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Abstract.
In Section 1, we introduce the notion of lifting as a generalization of the notion of

compound state introduced in [21], [22] and we show that this notion allows an unified
approach to the problems of quantum measurement and of signal transmission through
quantum channels. The dual of a linear lifting is a transition expectation in the sense of
[3] and we characterize those transition expectations which arise from compound states
in the sense of [22].

In Section 2, we characterize those liftings whose range is contained in the closed
convex hull of product states and we prove that the corresponding quantum Markov
chains [2] are uniquely determined by a classical generalization of both the quantum
random walks of [4] and the locally diagonalizable states considered in [3].

In Section 4, as a first application of the above results, we prove that the attenuation
(beam splitting) process for optical communication treated in [21] can be described in a
simpler and more general way in terms of liftings and of transition expectations. The error
probabilty of information transmission in the attenuation process is rederived from our
new description. We also obtain some new results concerning the explicit computation
of error probabilities in the squeezing case.
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Introduction

The following situation is very common both in classical and quantum physics: one
considers two systems, denoted respectively 1, 2 and their algebras of observables, A1,A2.
One usually assumes that the interaction between the two systems is switched on at a
sharp time to before which the two systems are considered to be independent. During
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the interaction the two systems merge into a larger system denoted (1, 2) whose algebra
of observables A contains both A1 and A2, in the sense that there are embeddings

j1 : A1 → A ; j2 : A2 → A (0.1)

and that any physical information on the state of system 1 or of system 2 after the
interaction can be obtained by choosing a state ϕ on A, i.e. a state of the composite
system (1, 2), and considering its restriction on the algebra j1(A1) (resp. j2(A2)). In
most applications one chooses

A = A1 ⊗ A2 ; ϕ = ϕ1 ⊗ ϕ2 (0.2)
j1(a1) = a1 ⊗ 12 ; j2(a2) = 11 ⊗ a2, a1 ∈ A1, a2 ∈ A2 (0.3)

(i.e.,) the algebra of the compound system is described by a tensor product. In the
present paper we shall confine our analysis to such a situation.

The choice of the state ϕ depends on the initial states of the two systems and on the
interaction between them. In connection with this situation one studies several problems
depending on the interpretation of the systems 1 and 2. For example:

i) the state ϕ2 of system 2, after the interaction, is known (e.g., an output signal, a
pointer in a measurement apparatus) and one wants to know the state ϕ1 of system
1 before the interaction (e.g., an input signal, the state of a microsystem which
has interacted with the apparatus).

ii) as in (i), exchanging the roles of 1 and 2. ¿From the mathematical point of view, this
exchange is trivial, but we want to underline that our approach avoids the separation
of a macroworld, described by classical physics, from a microworld, described by
quantum physics.

iii) the initial state of the composite system (1, 2) is known and one wants to know the
state of system 1 (system 2 ).

iv) the state ϕ1 of system 1, before the interaction (e.g., the preparation of a microsys-
tem) and the form of the interaction, are known and one wants to know the state of
system 1 after the interaction.
In all these cases the goal is to construct a map from the state space of a system

to the state space of another system. In the literature on quantum information and
communication systems, such a map is called a channel [20]. An important class of
channels are those from the state space of an algebra A1 into the state space of the
algebra A1 ⊗ A2. This channels are called liftings; more generally, a lifting should be
through as a channel from a sub-system to a compound system. An important example
of liftings are the duals of transition expectations.

1. %par
Recall (cf. Definition (1.3) below) that if A1,A2 are C*-algebras, a transition

expectation from A1⊗A2 to A1 is a completely positive linear map E : A1⊗A2 → A1

satisfying (1.6).
Transition expectations play a crucial role in the construction of quantum Markov

chains and they arise naturally within the framework of measurement theory in the
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following way: the composite system (1, 2) undergoes an evolution ut : A → A (t ∈ R),
which is a one-parameter group of ∗−automorphisms of A. This means that the state ϕ
of (1, 2) evolves according to the law

ϕt := ϕ ◦ ut (0.4)

and the state ϕ1 of the system 1 evolves according to the reduced evolution:

ϕ1,t(a1) := ϕ1(E2 ◦ ut ◦ j1(a1)) ; a1 ∈ A∞ (0.5)

where j1 is given by (0.3) and E2 : A = A1 ⊗ A2 → A1 is the Umegaki conditional
expectation characterized by

E2(a1 ⊗ a2) = a1ϕ2(a2) ; a1 ∈ A1 ; a2 ∈ A2 (0.6)

Let us fix a time T representing the moment when the experiment ends (ideally T = +∞)
and consider the linear map ET : A1 ⊗A2 → A1 characterized by

ET (a1 ⊗ a2) = E2(uT (a1 ⊗ a2)) ; a1 ∈ A1 ; a2 ∈ A2 (0.7)

Then ET is a transition expectation. If one is ready to accept that the evolution
uT does not take place inside the algbra A1 ⊗ A2 but is a representation of A1 ⊗ A2

into another algebra (usually much larger), then in some cases and in a certain technical
sense, (0.7) represents the most general class of transition expectations (cf. Theorem
(1.4) below).

An instrument in the sense of the operational approach to quantum measurment is
obtained by taking the restriction of a transition expectation E to a subalgebra C1 ⊗ A2

of A1⊗A2 where C1 is a σ-finite abelian von Neumann sup-algebra of A1. In this case it
is known that, if C1 is σ-finite, then there exists a probability space (Ω,F , P ) such that
C1 is isomorphic to L∞(Ω,F , P ) and the points ω ∈ Ω are interpreted as macroscopic
parameters of the apparatus. If A1 = C1, i.e. if A1 is an abelian von Neumann algebra,
the isomorphism (cf. [28])

A = A1 ⊗ A2 = L∞(Ω,F , P ) ⊗ A2
∼= L∞(Ω,F , P ;A2) (0.8)

implies that the elements of A, i.e., the observables of the composite system (1, 2) can
be interpreted as functions (Ω,F , P )→ A2, i.e., as operator valued random variables.
Thus interpreting (Ω,F , P ) as the sample space of a classical stochastic process, the
operational scheme becomes equivalent to the theory of operator valued classical
processes (cf. [7]).

¿From this point of view an instrument in the operational sense is an object which
is only half-quantum. The physical motivations for this choice go back to some ideas of
Ludwig according to which the measurement apparatus is usually a macroscopic body
so that classical probability should be sufficient for its description. Several authors
have introduced variations and modifications of Ludwig ideas, however, since all the
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examples of physical interest of instruments in operational sense, produced up to now,
are the restrictions of liftings, we feel that the latter notion plays a more natural and
fundamental role.

