in finding bifurcation curves in the (δ, E) plane
for the one degree of freedom system defined by (15). Thus, we limit ourselves to consider
what happens inside the singular circle (18), which is marked with a darker line in figure 2.
For δ ! 0 and small values of the distinguished parameter, we have u1 and u2 both negative.
The physical unacceptable zone is now given by frame 7. Thus, the bifurcation sequence
has to be read counter-clockwise starting from frame 1. Therefore the planar system exhibits
the first bifurcation at u1 = 0. The corresponding bifurcation for the 1DOF system defined
by (15) occurs for E = E1I , which is acceptable only if B > 2(A − 3C). In frame 3 we
see the appearance of two stable fixed points inside and four unstable points on the singular
circle. Using coordinate transformation (56), we can easily check that, if B > 2(C − A), the
corresponding threshold value for the distinguished parameter is given by (49) and determines
the bifurcation of two stable fixed point for K. For

u2 = −1
2

(
α +

√
α2 + 4

)
u1 (65)
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Figure 2. Bifurcation diagram for A − 2C < 0 < A − C and δ < 0.

(marked line in figure 2 separating panels 3 and 4) a global bifurcation occurs. The
corresponding threshold value for the distinguished parameter is given by

E = EGB
.= − δ

2B
+ O(δ2) (66)

which is acceptable if B > 0. Note that since α multiplies a fourth-order term, we can consider
(65) only up to the first order in |δ, E|, see remark 6. Therefore, we are able to compute the
critical curve (66) only to the first order in the detuning parameter. Then, if B > 2(A−C), we
can pass through u2 = 0 for E = E1L and if B > 2(3C −A) a further bifurcation occurs when
passing through u1 = 0; the corresponding threshold value for the distinguished parameter is
given by (48).

The case µ > 0 follows similarly through the bifurcation analysis of

−G(y, x) = −x4 + (µ̃ + ũ3)x
2y2 + y4 + ũ1x

2 + ũ2y
2

where µ̃ = −µ < 0, ũj = −uj for j = 1, 2, 3. Finally we have the following proposition:

Proposition 7. Let us consider the 1DOF system K defined by (15) with non-positive and
sufficiently small detuning parameter, C (= 0, A − 3C < 0 and A − C > 0:

For A − 2C < 0 < A − C, if conditions on B are satisfied in order to get positive
values of the energy thresholds, bifurcations occur along the curves (46)–(49) in the sequence
(1I )− (2L)− (1L)− (2I ). Furthermore, a global bifurcation might occur between (2L) and
(1L) if B > 0 at

E = EGB (GB) (67)

with E2L < EGB < E1L.
For 0 < A− 2C < A−C, if conditions on B are satisfied in order to give positive values

for the energy thresholds, the full bifurcation sequence is given by (2L) − (1I ) − (GB) −
(2I ) − (1L).

5.2.2. The degenerate case A = 3C. It remains to analyse the case µ = 0, corresponding
to the central singularity y4 − x4. In this case (43) turns into

F(x, y) = −x4 + y4 + u1x
2 + u2y

2 + u3x
2y2. (68)

The critical points remain the same given in (63) and (64), but we now have α = u3. The
bifurcation curves are therefore given by

u1 = 0, u2 = 0 (69)
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and

2u1 = u3u2, (70)

2u2 = − u1u3. (71)

Solving (69), we find the critical values E = E1I and E = E1L, which, respectively, turns out
to also satisfy (70) and (71). Thus, we get

E1I = E2L and E2I = E1L. (72)

For the 1DOF system defined by (15), this implies that the critical points in (63) appear and
disappear simultaneously. Furthermore, a global bifurcation occurs for

u2 = −1
2

(
u3 +

√
u2

3 + 4
)

u1 (73)

giving the critical curve (66). Summarizing, the following proposition holds.

Proposition 8. In the 1DOF system K defined by (15), for A = 2C > 0 and non-positive
sufficiently small values of the detuning parameter, we have

(i) if B > −2C two pitchfork bifurcations occur concurrently (two pairs of stable fixed points
appear) at

E = E1I = E2L;

(ii) if B > 0 a global bifurcation occurs at

E = EGB;

(iii) if B > 2C two anti-pitchfork bifurcations occur concurrently (the two pairs of stable fixed
points disappear) at

E = E1L = E2I .

