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constants) from currently available lattice data is presented and tested. The approach is
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based on the idea of constructing appropriate ratios of heavy-light meson masses and decay

constants, respectively, possessing a precisely known static limit, and evaluating them at

various pairs of heavy quark masses around the charm. Via a smooth interpolation in

the heavy quark mass from the easily accessible charm region to the asymptotic point, B-

physics parameters are computed with a few percent (statistical + systematic) error using

recently produced Nf = 2 maximally twisted Wilson fermions data.

Keywords: Lattice QCD, Quark Masses and SM Parameters, B-Physics, Heavy Quark

Physics
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1 Introduction

Heavy flavour physics is a corner of the Standard Model where chances are higher to

uncover signals of new physics ([1] and 2009 partial update for the 2010 edition, [2, 3]).

However, to extract from experiments useful phenomenological information, it is mandatory

to have an accurate knowledge of the relevant hadronic matrix elements of the effective weak

Hamiltonian. For low mass states (up to around the charm mass) lattice QCD (LQCD)

represents the ideal framework where such calculations can be performed with well under

control systematic errors [4–6].

Due to present day computer limitations, it is not possible, however, to work directly

with the heaviest quarks (as the b-quark) propagating on the simulated lattice. Vari-

ous strategies, more or less inspired to the heavy quark effective theory (HQET) [7–12],

have been devised to circumvent this intrinsic difficulty, which go from non-perturbative

matching of HQET onto QCD [13–18] to finite size scaling methods with relativistic heavy

quark(s) [19–22]. Relativistic heavy-quark actions designed (highly tuned) to have reduced

cutoff effects [23–26] have also been employed for this purpose. Encouraging results have

been obtained by several groups [27] though different is the level at which the various

relevant systematic effects are controlled.

In this work we wish to present a novel approach to B-physics in which the b-mass

point is attained by interpolating from the charm region to the asymptotic infinite mass
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regime suitable ratios of heavy-light (hℓ) meson masses and decay constants, computed at

a number of pairs of quark mass values lying slightly below and somewhat above the charm

mass. The key feature of the approach is the use of ratios of physical quantities which by

construction have a well defined and exactly known infinite h-quark mass limit. Injecting

knowledge of meson masses and decay constants at the charm region, their h-quark mass

evolution can be computed by a chain of successive steps up to values as large as about

twice the charm mass. The b-physics region is finally reached through an interpolation

from the simulated points to the exactly known infinite h-quark mass value.

A first test of the viability of the method is presented here. It has been carried out by

exploiting the unquenched Nf = 2 data recently produced by the ETM Collaboration [28–

31] which makes use of maximally twisted Wilson fermions [32–35]. The results obtained

in this feasibility study are very encouraging and compare nicely with the unquenched

determinations today available in the literature [36–42] as well as with PDG numbers ([1]

and 2009 partial update for the 2010 edition). We get

µ̂
MS,Nf =2
b

(

µ̂
MS,Nf=2
b

)

= 4.63(27) GeV , (1.1)

fB = 194(16) MeV , (1.2)

fBs = 235(12) MeV , (1.3)

where, as indicated explicitly in eq. (1.1), the b-mass has been run in a world with two

(active) flavours. The results in eqs. (1.1) to (1.3) represent a “first principle” deter-

minations of B-physics parameters with errors whose magnitude can be systematically

reduced. The quoted uncertainty will be discussed in sects. 2 and 3 for eqs. (1.1)

and (1.2)–(1.3), respectively.

A few observations are in order here. First of all we would like to remark that the

results above are extracted from unquenched LQCD data where u and d light fermions

are dynamical, while heavier quarks are introduced only as valence quarks. This scheme

is what goes under the name of “partially quenched” setting (see ref. [43] for a discussion

within the twisted mass regularization of QCD). Systematic errors due to partial quenching

are not included in the figures quoted in eqs. (1.1) to (1.3). The second observation is

that no complicated renormalization steps are required for the method to work, because,

as noted above, the necessary inputs are (ratios of) physical quantities (hℓ-pseudoscalar

meson masses or decay constants) evaluated at h-quark masses around the charm region

which are extracted from the existing (large volume) lattice configurations produced for

the study of pion physics.

The central value of µ̂
MS,Nf=2
b (µ̂

MS,Nf =2
b ) in eq. (1.1) may look somewhat higher

(though still compatible within statistical errors) than the available phenomenological esti-

mates of the MS b-quark mass at its own scale, which lie in the range 4.2-4.3 GeV. However,

it is not unlikely that, when the quenching of quarks heavier than u and d will be removed

with the inclusion of dynamical s and, possibly, c quarks, mb will receive corrections which

one can argue will tend to make the quantity µ̂
MS,Nf=4
b (µ̂

MS,Nf=4
b ) somewhat smaller than

– 2 –
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the number given in eq. (1.1).1

The results (1.2) and (1.3), instead, are only affected at a level of less than 1% by our

present uncertainties in the b-quark mass, because the hu/d- and hs-meson decay constants

happen to have a rather mild dependence on the h-quark mass.