In conclusion of the present introduction, we show the theory of lifting includes the
so calld operational approach.

1. CHANNELS, LIFTINGS AND TRANSITION EXPECTATIONS

For a C*-algebra A, we denote S(A) the convex set of its states. In this paper all
C∗- and W∗-algebras are realized on some separable Hilbert spaces and, unless explicitly
stated, the tensor products are those induced by the tensor products of the corresponding
Hilbert spaces. If A is a von Neumann algebra, S(A) denotes the set of its normal states
and S(A)extr the set of extremal states. Both S(A) and S(A)extr are measurable spaces
with their Borel structure and the set of probability measures on S(A) (S(A)extr ) is
denoted ProbS(A) (ProbS(A)extr). If A and B are C*-algebras, a channel from A
to B is a map Λ∗ : S(A) → S(B). If Λ∗ is affine we speak of a linear channel
. If Λ∗ is w∗-continuous and linear, then it can be extended by linearity to a linear
map (still denoted Λ∗ ) from A∗ to B∗. Its dual Λ : B → A is a positive map. If it is
completely positive, we call it a Markovian operator. Such channels have been studied
with some applications by several authors (c.f., [20], [25] and references quoted theirs).
Certain quantum channels are naturally associated to classical Markovian kernels on the
measurable space S(B)×S(A). In fact, given such a Markovian kernel, i.e., a measurable
map

p : ω ∈ S(A) −→ p( · |ω) ∈ Prob(S(B))

one can define a channel in the following way: for any state ϕ ∈ S(A) one fixes a convex
decomposition

ϕ =
∫

S(A)

ωdµϕ(ω)

and defines the channel Λ∗ : S(A)→ S(B) through the identity

Λ∗ϕ :=
∫

S(A)

dµϕ(ω)
∫

S(B)

ω′p(dω′|ω)

The channel Λ∗ is usually nonlinear since the map ϕ → µϕ is affine if and only if S(A)
is a simplex ([8] Theorem (4.1.15) and Corollary (4.1.17)) and this is the case if and
only if A is Abelian ([8] Example (4.1.6) ). On the other hand, given a linear channel
Λ∗ one might try to associate to it a Markovian kernel p( · |ω) on the measurable space
S(B)× S(A), by fixing, for each ω ∈ S(A), a convex decomposition

Λ∗ω :=
∫

S(B)

ω′p(dω′|ω)

The possibility of choosing such a decomposition so to assure the measurability of the
map

p : ω ∈ S(A) −→ p( · |ω) ∈ Prob(S(B))
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as well as the study of the support of these measures give rise to some subtle measure
theoretic problems which will be discussed elsewhere. In many examples however, these
Markovian kernels can be explicitly constructed and, at least on a subset of the states
and have good support and measurability properties.

Definition 1.1: Let A1,A2 be C*-algebras and let A1 ⊗ A2 be a fixed C*-tensor
product of A1 and A2. A lifting from A1 to A1 ⊗ A2 is a w∗-continuous map

E∗ : S(A1)→ S(A1 ⊗ A2) (1.1)

If E∗ is affine and its dual is a completely positive map, we call it a linear lifting; if it
maps pure states into pure states, we call it pure.

Remark: Also in the nonlinear case some kinds of complete positivity requirement
should be included in the definition of lifting. However, the theory of nonlinear completely
positive maps is still in its infancy and the some is true for a satisfactory dualization of
it. Therefore we leave the general question open for further developments and we limit
ourselves to present some examples of nonlinear liftings which are of some interest for
the applications.

To every lifting from A1 to A1 ⊗A2 we can associate two channels: one from A1 to A1

, defined by
Λ∗

1ρ1(a1) := (E∗ρ1)(a1 ⊗ 1) ; ∀a1 ∈ A1 (1.2)

another from A1 to A2 , defined by

Λ∗
2ρ1(a2) := (E∗ρ1)(1⊗ a2) ; ∀a2 ∈ A2 (1.3)

In general, a state ϕ ∈ S(A1 ⊗ A2) such that

ϕ |A1⊗1= ρ1 ; ϕ |1⊗A2= ρ2 (1.4)

has been called [21], [23] a compound state of the states ρ1 ∈ S(A1) and ρ2 ∈ S(A2)
. In classical probability theory, also the term coupling between ρ1 and ρ2 is used [13].

The following problem is important in several applications: Given a state ρ1 ∈ S(A1)
and a channel Λ∗ : S(A1) → S(A2), find a standard lifting E∗ : S(A1) → S(A1 ⊗ A2)
such that E∗ρ1 is a compound state of ρ1 and Λ∗ρ1 . Several particular solutions of
this problem have been proposed in [9], [10], [11], [21], [22], [23], however an explicit
description of all the possible solutions to this problem is still missing.

Definition 1.2: A lifting from A1 to A1⊗A2 is called nondemolition for a state
ρ1 ∈ S(A1) if ρ1 is invariant for Λ∗

1 i.e., if for all a1 ∈ A1

(E∗ρ1)(a1 ⊗ 1) = ρ1(a1) (1.5)
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The idea of this definition being that the interaction with system 2 does not alter the
state of system 1.

Definition 1.3: Let A1,A2 be C*-algebras and let A1 ⊗ A2 be a fixed C*-tensor
product of A1 and A2. A transition expectation from A1 ⊗A2 to A1 is a completely
positive linear map E : A1 ⊗ A2 → A1 satisfying

E(1A1 ⊗ 1A2) = 1A1 . (1.6)

Remark: The notion of nondemolition lifting, discussed here is essentially (i.e.,
up to minor technicalities) included in the more abstract notion of state extension
introduced by Cecchini and Petz [10], [11] (cf. also Cecchini and Kümmerer [11]).

The two interpretations of the notion of standard lifting, which shall be used in the
present paper, are the following:

(1) The measurement process
A1 (resp. A2) is interpreted as the algebra of observables of a system (resp. a

measurement apparatus ) and E∗ describes the interaction between system and apparatus
as well as the preparation of the apparatus. If ρ1 ∈ S(A1) is the preparation of the
system, i.e., its state before the interaction with the apparatus, then Λ∗

1ρ1 ∈ S(A1)
(resp. Λ∗

2ρ1 ∈ S(A2)) is the state of the system (resp. of the apparatus) after the
measurement.