5.2.3. ε1 = −ε2 = 1. This last sub-case (treated in [7] as a realization of the Z2-symmetric
1 : 1 resonance in the ‘spring-pendulum’) follows similarly through the bifurcation analysis of

−G(x, y) = x4 + (µ̃ + ũ3)x
2y2 − y4 + ũ1x

2 + ũ2y
2

with µ̃ = −µ, ũi = −ui , for i = 1, 2, 3. Therefore, the following proposition holds:

Proposition 9. Let us consider the 1DOF system K defined by (15), with C (= 0, A − 3C > 0
and A−C < 0. For non-positive and sufficiently small detuning parameter, bifurcations might
occur along the curves (46)–(49) and (66) in agreement with the statements of propositions
5–8. If conditions on B are satisfied in order to give positive values for the energy thresholds,

for A − 2C < 0 < A − 3C, the full bifurcation sequence is given by (1L) − (2I ) −
(GB) − (1I ) − (2L);

for 0 < A − 2C < A − 3C it is given by (2I ) − (1L) − (GB) − (2L) − (1I );
for A = 2C bifurcations occur according to the statements of proposition 8, but they are

reached in the sequence (1L) − (GB) − (1I ).
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6. Implications for the original system

According to these results, with the versal deformation of this resonance, we know the number
and nature of the critical points. Including higher orders may shift the positions of the
equilibria—and may be essential for quantitative uses—but will not alter their number or
stability. The isolated equilibria of the 1DOF system defined by (15) correspond to relative
equilibria for the original system (1) [19, 33]. Of course, the results obtained are limited to
low energies, in the neighbourhood of a central equilibrium, but extend to the original system
defined by Hamiltonian (1). This statement is based on the fact that the difference between the
original Hamiltonian and the normal form (namely, the remainder of the normalization) can be
considered a perturbation of the normal form itself [28, 32, 39]. This remark implies that the
results concerning periodic orbits can be extended, by applying the implicit function theorem,
to the original system [29, 31]. On the same ground, iso-energetic KAM theory [1, 21] can
be used to infer the existence of invariant tori seen as non-resonant tori of the normal form
surviving when perturbed by the remainder.

Since we pushed the normalization up to and including sixth-order terms, the critical
curves of proposition 5 give quantitative predictions on the bifurcation and stability of
these periodic orbits in the (δ, E)-plane up to second order in the detuning parameter
(since, we recall, it is assumed to be associated with a term of higher-order in the series
expansions).

For the coordinate transformation (16), the origin in the plane is a fixed point for all values
of the parameters and represents the periodic orbit J1 = 0, namely the normal mode along the
x2-axis (the ‘short-period’ one, in the reference case δ < 0). Similarly, if the planar reduction
is performed via (56), we find that for all values of the parameters, the origin is a fixed point
again, but it corresponds in this case to the periodic orbit J2 = 0, that is the normal mode
along the x1-axis (the ‘long-period’ one). In the previous section we found threshold values
for the distinguished parameter, depending on δ and on the coefficients of the system, which
determine the bifurcation of these periodic orbits in general position from the normal modes
of the system. However, it would be better to have an expression of the bifurcation curves in
the (δ, E)-plane, where E is the ‘true’ energy of the system. On the long-period axial orbit
(J2 = 0, J1 = E), we have

K = E(1 + δ) + (2A + B)E2

+
E2

18

(
−136A2E − 136ABE − 34B2E + 45v6,0E − 72Aδ − 36Bδ

)
.

(74)

According to the rescaling (8), E = ω2K, so that equation (74) can be used to express the
physical energy E in terms of E , namely

E = ω2
[
E(1 + δ) + (2A + B) E2] . (75)

Thus up to second order in δ, for E satisfying equations (48) and (49) and δ as defined in (6)
we obtain the following threshold values:

E = E2I
.= − ω2

2(2A + B − 6C)
δ

−
(
104A2 + 104AB + 26B2 − 1024AC − 512BC + 2136C2 + 45v6,0 − 15v4,2

)
ω2

48(2A + B − 6C)3
δ2

(76)
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E = E2L
.= − ω2

2(2A + B − 2C)
δ

+

(
104A2 + 104AB + 26B2 − 320AC − 160BC + 216C2 + 45v6,0 − 3v4,2

)
ω2

48(2A + B − 2C)3
δ2

(77)

for the appearance (disappearance) of, respectively, inclined and loop orbits from the
long-period axial orbit. They correspond to physically acceptable values, at least for small
values of |δ|, if

2A + B − 6C > 0, and 2A + B − 2C > 0. (78)

These conditions are reversed for δ > 0. A similar argument gives the threshold values for the
bifurcations from the short-period axial orbit. They are given by

E = E1I
.= ω2

2(2A − B − 6C)
δ

+

(
184A2 − 184AB + 46B2 − 704AC + 352BC + 456C2 + 15v2,4 − 45v0,6

)
ω2

48(2A − B − 6C)3
δ2

(79)