The content of this paper is as follows. In section 2 we discuss the theoretical basis

underlying the strategy that we propose to extract the value of the b-quark mass from

present day LQCD data and we provide a rather accurate determination of it with con-

trolled errors. In section 3 we extend the method to the determination of the fB and fBs

decay constants. We conclude in section 4 with a few words on how to improve the quality

of the numbers (1.1) to (1.3), and how to extend the present method to other hℓ-physics

quantities the large h-quark mass behaviour of which is known. We defer to an appendix

some technical details concerning the way chiral and continuum extrapolations of hℓ meson

masses and decay constants are performed.

2 b-quark mass

In this section we present a simple strategy aimed at determining the value of the b-quark

mass through a smooth interpolation of suitable ratios of hℓ pseudoscalar lattice meson

masses from the well accessible charm region to the asymptotic (infinite mass) point where

these quantities have an exactly known value. Inspired by HQET results we consider the

lattice ratios (a = lattice spacing)

yL(x(n), λ; µ̂ℓ, a) =
ML

hℓ(µ̂
(n)
h ; µ̂ℓ, a)

ML
hℓ(µ̂

(n−1)
h ; µ̂ℓ, a)

·
ρ(log µ̂

(n−1)
h )µ̂

(n−1)
h

ρ(log µ̂
(n)
h )µ̂

(n)
h

, n = 2, · · · , N . (2.1)

In eq. (2.1) and in the following by a “hat” we denote quark masses renormalized at 2 GeV in

the MS scheme. By µ̂ℓ we indicate the renormalized light quark mass, while µ̂
(n)
h > µ̂

(n−1)
h

are pairs of (renormalized) “heavy” valence quark masses lying around (from below to

somewhat above) the charm mass. The function ρ(log µ̂h) is the factor that “transforms”

the renormalized MS quark mass at 2GeV scale into the so-called “quark pole mass”.

In formulae

ρ(log µ̂h)µ̂h = µpole
h . (2.2)

In continuum perturbation theory (PT) ρ is known up to N3LL (i.e. up to next-to-next-to-

next-leading-log) order terms included [44–50]. Finally N is the number of h-quark masses

at which the values of the hℓ pseudoscalar lattice meson masses, ML
hℓ, are supposed to have

been measured.

The choice of the form of eq. (2.1) is suggested by the HQET (continuum) asymptotic

equation [7–12]

lim
µpole

h →∞

Mhℓ

µpole
h

= constant 6= 0 . (2.3)

1Indeed, if we evolve the intermediate result µ̂
MS,Nf =2

b (2 GeV) = 5.35(32) GeV from 2GeV to the b-

quark mass scale by using anomalous dimension and β-function of the Nf = 4 (rather than Nf = 2) theory,

the value of the b-quark mass gets lowered by about 3% compared to the value we give in (1.1).

– 3 –
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Although the above constant is known to be 1, its value is not really needed here.

In order to simplify our subsequent analysis we keep fixed the ratio between two suc-

cessive values of the heavy quark masses in eq. (2.1). Calling it λ > 1, we set

λ =
µ̂

(n)
h

µ̂
(n−1)
h

=
µ

(n)
h

µ
(n−1)
h

=
x(n−1)

x(n)
, x(n) =

1

µ̂
(n)
h

. (2.4)

Notice that in µ̂
(n)
h /µ̂

(n−1)
h the mass renormalization constant factor, Z−1

P , cancels out.2

Ratios of the kind defined in (2.1) are introduced with the idea that they might have a

smoother chiral (µℓ → µu/d, with µu/d the light quark mass that yields the physical value

of the pion mass) and continuum limit than each of the individual factors. Setting

y(x(n), λ; µ̂u/d) ≡ lim
µ̂ℓ→µ̂u/d

lim
a→0

yL(x(n), λ; µ̂ℓ, a) =

= λ−1 Mhu/d(1/x
(n))

Mhu/d(1/λx(n))

ρ(log λx(n))

ρ(log x(n))
, (2.5)

where we have introduced the (continuum limit) shorthand notation

Mhu/d(1/x) ≡ Mhu/d(1/x, µ̂u/d) ,

we observe that (for all λ > 1) eqs. (2.2) and (2.3) imply the following exact property

lim
x→0

y(x, λ; µ̂u/d) = 1 . (2.6)

From lattice data the function y(x, λ; µ̂u/d) can be determined at certain discrete values

of x (x(n), n = 2, · · · , N). In order to extend our knowledge outside these particular points,

while at the same time fully exploiting the strong constraining power provided by eq. (2.6),

we imagine proceeding in the following way. Suppose the perturbative expansion of ρ has

been computed and resummed up to NP LL order. Then we can define a tower of y-ratios,

y|p, p = 0, 1, . . . , P + 1, such that

y(x, λ; µ̂u/d)
∣

∣

∣

p
− 1

x→0
∼ O

(

1

(log x)p+1

)

, (2.7)

provided ρ in eq. (2.1) is correspondingly taken at tree-level in the case of p = 0, or to

Np−1LL order for p > 0. Then for sufficiently small values of x we parameterize y|p in

the form

y(x, λ; µ̂u/d)

∣

∣

∣

∣

p

= 1 + η1(log x, λ; µ̂u/d)x + η2(log x, λ; µ̂u/d)x
2 , (2.8)

where the coefficients ηj(log x, λ; µ̂u/d), j = 1, 2, are p-dependent (though to lighten the

notation we do not display explicitly this dependence in the following), smooth functions

of log x which tend to zero as λ → 1 and to some fixed constant as x → 0 [7–12]. With

2We recall that in maximally twisted LQCD the twisted mass renormalizes according to µ̂ = Z−1
P µ. If

standard Wilson fermions were to be employed, the quantity m̂h = Z−1

S0 (m0h − mcr), should be used in

place of µ̂h in eq. (2.1).