(2) The signal transmission process
An input signal is transmitted and received by an apparatus which produces an

output signal. Here A1 (resp. A2) is interpreted as the algebra of observables of the
input (resp. output) signal and E∗ describes the interaction between the input signal
and the receiver as well as the preparation of the receiver. If ρ1 ∈ S(A1) is the input
signal, then the state Λ∗

2ρ1 ∈ S(A2), defined by (1.3) is the state of the (observed) output
signal.

An important lifting related to this signal transmission is one due to a quantum
communication process discussed below (Example 1a and 4).

In several important applications the state ρ1 of the system before the interaction
(preparation, input signal) is not known and one would like to know this state knowing
only Λ∗

2ρ1 ∈ S(A2), i.e., the state of the apparatus after the interaction (output signal).
From a mathematical point of view this problem is not well posed, since usually the map
Λ∗

2 is not invertible. The best one can do in such cases is to acquire a control on the
description of those input states which have the same image under Λ∗

2 and then choose
among them according to some statistical criterion. Another widely applied procedure is
to postulate, on the basis of some experimental information, that the input state belongs
to an a priori given restricted class of states and to choose among these ones by some
statistical criterion.
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In the following we describe several examples of liftings which appear frequently in
the applications.

Example 1: Isometric liftings.
Let V : H1 →H1 ⊗H2 be an isometry

V ∗V = 1H1 . (1.7)

Then the map
E : x ∈ B(H1)⊗ B(H2)→ V ∗xV ∈ B(H1) (1.8)

is a transition expectation, and the associated lifting maps a density matrix w1 ∈ T (H1)
into E∗w1 = V w1V

∗. Liftings of this type are called isometric. Every isometric lifting
is a pure lifting. Isometric liftings have turned out to play a relevant role in some
mathematical models for superconductivity [14].

Example 1a: The attenuation (or beam splitting) lifting.
It is the particular isometric lifting characterized by the properties.

H1 = H2 =: Γ(C) = the Fock space over C

V : Γ(C)→ Γ(C)⊗ Γ(C) (1.9)

is characterized by the expression

V |θ >= |αθ > ⊗|βθ > (1.10)

where |θ > is the normalized coherent vector parametrized by θ ∈ C and α, β ∈ C are
such that

|α|2 + |β|2 = 1 (1.11)

Notice that this liftings maps coherent states into products of coherent states. So it maps
the simplex of the so called classical states (i.e., the convex combinations of coherent
vectors) into itself. Restricted to these states it is of convex product type in the sense of
Definition 2.1 below, but it is not of convex product type on the set of all states.

Denoting, for θ ∈ C, ωθ the state on B(Γ(C)) defined by

ωθ(b) =< θ, bθ > ; b ∈ B(Γ(C)) (1.12)

we see that, for any b ∈ B(Γ(C))

(E∗ωθ)(b⊗ 1) = ωαθ(b) (1.13)

hence this lifting is not nondemolition.
Interpretation: Γ(C) is the space of a 1-mode EM field (signal). V represents

the interaction, of the signal with an apparatus (e.g., a receiver or a semi–transparent
mirror). In Γ(C)⊗ Γ(C) the second factor is the space of the apparatus.
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Equation (1.10) means that, by the effect of the interaction, a coherent signal (beam)
|θ > splits into 2 signals (beams) still coherent, but of lower intensity. Because of (1.11),
the total intensity (energy) is preserved by the transformation.

Example 1b: Superposition beam splitting.
The only difference with Example (1a.) is the form of V , which in this case is

V |θ >=
1√
2
(|αθ > ⊗|βθ > −i|βθ > ⊗|αθ >) (1.14)

One easily checks that V extends linearly to an isometry of the form (1.9).
This isometric lifting is not of convex product type in the sense of Definition 2.1 of

the next section, neither it is a nondemolition lifting.

Example 2: The compound lifting.
Let Λ∗ : S(A1) → S(A2) be a channel. For any ρ1 ∈ S(A2) in the closed convex

hull of the external states, fix a decomposition of ρ1 as a convex combination of extremal
states in S(A1)

ρ1 =
∫

S(A1)

ω1p(dω1 | ρ1) (1.15)

where p( · | ρ1) is a Borel measure on S(A1) with support in the extremal states, and
define

E∗ρ1 :=
∫

S(A1)

ω1 ⊗ Λ∗ω1p(dω1 | ρ1) (1.16)

Then E∗ : S(A1) → S(A2 ⊗ A2) is a lifting, nonlinear even if Λ∗ is linear, and nonde-
molition for ρ1. In Section 2, we shall see that the most general lifting, mapping S(A1)
into the closed convex hull of the external product states on A1 ⊗ A2 is essentially of
this type. Here “essentially” means that, in order to recover the most general case, we
shall weaken, from the original definition of compound state in [22], the condition that
p(dω1 | ρ1) is concentrated on the extremal states.

Therefore once a channel is given, a lifting of convex product type can be constructed
by (1.16), and the converse is also true due to (1.3):

channel ←→ lifting.

For example, the von Neumann quantum measurement process is written, in our termi-
nology, as follows: Having measured an observable A =

∑
n anPn (spectral decomposition

with discrete spectrum) in a state ρ, the state after this measurement will be

Λ∗ρ =
∑

n

PnρPn

and a lifting E∗, of convex product type, associated to this channel Λ∗ and to a fixed
decomposition of ρ as ρ =

∑
n λnρn (ρn ∈ S(A1)) is given by :

E∗ρ =
∑

n

λnρn ⊗ Λ∗ρn (1.17)
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A more sophisticated example of lifting of this type is a reduction of a state associated
with an open system dynamics. Namely, if a system Σ1 described by a Hilbert space
H interacts with an external system Σ2 described by another Hilbert space K and the
initial states of Σ1 and Σ2 are ρ and σ, respectively, then the combined state θt of Σ1

and Σ2 at time t after the interaction between the two systems is given by

θt = U∗
t (ρ⊗ σ)Ut

where Ut = exp(itH) with the total Hamiltonian H of Σ1 and Σ2. A channel is obtained
by taking the partial trace with respect to K i.e.,

ρ→ Λ∗
t ρ = trKθt.

A lifting associated to this channel is given by (1.17) with Λ∗
t above.

Example 3: Canonical form of a lifting
Let A1 = B(H1), A2 = B(H2). The most general linear lifting E∗ : S(A1) →

S(A1 ⊗ A2) has the form

w1 ∈ T (H1)→
∑

Ki(w1 ⊗ 1)K∗
i ∈ T (H1 ⊗H2) (1.18)

for some Ki ∈ B(H1 ⊗H2) such that

∑
K∗

i Ki = 1 (1.19)

This is a simple consequence of Krein’s Lemma.