E = E1L
.= ω2

2(2A − B − 2C)
δ

+

(
184A2 − 184AB + 46B2 − 256AC + 128BC + 72C2 + 3v2,4 − 45v0,6

)
ω2

48(2A − B − 2C)3
δ2

(80)

and correspond to physically acceptable values, at least for small values of the detuning
parameter, if

2A − B − 6C < 0, and 2A − B − 2C < 0. (81)

Finally, the global bifurcation may occur at

E = EGB
.= −ω2δ

2B
(82)

if

B > 0. (83)

The bifurcation sequences of the original system depend on the three coefficients A, B, C

according to the statements of propositions 5–9 as we have obtained them in the previous
section.

Appendix A. Normal forms

A.1. Action-angle-like variables

The terms in the Birkhoff normal form (11) are

K0 = J1 + J2, (84)

K2 = δJ1 +
3
2
v4,0J

2
1 +

3
2
v0,4J

2
2 +

1
2
v2,2J1J2 [2 + cos(2φ1 − 2φ2)] , (85)

K4 = −δ
[
3v4,0J

2
1 − v2,2J1J2 (2 + cos(2φ1 − 2φ2))

]
,

+
1
4

(
10v6,0 − 17v2

4,0

)
J 3

1 +
1
4

(
10v0,6 − 17v2

0,4

)
J 3

2
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+
1
4
J 2

1 J2

(
6v4,2 − 9

4
v2

2,2 − 12v2,2v4,0 +
(
4v4,2 − 2v2

2,2 − 5v2,2v4,0
)

cos(2φ1 − 2φ2)

)

+
1
4
J1J

2
2

(
6v2,4 − 9

4
v2

2,2 − 12v2,2v0,4 +
(
4v2,4 − 2v2

2,2 − 5v2,2v0,4
)

cos(2φ1 − 2φ2)

)
.

(86)

A.2. Variables for the first reduction

With the definitions

A = 3
8
(v4,0 + v0,4), B = 3

4
(v4,0 − v0,4), C = 1

8
v2,2, (87)

the polynomials in the reduced normal form (15) are

A1(J ; E, δ) = (2A − B)E2 + (−4A + 2B + 8C) EJ

+ δJ + 4(A − 2C)J 2. (88)

B1(J ; E, δ) = 4CJ(E − J ). (89)

A2(J ; E, δ) = 1
9

(
68AB − 68A2 − 17B2 +

45
2

v0,6

)
E3 − 8CδEJ

+
(

+
68AB

3
− 68A2

3
− 17B2

3
+ 32AC − 48BC + 36C2

+
3v4,2

2
− 3v2,4 +

15v0,6

2

)
EJ 2 + 2(4C − 2A − B)δJ 2

+
(

32BC +
5v6,0

2
− 136AB

9
− 3v4,2

2
+

3v2,4

2
− 5v0,6

2

)
J 3. (90)

B2(J ; E, δ̃) = −4CδEJ +
(

40
3

AC − 20BC + 32C2 + v4,2 − 2v2,4

)
EJ 2

+ 4CδJ 2 +
(

40
3

BC − v4,2 + v2,4

)
J 3. (91)

Appendix B. List of coefficients and parameters

In the deformation (29) of proposition 2, if the planar reduction is performed according to (16),
the coefficients ai are the following:

a1 = 12(B − 2A + 6C)√
|3C − A|

a2 = 136A2 − 136AB + 34B2 − 272AC + 136BC − 408C2 + 15v2,4 − 45v0,6

12
√

|3C − A|

a3 = 12(B − 2A + 2C)√
|C − A|

a4 = 136A2 − 136AB + 34B2 − 112AC + 56BC − 24C2 + 3v2,4 − 45v0,6

12
√

|C − A|

a5 = 1
288(A − 3C)2

(1632A3 − 544A2(2B + 15C) + 2A(68B2 + 3264BC

+ 9(272C2 − 5(v6,0 + v4,2 − 3v2,4 + 5v0,6)))
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+ 3(−136B2C − 3B(1088C2 − 5(v6,0 − v4,2 + v2,4 − v0,6))

+ 18C(272C2 + 5(v6,0 + v4,2 − 3v2,4 + 5v0,6))))

a6 = 1(
144|C − A|3/2|3C − A|3/2

)
[
−1632A4 + 64A3(17B + 138C)

− 2A2 (
68B2 + 3328BC + 9

(
640C2 − 5v6,0 − 3v4,2 + 9v2,4 − 25v0,6

))

+ A(512B2C − 72C(48C2 + 5v6,0 + 2v4,2 − 8v2,4 + 25v0,6)