– 4 –
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β a−4(L3 × T ) aµℓ = aµsea aµs aµh

3.80 243 × 48 0.0060, 0.0080 0.0200, 0.0250 0.2700, 0.3100

0.0110, 0.0165 0.0300, 0.0360 0.3550, 0.4350

0.5200

3.90 243 × 48 0.0040, 0.0064 0.0220, 0.0270 0.2500, 0.3200

0.0085, 0.0100 0.0320 0.3900, 0.4600

0.0150

3.90 323 × 64 0.0030, 0.0040 0.0220, 0.0270 0.2500, 0.3200

4.05 323 × 64 0.0030, 0.0060 0.0150, 0.0180 0.2000, 0.2300

0.0080, 0.0120 0.0220, 0.0260 0.2600, 0.3150

Table 1. Lattice size, light (= sea), strange- and charm-like bare quark mass values used in the

analysis presented in this work. The number of correlator measurements was 240 in all cases, but for

β = 4.05, where it was 130. The r0/a-values 4.46(3), 5.22(2) and 6.61(3) are employed at β = 3.8,

β = 3.9 and β = 4.05, respectively [51, 52]. The overall scale and the light quark mass are set by the

experimental values of fπ and mπ via chiral fits of the pseudoscalar meson mass and decay constant

data in the light quark sector [51–54]. Here we use µ̂u/d = 3.6(3)MeV and r0 = 0.433(14) fm.

the ansatz (2.8) and at any order where PT results for ρ are available, it is not difficult to

determine the ηj coefficients from lattice data, assuming that their log x-dependence can

be ignored in the range of masses where the above formulae are used.

It is important to remark that the ansatz (2.8) is based on the same kind of assump-

tions under which HQET is usually employed in the study of heavy quark physics. A

posteriori, we check that the best fit values taken by the coefficient functions ηj come out

of a reasonable order of magnitude. Indeed we find that η1r0 and η2r
2
0 are O(1) quantities.

2.1 Implementing the method

Let us start considering for concreteness the case where ρ is taken up to LL order and

subsequently compare the results we get in this way with what one would obtain taking ρ

at NLL-order or at tree-level (at tree-level ρ = 1).

In order to determine the coefficient functions ηj we proceed as follows. Let us make

for the smallest µ̂h value the choice µ̂
(1)
h = 1.230 GeV (we recall, we are referring to the

MS scheme at the scale of 2 GeV). Fixing λ = 1.278 (see below) and, in this exploratory

study, N = 4, we shall successively consider the h-quark masses

µ̂
(1)
h = 1.230 GeV ,

µ̂
(2)
h = λµ̂

(1)
h = 1.572 GeV ,

µ̂
(3)
h = λ2µ̂

(1)
h = 2.009 GeV ,

µ̂
(4)
h = λ3µ̂

(1)
h = 2.568 GeV . (2.9)

Actually at each lattice spacing we will be dealing with the dimensionless quantities µ̂
(j)
h r0,

j = 1, 2, 3, 4, of which the numbers quoted in eq. (2.9) represent the central values in

– 5 –
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0.00 0.05 0.10 0.15 0.20

M
L hl

(µ
h(3

) ) 
/ M

L hl
(µ

h(2
) )

r0 µl 
^

<

<

β=4.05
β=3.90
β=3.80

Figure 1. Lattice spacing and µ̂ℓ dependence of the ratio ML
hℓ(µ̂

(3)
h ; µ̂ℓ, a)/ML

hℓ(µ̂
(2)
h ; µ̂ℓ, a). The

black square with its error is the combined continuum and chirally (µ̂ℓ → µ̂u/d) extrapolated value.

Here and in all the following figures uncertainties possibly affecting the value of the variable in the

horizontal axis are propagated to the quantity plotted on the vertical axis.

physical units. Uncertainties on r0/a and Z−1
P (present at the level of about 3%) will be

taken into account in the final error analysis.

From the set of the ETMC simulation data [28–30] with parameters detailed in table 1,

we extract the values of the hℓ pseudoscalar meson masses that correspond to the µ̂h

values listed in (2.9). With these masses we construct the lattice ratios (2.1) on which a

combined continuum and chiral fit is performed. As we hoped, ratios appear to have a

mild dependence on the light quark mass µ̂ℓ and small cutoff effects, as seen for instance in

figure 1. This makes our continuum and chiral fit straightforward and numerically robust.