Example 4: The lifting for quantum communication channel.
Let H1, H2, K1, K2 be Hilbert spaces. Denote α the amplification

α : b2 ∈ B(H2)→ α(b2) = b2 ⊗ 1K2 ∈ B(H2 ⊗ K2) (1.20)

Let
γ : B(H2 ⊗ K2)→ B(H1 ⊗ K1)

be a completely positive identity preserving map and, for σ1 ∈ S(B(K1)) denote σ̄
(2)
1 the

conditional expectation

σ̄
(2)
1 : a1 ⊗ b1 ∈ B(H1)⊗ B(K1)→ a1σ1(b1) ∈ B(H1) ∼= B(H1)⊗ 1K1 (1.21)

Then the lifting and the channel describing quantum communication processes are defined
by

E∗ = γ∗ ◦ σ̄
(2)∗
1 (1.22)

Λ∗ρ = α∗ ◦ E∗(ρ) = trK2γ
∗(ρ⊗ σ1); ρ ∈ S(B(H1)) (1.23)
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where ρ and σ1 correspond to an input state and a noise state, respectively (c.f. [21]).
Moreover the following remark, extending an unpublished result of A.Frigerio, shows

that the above model of the quantum communication process is universal among the tran-
sition expectations, provided one chooses the space of the representation large enough.

Theorem 1.4: Let B = B(H) for a separable, infinite dimensional, Hilbert space
H and let E : B ⊗ B −→ B be a normal transition expectation. Then there exist a
normal state ϕ on the W ∗-algebra (⊗B)3⊗M2 =: C (M2 is the algebra of 2× 2 complex
matrices), and a unitary element U of

A := C ⊗ B ∼= (⊗B)4 ⊗M2 (1.24)

such that , denoting π : B ⊗ B → A the normal representation (amplification)

π(x) = ( 1B2 ⊗ x ) 0

Proof: From Kraus’ Lemma [18] we know that, since E is normal, there exist a
coutable (since H is separable family) ai ∈ B ⊗ B (i ∈ N) such that , identifying B with
B ⊗ 1 one has

E(x) =
∑

i∈N

a∗
i xai x ∈ B ⊗ B

If H is infinite dimensional in B ⊗ B there exist isometries ui (i ∈ N) such that for each
i, j u∗

i uj = δij . Thus , defining

v :=
d∑

i=1

ui ⊗ ai ∈ (⊗B)4 (1.28)

one finds
v∗(1B2 ⊗ x)v = 1B2 ⊗ E(x) x ∈ B ⊗ B (1.29)

In particular , since v∗v = 1B4 , v is a partial isometry with initial projection the identity.
Denote e = vv∗ its final projection and define the unitary operator

U = ( v ) 1 − e

2. CONVEX COMBINATIONS OF PRODUCT STATES

One of the main differences between classical and quantum probability is that, while
all the measures on a product space are in the closed convex hull (for the weak topology)
of product measures, it is not true that all the states on the tensor product A1 ⊗ A2 of
two general C∗–algebras are limits (in some topology) of convex combinations of product
states.

In particular, the image under a general lifting E∗ of a state ϕ will usually not be a
convex combination of product states.
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However the class of liftings with this porperty is particulary interesting because
we expect that in this class some features of quantum probability will mix with some
features of classical probability. This class is defined as follows:

Definition 2.1: Let A1 and A2 be W ∗–algebras. A lifting E∗ : S(A1)→ S(A1 ⊗
A2) will be called of convex product type, or shortly a convex product lifting , if
any state ω ∈ S(A1) is mapped by E∗ into a convex combination of product states on
A1 ⊗ A2. If this property holds only for any state ω in a subset F ⊆ S(A1) then E∗ is
called a convex product lifting with respect to the family F .

For any von Neumann algebra A, the set S(A) of all its states has a natural structure
of measurable space with its Borel σ–algebra. In the following any probability measure
on S(A) will be meant with respect to this σ–algebra.

Definition 2.2: A convex decomposition of ϕ ∈ S(A) is a probability measure
µ on S(A) satisfying

ϕ =
∫

S(A)

ωdµ(ω) (2.1)

If µ is pseudosupported, in the sense of [8], in the set of extremal states of S(A), we
speak of an extremal convex decomposition of ϕ.

Proposition 2.1: To every lifting of convex product type E∗ : S(A1)→ S(A1⊗A2),
one can associate a pair

{pρ(dω1), pρ(dω2|ω1)} (2.2)

with the following properties:
(i) pρ(dω1) is a probability measure on S(A1)
(ii) pρ(dω2|ω1) is a Markovian kernel from S(A1) to S(A2). Conversely every pair

(2.2) satisfying (i) and (ii) above determines, via (2.4) and (2.5), a unique convex product
lifting.

Proof: For E∗ as in Definition 2.1, let us fix a state ρ1 ∈ S(A1) and also a
decomposition of E∗ρ1 as a convex combination of product states

E∗ρ1 =
∫

S(A1)×S(A2)

ω1 ⊗ ω2dp(ω1, ω2|ρ1) (2.3)

Denoting pρ1(dω2|ω1) the conditional probability of p( · |ρ1) on the σ–algebra of the
first factor and dpρ1(ω1) the marginal of p( · |ρ1) on the first factor, we obtain

E∗ρ1 =
∫

S(A1)

∫

S(A2)

ω1 ⊗ ω2dpρ1(ω1)pρ1(dω2|ω1) =
∫

S(A1)

ω1 ⊗ Λ∗
ρω1dpρ1(ω1) (2.4)

Λ∗
ρ1

ω1 :=
∫

S(A2)

ω2pρ1(dω2|ω1) (2.5)
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Thus any lifting E∗ : S(A1)→ S(A1 ⊗ A2), of convex product type, has the form (2.4),
where pρ1 is a probability measure on S(A1) and the map Λ∗

ρ1
: S(A1)→ S(A2), is given

by (2.5). Notice that Λ∗
ρ1

is a channel in the sense of Section 1 and it is usually nonlinear
both in ω1 and ρ1.

Conversely, given pρ1 and Λ∗
ρ1

as above, if we define E∗ by (2.3), then clearly E∗ is
a convex product lifting from S(A1) to S(A1 ⊗A2). Finally it is clear that the map

(ω1, S2) ∈ S(A1)× Borel(S(A2))→ pρ1(S2|ω1) ∈ [0, 1]

is a classical Markovian kernel on the Borel space S(A1)× S(A2).