+ B(12608C2 − 45v6,0 + 27v4,2 − 27v2,4 + 45v0,6))

− 6C(52B2C + B(1216C2 − 15v6,0 + 6v4,2 − 6v2,4 + 15v0,6)

− 3C(432C2 + 5v6,0 + 7v4,2 − 25v2,4 + 85v0,6))]

a7 = 1
288(A − C)2

(
1632A3 + 32A2(34B − 93C)

+ 2A
(
68B2 − 1216BC + 528C2 − 225v6,0 + 27v4,2 − 9v2,4 − 45v0,6

)

+ 3
(
−24B2C + B

(
448C2 + 3(5v6,0 − v4,2 + v2,4 − 5v0,6)

)

+ 6C
(
16C2 + 25v6,0 − 3v4,2 + v2,4 + 5v0,6

)))
.

The parameters bi have the following expressions

b1 = − 6Cδ√
|3C − A|

b2 = δ

2
√

|3C − A|

b3 = − 2Cδ√
|C − A|

b4 = δ

2
√

|C − A|

b5 =
(
576A2 + 16AB − 3456AC − 48BC + 5184C2 + 45(v6,0 − v4,2 + v2,4 − v0,6)

)
δ

576(A − 3C)2

b6 =
(
−576A3 − 16A2B + 3456A2C + 32ABC − 6336AC2

+ 48BC2 + 3456C3 − 45Av6,0 + 90Cv6,0 + 27Av4,2 − 36Cv4,2 − 27Av2,4 + 36Cv2,4

+ 45Av0,6 − 90Cv0,6)
δ

288|C − A|3/2|3C − A|3/2

b7 =
(
576A2 + 16A(B − 72C) + 48BC + 9

(
64C2 + 5v6,0 − v4,2 + v2,4 − 5v0,6

))
δ

576(A − C)2
.

If the planar reduction is performed according to (56) the previous coefficients and parameters
turn into

a1 = −12(B + 2A − 6C)√
|3C − A|

a2 = 136A2 + 136AB + 34B2 − 272AC − 136BC − 408C2 + 15v4,2 − 45v6,0

12
√

|3C − A|

a3 = −12(B + 2A − 2C)√
|C − A|
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a4 = 136A2 + 136AB + 34B2 − 112AC + 56BC − 24C2 + 3v4,2 − 45v6,0

12
√

|C − A|

a5 = 1
288(A − 3C)2

(1632A3 + 544A2(2B − 15C) + 2A(68B2 − 3264BC

+ 9(272C2 − 5(v6,0 − 3v4,2 + v2,4 − v0,6)))

+ 3(−136B2C + 3B(1088C2 + 5(v6,0 − v4,2 + v2,4 − v0,6))

+ 18C(272C2 + 5(v6,0 − 3v4,2 + v2,4 + v0,6))))

a6 = 1(
144|C − A|3/2|3C − A|3/2

)
[
−1632A4 − 64A3(17B − 138C)

− 2A2 (
68B2 − 3328BC + 9

(
640C2 − 25v6,0 + 9v4,2 − 3v2,4 − 5v0,6

))

+ A(512B2C − 72C(48C2 + 25v6,0 − 8v4,2 + 2v2,4 + 5v0,6)

+ B(−12608C2 − 45v6,0 + 27v4,2 − 27v2,4 + 45v0,6))

+ 6C(−52B2C + B(1216C2 + 15v6,0 − 6v4,2 + 6v2,4 + 5v0,6)

+ 3C(432C2 + 85v6,0 − 25v4,2 + 7v2,4 + 5v0,6))]

b1 = 2(2A + B − 3C)δ√
−A + 3C

b2 = − δ

2
√

|3C − A|

b3 = 2(2A + B − C)δ√
−A + C

b4 = − δ

2
√

|C − A|

b5 =
(
576A2 + 16AB − 3456AC − 48BC + 5184C2 + 45(v6,0 − v4,2 + v2,4 − v0,6)

)
δ

576(A − 3C)2

b6 =
(
−576A3 − 16A2B + 3456A2C + 32ABC − 6336AC2

+ 48BC2 + 3456C3 − 45Av6,0 + 90Cv6,0 + 27Av4,2 − 36Cv4,2 − 27Av2,4 + 36Cv2,4

+ 45Av0,6 − 90Cv0,6)
δ

288|C − A|3/2|3C − A|3/2

b7 =
(
576A2 + 16A(B − 72C) + 48BC + 9

(
64C2 + 5v6,0 − v4,2 + v2,4 − 5v0,6

))
δ

576(A − C)2
.
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