The red squares in figure 2 represent the numbers y
(n)
1 = y(x(n), 1.278; µ̂u/d)|1,

n = 2, 3, 4, computed at the x(n) = 1/µ̂
(n)
h values in the list (2.9) with the ratios

ρ(log µ̂
(n−1)
h )/ρ(log µ̂

(n)
h ) computed at LL order (i.e. p = 1 in eq. (2.7)). The best fit

through the red squares and the point at x = 0 determines the values of the ηj coefficients

(j = 1, 2) and yields the middle (red) curve in the figure. We note that a second order

polynomial in x is necessary to get a good fit to the data (a straight line forced to pass

through the point y = 1 at x = 0 would have a very large χ2). The quadratic fit gives

for the quantities r0η1 and r2
0η2 numbers of order unity, in agreement with the standard

assumptions underlying HQET.

At this stage, having in our hands the quantities y
(n)
1 = y(x(n), 1.278; µ̂u/d)|1 for any n

– 6 –
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y|0 : λ = 1.273

y|1 : λ = 1.278

y|2 : λ = 1.278

x/r0

0.300.250.200.150.100.050.00

1.00

0.99

0.98

0.97

0.96

0.95

0.94

0.93

0.92

0.91

0.90

Figure 2. Continuum data for y|0 (blue dots), y|1 (red squares), y|2 (green triangles). The

corresponding best fit curves are drawn with λ = 1.273 (lower curve, in blue) and λ = 1.278

(middle curve, in red and upper curve, in green). In all cases µℓ → µu/d.

(actually for any x), the iterative formula

y
(2)
1 y

(3)
1 · · · y

(K+1)
1 = λ−K Mhu/d(µ̂

(K+1)
h )

Mhu/d(µ̂
(1)
h )

·

[

ρ(log µ̂
(1)
h )

ρ(log µ̂
(K+1)
h )

]

p=1

, (2.10)

should be looked at as a relation between the mass of the hu/d-meson, Mhu/d(µ̂
(K+1)
h ),

and the corresponding heavy quark mass µ̂
(K+1)
h , which is fully explicit if the initial, trig-

gering value Mhu/d(µ̂
(1)
h ) is assigned. The latter can be accurately measured, as µ̂

(1)
h lies

in the well accessible charm quark mass region. We show in figure 3 the quality of the

continuum and chiral extrapolation of the triggering mass lattice data. Once this number

is known, determination of the b-quark mass is tantamount to find the value of K at which

Mhu/d(µ̂
(K+1)
h ) takes the experimental B-meson mass value, MB . Calling Kb the solution

of the resulting eq. (2.10) (as shown in figure 4, we find Kb = 6), one gets for µ̂b the simple

formula (valid for renormalized as well as bare masses)

µ̂b = λKbµ̂
(1)
h . (2.11)

A few related remarks are important here. 1) It is not really necessary to have the

lattice hℓ pseudoscalar meson masses computed at values of µ̂h matched exactly as indicated

in eq. (2.9). A µh interpolation between nearby ML
hℓ masses can be carried out if necessary.

This is what we have actually done in the numerical study we present in this paper. 2) It

is not a priori guaranteed that eq. (2.10) can be solved for an integer value of the exponent

– 7 –
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 3

 3.5

 4

 4.5

 5

 0  0.05  0.1  0.15  0.2

r 0
 M

 L
hl

r0 µl 
^

µh ~ 1.23 GeV^

β=4.05
β=3.90
β=3.80

Figure 3. The ML
hℓ(µ̂

(1)
h ; µ̂ℓ, a) lattice data extracted from the simulations detailed in table 1. The

black square with its error is the continuum and chirally extrapolated value giving Mhu/d(µ̂
(1)
h ) =

1.89(10)GeV.

K. This is not a problem, however, as one can always retune the parameter λ (and at the

same time readjust the values in the sequence (2.9)), so as to end up with an integer for Kb

(this is the reason why the peculiar value λ = 1.278 was chosen). Alternatively one could

adjust the starting value of the heavy quark mass or both. 3) A detailed discussion of the

numerical analysis will be given in a forthcoming publication [55]. Here we only mention

that a simple SU(Nf = 2) chiral perturbation theory NLO-formula was used to model the

µ̂ℓ dependence of the triggering hℓ meson mass and y-ratios, while O(a2) effects have been

parameterized (at each µ̂h) by µ̂ℓ independent terms. A few further details on this point

are given in appendix A.

Following the procedure outlined above, one finds the result given in eq. (1.1), or

equivalently the renormalization group invariant (RGI) value

µ̂
RGI,Nf=2
b = 7.6(5) GeV , (2.12)

where in the running only two flavours are assumed to be active and the conventions of

ref. [56–59] for the RGI quark mass have been used.

2.2 Discussion and error budget

It is important to check the degree of reliability of the key smoothness assumption we have

been implicitly making on the function y(x) and test the sensitivity of the procedure and its

result (2.11) to the order of PT at which the expansion of ρ is truncated. To this end we have

repeated the entire analysis above using for ρ both a lower (tree-level) and a higher (NLL)

– 8 –
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rhs of eq.(2.10)
lhs of eq.(2.10)

KKb

1211109876543210

2.00

1.50

1.00

0.50

0.00

Figure 4. The numerical solution of eq. (2.10) giving Kb = 6.

order perturbative approximation in place of the previously employed LL order truncation.

We recall that in the large h-quark mass limit y|0 = y(x, λ; µ̂u/d)|0 and y|2 = y(x, λ; µ̂u/d)|2
approach 1 (see eq. (2.7)) with corrections O(1/ log x) and O(1/(log x)3), respectively.