Remark: If in (2.3) one conditions on the σ-algebra of the second factor rather
than on the first one, the resulting lifting is

E∗ρ1 =
∫

S(A1)

∫

S(A2)

ω1 ⊗ ω2dqρ1(ω2)dqρ1(dω1|ω2)

where dqρ1(ω2) is a probability measure on S(A2) and dqρ1(dω1|ω2) a Markovian kernel
from S(A2) to S(A1).

Let us now consider the relation between the liftings of convex product type
and Markov chains.

The dual of a linear lifting is a transition expectation, therefore to any linear lifting
one can associate a quantum Markov chain [2] in a standard way.

If the lifting is of convex product type, then we can take advantage of this special
structure to extend the construction of quantum Markov chains to the case of a not
necessarily linear lifting E∗. In what follows we describe this procedure.

If E∗ : S(A2)→ S(A1⊗A2) is a lifting of convex product type, then it has the form:

E∗ρ2 =
∫

S(A1)

∫

S(A2)

ω1 ⊗ ω2p(dω1, dω2|ρ2) (2.6)

Notice that p(dω1, dω2|ρ2) can be considered as a Markovian Kernel on the space

S12 := S(A1)× S(A2)

which is constant on the first conditioning, i.e.,

p(dω1, dω2|ρ1, ρ2) = p(dω1, dω2|ρ2) ; ω1, ρ1,∈ S(A1) , ω2, ρ2 ∈ S(A2) (2.7)

Clearly (2.6) is a state on A1⊗A2. If we apply E∗ to ω2 in (2.6), we obtain the following
state on (A1 ⊗ A2)⊗ A2 :

∫

S12

p(dω1
1, dω2

1 , |ρ2)ω1
1 ⊗ E∗ω2

1 =

12



=
∫

S12

∫

S12

p(dω1
1, dω2

1 |ρ2)p(dω1
2, dω2

2 |ω2
1)ω

1
1 ⊗ ω1

2 ⊗ ω2
2

where
ω1

i ∈ S(A1) and ω2
i ∈ S(A2).

Applying again E∗ to ω2
2 we find

∫

S12

∫

S12

∫

S12

p(dω1
1, dω2

1 |ρ2)p(dω1
2, dω2

2 |ω2
1)p(dω1

3, dω2
3 |ω2

2)ω1
1 ⊗ ω1

2 ⊗ ω1
3 ⊗ ω2

3

At the n–th iteration we obtain the state E∗n]ρ2 on (⊗A1)n ⊗A2, defined by:

E∗n]ρ2 :=
∫

Sn
12

(
⊗n

i=1ω
1
i

)
⊗ ω2

n ·Πn
i=2p(dω1

i , dω2
i |ω2

i−1)p(dω1
1, dω2

1 , |ρ2) (2.8)

This suggests to introduce the classical Markov process

ξn := (ξ1
n, ξ2

n) : (Ω,F , P )→ S(A1)× S(A2) = S12 (2.9)

with the transition function given by (2.7) and initial distribution p(·|ρ2). This transition
probability has a nice interpretation in terms of signal + noise : if system1 represents the
noise and system 2 the signal, then condition (2.7) means that the joint distribution at
time (n + 1) depends on the signal at time n, but not on the noise at time n : a natural
assumption if we think of the noises at defferent times, as generated by independent
causes. Now let A := ⊗NA1. The identification

a1 ⊗ . . . ⊗ an
∼= a1 ⊗ a2 ⊗ . . . ⊗ an ⊗ 1 ⊗ 1 ⊗ · · ·

induces a natural identification of (⊗A1)n with a sub-algebra A[2,n] of A = ⊗NA1 (the
product of the first n-factors).

In particular, if ρ2 ∈ S(A2) is a state on A2, the restriction of E∗n]ρ2 on (⊗A1)n is a
state on (⊗nA1) and, with the above identification, we can consider it a state ρ[1,n] on
A. Following from all above, in particular (2.8), we obtain

Proposition 2.2: For any ρ2 ∈ S(A2) the limit

lim
n→∞

ρ[1,n] =: ϕ (2.10)

exists pointwise weakly on A. Moreover, if Eξ denotes the mean with respect to the
process {ξn}, defined by (2.9), then one has

ϕ = Eξ

(
⊗

n∈Nξ1
n

)
. (2.11)

3. CENTRALIZER LIFTINGS
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In this Section we introduce an interesting class of nonlinear liftings generalizing
the construction of [22]. It is shown that the Cecchini-Petz notion of state extension
[11], introduced after [22] and for totally independent reasons, is a generalization of our
construction hence, a fortiori, of the one in [22].

Recall that a linear map E from a C*-algebra A to a C*-algebra B is called anti-
completely positive if the map Ē : A → B, defined by

Ē(a) := E(a∗) ; a ∈ A (3.1)

is completely positive antilinear, i.e., for any natural integer n, any a1, . . . , an ∈ A and
any b1, . . . , bn ∈ B, one has

∑

jk

b∗jE(a∗
kaj)bk =

∑

jk

b∗j Ē(a∗
jak)bk ≥ 0

Proposition 3.1: Let A1,A2 be W*-algebras, let A1⊗(o)A2 denote their algebraic
tensor product. For ρ ∈ S(A1) let Aρ

1 denote the centralizer of ρ and let E : A2 → Aρ
1 be

any anticompletely positive identity preserving linear map. Then there exists a unique
state ϕρ on A1 ⊗(o) A2 such that

ϕρ(a1 ⊗ a2) := ρ(a1E(a2)) ; a1 ∈ A1 , a2 ∈ A2

Proof: Let n be a natural integer and let b1, . . . , bn ∈ A1 and a1, . . . , an ∈ A2. By
assumption the Aρ

1-valued n × n matrix B = (Bkj) defined by

Bkj := E(a∗
jak) = Ē(a∗

kaj)

is of positive type, hence it has the form B = M∗M for some Aρ
1-valued n × n matrix

M = (Mkj). One has therefore

ϕρ(|
∑

j

aj ⊗ bj|2) =
∑

jk

ρ

(
b∗jbkE(a∗

jak)
)

=

=
∑

jkh

ρ

(
b∗jbkM∗

hkMhj

)
=

=
∑

jkh

ρ

(
Mhjb

∗
jbkM∗

hk

)
=

=
∑

h

ρ

(
[
∑

j

bjM
∗
hj ]