One finds a (very) little shift in the value of λ necessary for the solution of the cor-

responding iterative equation (2.10) to be an integer (from 1.278 to 1.273) if we go from

y|1 to y|0. The shift is instead totally negligible within our statistical accuracy if we move

from y|1 to y|2.

The fits to y|0 and y|2 data are shown in figure 2 (lower blue and upper green curve)

together with the fit to y|1 data (middle red curve). One clearly sees that the y|p curves

tend to become flatter and flatter as we move from p = 0 to p = 2. As for the values of

the b-quark mass, instead, the number extracted from y|0-ratios is only about 2% smaller

than the one obtained using the y|1-ratios. The difference between the latter and the one

extracted from y|2-ratios is smaller than 1%.

The stability of the value of the b-quark mass with varying p should not come as a

surprise. It is enough to notice that, if the y|p-ratios were exactly known, for a generic

value of p one would get (recall eq. (2.10))

[

ρ(log µ̂
(K+1)
h )

ρ(log µ̂
(1)
h )

]

p

· y(2)
p y(3)

p · · · y(K+1)
p = y

(2)
0 y

(3)
0 · · · y

(K+1)
0 = λ−K Mhu/d(µ̂

(K+1)
h )

Mhu/d(µ̂
(1)
h )

, (2.13)

as all the intermediate ρ factors (except the first and the last) cancel out in the l.h.s. leaving

behind simply the product of the y|0-ratios. The small p dependence we have found in the

value of λ (hence in µ̂b) is due to the slightly different level of accuracy by which the

y|p-ratios (which instead significantly depend on p) can be described by a polynomial in x
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with the lowest order coefficient set to unity. In this respect, increasing p is expected to

improve the quality of the ansatz (2.8) and reduce the systematic error associated to it.

This is so until p becomes so “large” that the accuracy of the ρ estimate gets spoiled by

the renormalon ambiguity in its perturbative expansion [60].

To account for the truncation to LL of the perturbative expansion for ρ we have

conservatively decided to attribute to the b-quark mass value a systematic error of 1%,

which is added in quadrature to the other errors discussed below, leading to the total error

quoted in eq. (1.1) (and (2.12)).

2.2.1 Error budget

The total error we attribute to the b-quark mass results (1.1) and (2.12) takes into account

a number of statistical and systematic effects which we now briefly illustrate. The relative

error on the product of the continuum y-ratios in the l.h.s. of eq. (2.10) is only about

1%, whereas the pseudoscalar meson mass in the charm region (Mhu/d(µ̂
(1)
h ) in the r.h.s.

of eq. (2.10)) contributes a relative error of about 5%. These errors are the result of our

statistically limited knowledge of hℓ-meson correlators, r0/a and ZP
3 as well as of a number

of further systematic errors. Among the latter we mention those coming from the fit ansatz

underlying the combined continuum and chiral (µ̂ℓ → µ̂u/d) extrapolation, the error due to

the x-interpolation to the b-mass point, as well as the (tiny) error inherent the numerical

solution of eq. (2.10) (giving Kb = 6 and λ = 1.278). As we discussed above, the effect on

µ̂b due to the truncation of the ρ perturbative series to order p is very small, not larger

than 1%. Another .5-1% systematic error comes from the possible (neglected) logarithmic

dependence of the ηj , j = 1, 2 coefficients. The relative uncertainty on ηj associated with

these effects can be estimated to be O(αs(1/x)) ∼ 10 − 15%, a number which is never

larger than the statistical errors on their best fit values. Finally cross-correlations between

the different quantities (stemming from common ensembles of gauge configurations) are as

usual taken into account by a bootstrap error analysis. Further technical aspects of the

error analysis are deferred to ref. [55].

The information provided in figures 1, 2 and 3 about the a2, µ̂ℓ and x dependence of

the intermediate quantities entering our analysis as well as about the precision in solving

eq. (2.10) (see figure 4) shows that the global systematic uncertainty is well within (or

below) our present statistical errors.

We conclude by observing that, as expected, our results for the b-quark mass (and

fB or fBs discussed in the next section) do not significantly depend on the value of the

intermediate quantity r0 which is only employed to ease continuum extrapolations, while

the physical scale is ultimately set by fπ.

2.3 b and c quark masses

Although not necessary, the phenomenological value of the D-meson mass could have been

used as a triggering mass. In this case µ
(1)
h would have to be identified with µc.

3At the moment the statistical error on ZP quoted by ETMC is about 3% at the simulated lattice

spacings.
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We note in this context that, since we get (see the black square in figure 3 Mhu/d(µ̂
(1)
h ) =

1.89(10) GeV, i.e. a number that practically coincides with the experimental value of MD

(MD0 = 1.865 GeV ([1] and 2009 partial update for the 2010 edition)), our method immedi-

ately yields for the charm mass the estimate µ̂c = 1.23(06) GeV. For the phenomenologically

important b- over c-mass ratio we then get

µ̂b

µ̂c
= 4.31(24) , (2.14)

in very good agreement with other estimates.4

In closing this section we note that an independent determination of the b-quark mass

can be obtained repeating the same analysis as before but using MBs , instead of MB , and

replacing µ̂u/d with µ̂s. By doing that we find a result which is fully consistent with the one

in eq. (2.12). Alternatively, and perhaps more interestingly, one could use Kb as determined

from MB to predict MBs , or better the ratio MBs/MB , by the method we are proposing

in this paper. Such an analysis is in progress and will be presented elsewhere [55].

3 fB and fBs
decay constants

A strategy very similar to the one outlined in section 2 can be employed to extract accurate

values of the fB and fBs decay constants from available lattice data. In analogy with what

we have done before, one should now take

z(x, λ; µ̂ℓ) = λ1/2 fhℓ(1/x)

fhℓ(1/xλ)
·
Cstat

A (log(xλ))

Cstat
A (log x)

[ρ(log x)]1/2

[ρ(log λx)]1/2
(3.1)

with the (continuum limit) shorthand notation

fhℓ(1/x) ≡ fhℓ(1/x, µ̂ℓ) ,

where the quark mass µ̂ℓ must be extrapolated to either µ̂u/d or to the appropriate strange

quark mass value, µ̂s, depending on whether one wants to compute fB or fBs .

The form of the function z(x, λ; µ̂ℓ) is dictated by the continuum asymptotic formula

lim
x→0

√

ρ(log x)

x

fhℓ(1/x)

Cstat
A (log x)

= constant 6= 0 , (3.2)

which follows by matching HQET to QCD [7–12]. The presence of the factor Cstat
A comes

from the fact that in HQET the axial (and vector) current needs to be renormalized. The

renormalization constant Cstat
A is known in PT up to three loops [64]. The ratio of ρ

4It is interesting to compare our unquenched result for the ratio of RGI masses

m
RGI,Nf =2
c /m

RGI,Nf =2

b = 0.232(13) (the inverse of eq. (2.14)) with the corresponding quantity

[m
RGI,Nf =0
c = 1.654(45) GeV]/[m

RGI,Nf =0

b = 6.758(86) GeV] = 0.245(7) determined using the quenched

data of ref. [61] (for the c-mass) and [62] (for the b-mass). More recently the work of ref. [63] has appeared

where the number m
MS,Nf=4
c (3 GeV)/m

MS,Nf =4

b (10 GeV) = 0.273(3) is quoted. This value is well

consistent with our result (2.14) which translates into m
MS,Nf=2
c (3 GeV)/m

MS,Nf=2

b (10 GeV) = 0.274(15).
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Figure 5. Lattice spacing and µ̂ℓ dependence of the ratio fL
hℓ(µ̂

(3)
h ; µ̂ℓ, a)/fL

hℓ(µ̂
(2)
h ; µ̂ℓ, a). The black

square with its error is the combined continuum and chirally (µ̂ℓ → µ̂u/d) extrapolated value.

factors (raised to the appropriate power) is there to convert MS heavy quark masses to

pole masses (see eq. (2.2)).

As before, the function (3.1) has been defined so as to fulfill the exact asymptotic

constraint

lim
x→0

z(x, λ; µ̂ℓ) = 1 , (3.3)

from which the small x expansion

z(x, λ, µ̂ℓ) = 1 + ζ1(log x, λ; µ̂ℓ)x + ζ2(log x, λ; µ̂ℓ)x
2 , (3.4)

follows. Again the coefficients ζj(log x, λ; µ̂ℓ), j = 1, 2, are smooth functions of log x which

tend to zero as λ → 1.

In analogy with what we did in section 2 in determining the b-quark mass, with the

purpose of checking the robustness of the procedure, we shall take Cstat
A and ρ at increasing

orders in PT, from tree-level up to NLL order, and construct z|p-ratios endowed with the

asymptotic behaviour

z(x, λ; µ̂u/d)

∣

∣

∣

∣

p

− 1
x→0
∼ O

(

1

(log x)p+1

)

, (3.5)

Just like in the case of the determination of the b-quark mass, the values of fB or fBs that

we shall extract will be almost independent of the PT truncation order.

– 12 –



J
H
E
P
0
4
(
2
0
1
0
)
0
4
9

z|2 : λ = 1.278

z|1 : λ = 1.278

z|0 : λ = 1.273

xb/r0

x/r0

0.300.250.200.150.100.050.00

1.18
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1.14

1.12

1.10

1.08

1.06

1.04
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1.00

Figure 6. Continuum data for z|0 (blue dots), z|1 (red squares), z|2 (green triangles). The

corresponding best fit curves are drawn with λ = 1.273 (upper curve, in blue) and λ = 1.278

(middle curve, in red and lower curve, in green). In all cases µℓ → µu/d. The blue and red vertical

lines represent the location of the b-mass as extracted from y|0 and y|1 data (with λ = 1.273 and

λ = 1.278), respectively. The green vertical line is practically on top of the red line and it is not

visible.

3.1 Implementing the method. The case of fB

The z-ratios (3.1) have been evaluated at the reference h-quark masses of the list (2.9) for

each of the lattice spacings and light quark mass values given in table (1). When we perform

the continuum and chiral extrapolation of the ETMC lattice data for the ratios (3.1)

of hℓ pseudoscalar meson decay constants (again based on simple chiral NLO-formulae

supplemented with µ̂ℓ-independent O(a2) corrections — see appendix A), as hoped, a

rather smooth behaviour is found since most of the a2 and µ̂ℓ dependence gets canceled in

taking the ratio. The observable dependence on µ̂ℓ and a2 is mild and/or hardly significant

within our present statistical errors (see e.g. figure 5).