∗ · [
∑

k

bkM∗
hk]

)
≥ 0
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Remark: Clearly

| ϕρ(a1 ⊗ a2) |≤‖ a1 ‖ · ‖ a2 ‖ ; a1 ∈ A1 , a2 ∈ A2

hence ϕρ is continuous for the greatest cross norm on A1⊗(o)A2. Cecchini and Petz [12]
have proved that it is also continuous for the smallest C*-norm [28]. (This is clear if the
centralizer of ρ, i.e., Aρ

1, is abelian because in that case all the C*-norms on A1 ⊗(o) A2

coincide with the minimal C*-norm ([28], Proposition 1.22.5)). Moreover it is easy to
check that the operator E, defined by (3.1) is an example of Cecchini’ s λ-operator [9].
In this case in fact the Tomita involution J1 acts as the identity on the cyclic space of
Aρ

1, the centralizer of A1, therefore the identity (3.1) is precisely the defining relation of
the λ-operator.

If Aρ
1 is a discrete abelian algebra generated by a partition (ej) of the identity, then

any positive map E, from A2 to Aρ
1 is also completely and anti-completely positive and

it has the form
E(a2) =

∑

j

ϕj(a2)ej ; a2 ∈ A2 (3.2)

with ϕj ∈ S(A2). In this case it is immediate to verify that

ϕρ =
∑

j

ρj ⊗ ϕj (3.3)

where ϕj is given by (3.2) and
ρj := ρ(ej( · )ej)

In general, whenever the state ϕρ, defined by (3.3), is continuous, the map ρ 7→ ϕρ defines
a lifting E∗ in the sense of Definition 1.1. This lifting is in general nonlinear since the
map E in (3.1) may depend on ρ.

For example, if A1 is the algebra of all operators on some Hilbert space and ρ has
the form ρ = tr(w · ) for some density matrix w with spectral decomposition given by

w =
∑

j

pjej (3.4)

then the centralizer Aρ
1 is the closed linear span of the (ej) and if the ϕj are chosen to

be of the form
ϕj = Λ∗(

ρj

ρj(1)
) (3.5)

for some channel Λ∗ : S(A1)→ S(A2), then equation (3.3) becomes of the same form as
(1.17) giving an example of nonlinear compound lifting.

4. ERROR PROBABILITY FOR OPTICAL COMMUNICATION
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An optical communication process studied by several authors (cf.[21] for a mathe-
matical analysis), the so-called attenuation process, can be described by the isometric
lifting described in Example 1.a. This description is simpler than the previous ones
and allows quicker computations. This statement is illustrated with the computation of
several error probabilities related to this model.

Before introducing these computations, we briefly review some basic facts about the
notions of quantum coding and of error probability in quantum control communication
processes along the lines of [24].

Suppose that, by some procedure, we encode an information representing it by a
sequence of letters c(1), . . . , c(n), . . ., where c(k) is an element in a set C of symbols called
the alphabet.

A quantum code is a map which associates to each symbol (or sequence of symbols)
in C a quantum state, representing an optical signal. Sometimes one uses a state as two
codes: one for input and one for output.

In the sequel we shall only consider a two symbols alphabet:

C = {0, 1} (4.1)

One example of quantum code Ξ = {ξ0, ξ1} where ξi is the quantum state corresponding
to the symbol ci ∈ C, is obtained by choosing ξ0 as the vacuum state and ξ1 another
state such as a coherent or a squeezed state of a one-mode field.

Two states (quantum codes) ξ
(1)
0 and ξ

(1)
1 in the input system are transmitted to

the output system through a channel Λ∗. We here assume a Z-type signal transmission,
namely that the input signal “0”, represented by the state ξ

(1)
0 , is error free in the sense

that it goes always to the output signal “0” represented by ξ
(2)
0 , while the input signal

“1”, represented by the state ξ
(1)
1 , is not error free in the sense that its output can give

rise to both states ξ
(2)
0 or ξ

(2)
1 with different probabilities.

The error probability qe is then the probability that the input signal “1” is
recognized as the output signal “0”, so that it is given by

qe = trΛ∗(ξ(1)
1 )ξ(2)

0 (4.2)

In the case of quantum attenuation process, this error probability is written by using the
attenuation operator V given in Example (1.a) with the construction (Example (4)) of
quantum lifting:

qe = trH2 trK2(V ξ
(1)
1 V ∗)ξ(2)

0 (4.3)

There are two main ways, called pulse modulation, to code the symbols of the
alphabet C. We briefly explain them for completeness. A pulse is an optical signal,
represented by a non vacuum state of the EM field; its energy is here called the height
of the pulse. To a single symbol of the alphabet C one associates one or more pulses.
Time is discretized and each time interval between tk and tk+1 has length τ . Each time
interval corresponds to a single symbol of the alphabet.
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(1) PCM (Pulse Code Modulation) : To the k-th symbol ak of the input
sequence, one associates N pulses starting at a time tk. The ordered set of these pulses
is denoted xk. For instance, for the alphabet {a0, a1}, for N = 5 and choosing the
elementary pulses to be the vacuum (i.e., no pulse) denoted 0, and another fixed pulse,
e.g., a coherent state, denoted 1, the code xk corresponding to ak is determined by
x0 = (1, 0, 1, 0, 0), x1 = (0, 1, 1, 0, 1) and so on. For this modulation, we need N slots
(sites) in one time interval (e.g., between tk and tk+1) to fully represent all M signals;
2N−1 < M ≤ 2N .

(2) PPM (Pulse Position Modulation) : In this case there is only one non-
vacuum pulse in each time interval of length τ . The code xk expressing a signal ak is
determined by the position of the non vacuum pulse, so that we need M slots (sites) in
each time interval in order to express M signals; For instance in the same notations as
above, x0 = (0, 0, 0, 1, 0), x2 = (0, 1, 0, 0, 0).

Given (4.2), the error probability of PCM with the t0-tuple error correcting the
following (4.3) and (4.4), respectively:

PPCM
e =

ν∑

j=t0+1

νCjq
j
e(1− qe)ν−j, (4.4a)

PPPM
e = qe, (4.4b)

where νCj = ν !/{(ν-j)!j!}.
The most general case for the computation of qe is one that both ξ

(1)
1 and ξ

(2)
0 are

squeezed states, but in usual optical communication it is often enough to take a coherent
or squeezed state as ξ

(1)
1 and the vacuum state as ξ

(2)
0 . Hence we first calculate the error

probability qe for the latter two cases and compare them with the results previously
obtained in [24]. Secondly we show the computation for the most general case, ξ

(1)
1 and

ξ
(2)
0 squeezed, for a mathematical interest and generality, although this somehow does

not fit to the assumption of our Z type transmission.