From the structure of eq. (3.1) one derives the iterative formulae (analogous to

eq. (2.10) with z
(n)
p ≡ z(x(n), λ; µ̂u/d)|p)

z(2)
p z(3)

p · · · z(K+1)
p = λK/2 fhℓ(µ̂

(K+1)
h )

fhℓ(µ̂
(1)
h )

·

[

Cstat
A (log µ̂

(1)
h )

Cstat
A (log µ̂

(K+1)
h )

√

√

√

√

ρ(log µ̂
(K+1)
h )

ρ(log µ̂
(1)
h )

]

p

, p = 0, 1, 2 .

(3.6)

Similarly to what we did in figure 2, we collect in figure 6 continuum and chirally extrapo-

lated data for z|p, p = 0, 1, 2 and best fit curves through these data and the value at x = 0.

Thus, for instance, the middle (red) curve is the parabola (eq. (3.4)) which best fits the

values of z
(n)
1 = z(x(n), 1.278; µ̂u/d)|1, n = 2, 3, 4, at the heavy quark masses (2.9). The red
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Figure 7. The fL
hℓ(µ

(1)
h ; µ̂ℓ, a) lattice data extracted from the simulations detailed in ta-

ble 1. The black square with its error is the continuum and chirally extrapolated value giving

fhu/d(µ̂
(1)
h , µ̂u/d) = 211(9)MeV.

vertical line marks the position xb which corresponds to the previously determined value of

µ̂b (eq. (2.12)) and crosses the curve at the point z
(Kb)
1 = z(xb, 1.278; µ̂u/d)|1. With the help

of this number and the values of z
(j)
1 for 4 < j ≤ Kb +1, eq. (3.6) provides a determination

of fhu/d(µ̂b) in terms of fhu/d(µ̂
(1)
h ) (with LL-accurate fit for the z-ratios). As observed

before, the latter does not necessarily has to be identified with the phenomenological value

of fD for the method to work, as what we actually need to know is the dependence of

fhu/d(µ̂h) on µ̂h at around the charm mass. Nevertheless, since, as remarked in section 2.2,

Mhu/d(µ̂
(1)
h ) coincides with the experimental value of MD, we are in position of evaluating

fD, obtaining fD = fhu/d(µ̂c) = 211(9) MeV, compatible with the result fD = 197(9) MeV

given in ref. [31]. The latter was obtained in the standard way (see ref. [28–30]) from the

same ETMC gauge configuration ensembles, but with a rather different analysis method

where the meson masses rather than the renormalized quark masses were kept fixed as

a → 0, resulting in somewhat different statistical (no use of ZP ) and systematic errors as

compared to the present study. For the present computation of fhu/d(µ̂
(1)
h ) = fD the quality

of the continuum and chiral extrapolation of our lattice data is shown in figure 7. Taking

as triggering value the continuum and chirally extrapolated value of the pseudoscalar decay

constant computed at µ̂
(1)
h , we get

fB = fhu/d(µ̂b) = 194(16)MeV , (3.7)

which is precisely the result (1.2).
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3.2 Discussion and fB error budget

To test the reliability of the interpolation of our trial functions, z(x), to b-mass point,

we have explicitly checked the stability of the result (3.7) to the order of PT at which

the expansion of ρ1/2/Cstat
A is truncated. For this purpose we have repeated the whole

previous analysis employing values of ρ1/2/Cstat
A computed at tree-level (p = 0) and NLL

(p = 2) order. Upon comparing with the decay constant values obtained in these other

ways we see that numbers obtained using the z|0-ratios (upper blue curve in figure 6) differ

by less than 1% from the value one gets from the red data (LL z|1-ratios). If one employs

the lower green data (coming from the NLL z|2-ratios) the difference with the previous

determination is totally negligible (about 0.1%). This specific systematic effect on fB was

hence conservatively estimated to be ∼ 0.5% and added quadratically to the full error.

As in the case of the determination of the b-quark mass, the remarkable numerical

stability of fB with varying p can be traced back to the good quality of the interpolation

ansatz (3.4) and the relation (again valid for exactly known z|p-ratios)

[

Cstat
A (log µ̂

(K+1)
h )

Cstat
A (log µ̂

(1)
h )

√

√

√

√

ρ(log µ̂
(1)
h )

ρ(log µ̂
(K+1)
h )

]

p

· z(2)
p z(3)

p · · · z(K+1)
p =

= z
(2)
0 z

(3)
0 · · · z

(K+1)
0 = λK/2 fhℓ(µ̂

(K+1)
h )

fhℓ(µ̂
(1)
h )

. (3.8)

3.2.1 The fB error budget

The total error we attribute to fB in eqs (1.2) and (3.7) comes in almost equal parts from the

product of z-ratios in the l.h.s. of eq. (3.6) and the value of fhu/d(µ̂
(1)
h ) and is a combination

of statistical and systematic errors stemming from the same sources already illustrated in

the case of the b-quark mass in section (2.2). As we saw above, the systematic error

stemming from the truncation of the PT expansion of ρ1/2/Cstat
A has a negligible impact on

fB . Another 1-2% systematic uncertainty comes from the possible (neglected) logarithmic

dependence of the ζj, j = 1, 2 coefficients. The relative uncertainty on ζj associated with

these effects can be estimated to be O(αS(1/x)) ∼ 10 − 15%, a number which, as in the

case of the ηj ’s entering our analysis for µb, is never larger than the statistical errors on

their best fit values. In any case inspection of figures 5 to 7 shows that all systematic

uncertainties are smaller than our current statistical errors.