(I) Case of ξ
(1)
1 = |θ >< θ| = coherent state and = |0 >< 0| : The error probability

(4.2) becomes

qe = trH2(trK2V
∗|θ >< θ|V )|0 >< 0|

= trH2(trK2 |αθ >< αθ| ⊗ |βθ >< βθ|)|0 >< 0|
= trH2 |αθ >< αθ||0 >< 0|
= | < 0, αθ > |2

= exp(−|αθ|2),

which is equal to the usual result (cf. [16], [19]), but our new derivation is much simpler
than old one.
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(II) Case of ξ
(1)
1 = squeezed state and ξ

(2)
0 = |0 >< 0|: A squeezed state can be

expressed by a unitary operator U (z) (z ∈ C) given in Appendix such that

ξ
(1)
1 = U (z)|γ >< γ|U (z)∗

where |γ > is a certain coherent state. Therefore the error probability qe is

qe = trH2(trK2V U(z)|γ >< γ|U (z)∗V ∗)|0 >< 0|
= trV ∗(|0 >< 0| ⊗ I)V U(z)|γ >< γ|U (z)∗

=< U (z)γ, V ∗(|0 >< 0| ⊗ I)V U(z)γ >

To carry this calculation, we have to know the effect of V ∗ on H2 ⊗ K2.

<γ, (V ∗|γ′ > ⊗|γ” >) >=< V γ, (|γ′ > ⊗|γ” >) >

=< (< αγ|⊗ < βγ|), (|γ′ > ⊗|γ” >) >

=< αγ, γ′ >< βγ, γ” >

= exp{
1
2
(−|αγ|2 − |γ′|2 + 2ᾱγ̄γ′)} exp{

1
2
(−|γ”|2 − |βγ|2 + 2β̄γ̄γ”)}

= exp{−1
2
(|βγ′|2 + |αγ”|2)} < γ, ᾱγ′ + β̄γ” > exp(Re(ᾱβγ′γ̄”)),

which implies

V ∗|γ′ > ⊗|γ” > = exp{−1
2
(|βγ′|2 + |αγ”|2)}

× exp(Re(ᾱβγ′γ”))|ᾱγ′ + β̄γ” > .

Therefore qe is

qe =
1
π

∫
d2w < U (z)γ, V ∗(|0 >< 0| ⊗ I)V w >< w, U (z)γ >

=
1
π

∫
d2w exp{

1
2
(|α|2|β|2|w|2)}

× < U (z)γ, |β|2w >< 0, αw >< w, U (z)γ >

This can be computed by the expression (A.27) given in Appendix and a Gaussian type
integration:

< w, U (z)γ >= < exp(− i

2
ϕ)w, U (r) exp(− i

2
ϕ)γ >

= exp{−1
2
(|w|2 + |γ|2)}(cosh r)−1/2

× exp{w̄θ(cosh r)−1 + tanh r{1
2
(exp(−iϕ)θ2 − exp(iϕ)w̄2)}},
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1
π

∫
d2w exp{−|w|2 + aw + bw̄ + cw2 + dw̄2} =

1√
1 − 4cd

exp{
a2d + ab + b2c

1 − 4cd
}.

The result is

qe =
(cosh r)−1 exp

{
1
2(γ2 + γ̄2)(tanh r) − |γ|2

}
√

1− (1 − |α|2)2(tanh r)2

× exp
(− 1

2
(1 − |α|2)2(cosh r)−2(tanh r)(γ2 + γ̄2) + (1− |α|2)|γ|2(cosh r)−2

1 − (1− |α|2)2(tanh r)2

)

=
1√

(cosh r)2 − (1− |α|2)2(sinh r)2
exp

{(
1 − |α|2

(cosh r)2 − (1− |α|2)2(sinh r)2
− 1

)
|γ|2

+
(

1 − (1 − |α|2)2

(cosh r)2 − (1− |α|2)2(sinh r)2

) (
1
2
(γ2 + γ̄2)(tanh r)

)}

which is same as the result obtained in [24]:

qe =
√

τ exp
[
{(1 − η)τ − 1}|γ|2

+ [1− (1 − η)2τ ]{ µ̄γ2

2λ
+

µγ̄2

2λ̄
}
]

where η = |α|2, τ = {|λ|2 − (1− η)2|µ|2}−1 with λ = exp(iφ) cosh r, µ = sinh r.

(III) Case of ξ
(1)
1 =squeezed state U (p)|γ >< γ|U (p)∗ and ξ

(2)
0 =squeezed state

U (q)|σ >< σ|U (q)∗: By the similar way as the case (II),

qe = trH2(trK2V U(p)|γ >< γ|U (p)∗V ∗)U (q)|σ >< σ|U (q)∗

=< U (p)γ, V ∗(|U (q)σ >< U (q)σ| ⊗ I)V U(p)γ >

=
1
π2

d2wd2z < U(p)γ,w >< w,V ∗(|U (q)σ >< U (q)σ| ⊗ I)V z >< z,U (p)γ >

=
1
π2

d2wd2z < U(p)γ,w >< αw,U (q)σ >< βw, βz >

× < U (q)σ,αz >< z,U (p)γ >

Applying the above formula presented in the case II, we can compute this error probability
qe as

qe =
1
π2

< U (p)γ,w >< αw,U (q)σ >< βw, βz >

Let C denote the set of all complex numbers. A Fock representation of the
Canonical Commutation Relations (CCR) over C is a triple

{H,W,Φ}

19



where H is a Hilbert space and W : z ∈ C 7→ W (z) ∈ Un(H) is a map from C to the
unitary operators on H such that W (0) = id and

W (u)W (v) = exp{iImūv}W (u + v); u, v ∈ C (A.1)

and Φ ∈ H is a unit vector, called the Fock vacuum, satisfying

< Φ,W (z)Φ >= exp{−12|z|2}; z ∈ C (A.2)

It is moreover assumed that the weak closure of the complex vector space generated by
the {W (z) : z ∈ C} coincides with the algebra of all bounded operators on H. This
property is called irreducibility. Clearly any two Fock representations are canonically
isomorphic. The Stone-von Neumann theorem asserts that if {W (z) : z ∈ C} is any
irreducible family of unitary operators on a Hilbert space H satisfying (A.1), then it is
isomorphic to the Fock representation. In particular, for any such a family, there will
exist a (necessarily unique) vector Φ satisfying (A.2), i.e., a Fock vacuum for this family.
A corollary of the Stone-von Neumann theorem is the following: let T : C → C be any
real linear transformation such that

Im(Tu)−(Tv) = Imūv; ∀u, v ∈ C (A.3)

where “-” denotes the complex conjugate, and define

WT (z) = W (Tz); z ∈ C (A.4)

Then the set {WT (z) : z ∈ C} (because any T satisfying (A.3) must be invertible), hence
it is irreducible. Moreover, because of (A.3), it satisfies (A.1). Hence by the Stone-von
Neumann theorem, there exists a vector ΦT ∈ H and a unitary operator UT : H → H,
characterized by the property:

UTW (z)Φ = WT (z)ΦT ; z ∈ C (A.5)

The vector ΦT = UT Φ (i.e., the vacuum for the WT representation) is called a squeezed
vector for the W-representation. The most general operator T , satisfying (A.3), is given
by the following

Proposition A.1: Let V : C → R2 be the isomorphism of real linear spaces
characterized by

V (1) = ( 1 )

Then a real 2× 2 matrix T induces on C a transformation satisfying (A.3) if and only if
detT = 1.

Proof: A direct calculation: The identity (A.2) implies that for each z ∈ C the
one parameter unitary group {W (tz)}(t ∈ R) is strongly continuous, hence

W (tz) = exp{itB(z)} (A.7)
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for some self-adjoint operator B(z). Moreover the map z ∈ C 7→ B(z) is real linear. The
operators

12B(1) = q; 12B(i) = p (A.8)

are called momentum and position operators, respectively. The condition (A.1) implies
that

[B(u), B(v)] = 2iImūv (A.9)

so that, in particular

[q, p] = i2.

Finally, denoting

a = p− iq; a∗ = p + iq (A.10)

one has

[a, a∗] = 1

iB(z) = za∗ − z̄a; z ∈ C (A.11)

The vectors

|θ >= W (θ)Φ; θ ∈ C (A.12)

are called coherent vectors. Now let T : C→ C be a real linear map satisfying (A.3)
and let WT , UT ,ΦT be characterized respectively by (A.4) and (A.5). Then one has, for
z ∈ C :

WT (z) = exp(iBT (z)) = exp(za∗
T − z̄aT ). (A.13)

On the other hand, by the definition (A.4) of WT , one also has

WT (z) = W (Tz) = exp((Tz)a∗ − (Tz)−a)A.14

(a ) b

then for each z ∈ C

(T ) z

with

c̄ = 12([a + d] + i[c − b]); −s = 12([a − d] + i[c + b]) (A.17)
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defin
Remark: Notice that any c, s given by (A.17) satisfy

|c|2 − |s|2 = det ( a ) b

Conversely, given c, s ∈ C such that |c|2 − |s|2 = 1, we can define a, b, c, d by (A.17)
and the resulting matrix is in SL(2; R).

Proof: Denote C2(R) the real vector space

C2(R) = {λ ( z )

and V0 : R2 → C2(R) the isomorphism of real vector spaces characterized by

V0 ( 1 )

Then, if V : C→ R2 is the isomorphism of Proposition A.1 and z = x + iy, one has

V0V Tz = V0 ( a ) b

Expressing x, y in terms of z, z̄, one finds (A.16), (A.17).

Putting together Proposition (A.2) and the identity (A.14), we obtain

WT (z) = exp{(a∗,−a) ( c̄ )− s

Comparing (A.19) with (A.13) we finally find

aT = ac + a∗s (A.20)

or equivalently

( a )T

But from (A.5),(A.7) and (A.11), it follows that the operator UT is characterized by the
property:

UTaT U∗
T = a

or, in view of (A.20), by

U∗
TaUT = ca + sa∗ (A.22)

Our goal is to find the operator UT satisfying (A.22) for given c and s satisfying (A.18).
To this goal first notice that, in view of (A.18), there exist real numbers r, η, ϕ such that

c = exp{iη} cosh r = exp{iη}cr; s = exp{−iϕ} sinh r = exp{−iϕ}sr (A.23)
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Moreover, due to the identities

exp{xa∗a}a exp{−xa∗a} = exp{−x}a;

by replacing the representation W (z) with the equivalent representation W (exp{iη}z),
we can always suppose that c, in (A.22), is real, i.e., η = 0 in (A.23).

Proposition A.3: Let c, s be given by (A.23) with η = 0; r > 0. Then the operator
UT , characterize by (A.22) is given by

UT = exp{12(za2 − z̄a∗2)} ≡ U (z)A.25

Proof: Denote Dz = 12(za2 − z̄a∗2) and define

f(t) = exp{tDz}a exp{−tDz}

Then, due to the easily verified commutation relations:

[Dz, a] = z̄a∗; [Dz, a
∗] = za

one deduces the equation

ddt ( f ) (t)

with initial condition

( f ) (0)

whence

( f ) (t)

For t = 1, using (A.23) and the assumption η = 0, one finds

exp{Dz}a exp{−Dz} = ca + sa∗

so that UT = U (z) ≡ exp{Dz}.

Remark: Let z = r exp{iϕ} and denote Vt the 1-parameter unitary group Vt =
exp{ita∗a}. Then one easily checks, using (A.24), that

exp{Dz} = V−ϕ2 exp{Dr}Vϕ2 (A.27)

So we can reduce ourselves to study the operator Dz in the case of real z. In several
applications it is useful to know the matrix elements of the operator exp{Dr} = U (r)
with respect to the coherent states in the W -representation.
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Proposition A.4: In the notation (A.12),(A.23),(A.25) one has

< α,U (r)β >=< 0, U (r)β > exp{ᾱβcr − ᾱ2sr2cr}A.28

Proof: Denote f(ᾱ) =< α,U (r)β >. Then

ddᾱf(ᾱ) = βcr(1 − ᾱcrβ)f(ᾱ); f(0) =< 0, U (r)β >

Solving this equation, we find (A.27). Now put f(r) =< 0, U (r)β >. Then f(0) = 1 and

ddrf(r) = 12(β2c2
r − srcr)f(r)

The solution of this equation is

f(r) = exp
∫ r

0

12(β2c2
τ − sτ cτ)dτ (A.30)

Keeping into account (A.23), the integral in (A.30) is easily evaluated and leads (A.29).
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