3.3 The case of fBs

In order to come up with a determination of fBs one has simply to repeat the whole

procedure setting µℓ → µs. With reference to the value of µ̂
MS,Nf =2
s (2 GeV) = 99(7) MeV

given in [65], one finds (thanks to the equality of µ̂
(1)
h with the charm quark mass)

fDs = fhs(µ̂
(1)
h ) = 252(7) MeV (3.9)

and the best fit z-ratio curves shown in figure 8. We may quote as our final result (see also

eq. (1.2))

fBs = fhs(µ̂b) = 235(12) MeV , (3.10)
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Figure 8. Same as figure 6 for µℓ → µs.

where errors are estimated as in the case of fB. We also note that the result (3.9) for the

decay constant of the Ds meson is in agreement with that of ref. [31] and contributes to

further reduce the possible “tension” with the recent Cleo data reanalysis [66].

A more complete analysis of the many possibilities and refinements one can envisage

will be presented in [55].

As is clear by comparing the results for fB and fBs (eqs. (3.7) and (3.10), respectively),

our method yields a significantly smaller error for the decay constant of the strange B-

meson. The reason is that no large statistical fluctuations from the light (u/d) quark

propagators nor (valence) chiral extrapolation uncertainties enter the computation of fBs .

In view of this observation we remark that, if one would know with high accuracy the ratio

fB/fBs , a more precise determination of fB could be obtained by simply multiplying this

number by fBs .
5 Actually the quantity fB/fBs can be accurately computed by a simple

generalization of the method discussed in this paper. It is indeed sufficient to consider the

double ratio

w(x, λ; µ̂u/d, µ̂s) = [fh/ud/fhs](1/x)[fhs/fhu/d](1/xλ) =
z(x, λ; µ̂u/d)

z(x, λ; µ̂s)
(3.11)

and follow the procedure we described before starting from the triggering quantity

[fhu/d/fhs](µ̂
(1)
h ). This kind of analysis is under way and will be discussed elsewhere [55].

5This observation is far from original, see e.g. ref. [67].
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4 Conclusions and outlook

In this paper we have proposed a novel strategy to determine B-physics parameters from

currently available Wilson fermion simulation data. As a first test of the method, we

have computed in (the continuum limit of) QCD with Nf = 2 light dynamical quarks

the (renormalized) b-quark mass as well as the B-meson decay constants, fB and fBs ,

employing the gauge configurations recently produced by the ETM Collaboration with

maximally twisted Wilson fermion action [28–30].

The method provides rather accurate numbers with errors that are dominated by

the uncertainties related to the limited statistical accuracy by which the (two-point) hℓ

pseudoscalar meson correlators and the quark mass renormalization constant, Z−1
P , are

evaluated. A better assessment of the systematic errors due to the limited knowledge of

logarithmic corrections can only come from data taken at quark masses larger than the

ones displayed in eq. (2.9).

In several respects the present feasibility study could benefit from the nice properties

(particularly O(a) improvement [43, 68]) of maximally twisted Wilson fermions. Indeed, an

important feature of the present computation is the pretty good control we have of cutoff

effects, which (judging from the spread between values at the coarsest lattice spacing and

those at the continuum limit) are always smaller than 10%. This is so both for the triggering

quantities at the charm mass scale and for the y- and z-ratios, which involve higher quark

masses (up to twice the charm mass).

It is also interesting to note that the whole procedure only relies on the use of physical

quantities that can be easily determined from lattice simulations, while the need for a

renormalization step is limited to establishing the relation between the renormalized charm-

like mass and the values of the triggering pseudoscalar meson mass. Fixing this relation

requires the knowledge of ZP . No extra renormalization factor is needed for the calculation

of the decay constants of interest if maximally twisted fermions are used as the charged

axial currents are exactly conserved at finite lattice spacing.

There is a lot of room for improvement in the application of the method, like reducing

the statistical error of the correlation functions, using several, suitably smeared meson

sources, increasing the accuracy by which ZP is known and incorporating in the analysis

the new ETMC set of data that are coming out at a finer lattice spacing (β = 4.2).

Needless to say, the method can be straightforwardly extended to LQCD computations

with u, d, s and possibly c dynamical quarks where quenching uncertainties are virtually

absent. In this respect we wish to note that in simulations with Nf = 3 dynamical quarks,

although low energy hadronic effects in the B-meson wave function are correctly treated,

a conflict remains between the number (Nf = 3) of dynamical quarks running in the loops

(and thus relevant for the subtraction of UV divergencies) and the number (Nf = 4) that

instead should be used for continuum RG-evolution at scales above, say, 1.5 GeV. This

problem and the related RG-uncertainties are completely removed if also the c quark is

made dynamical.

Finally, we remark that the strategy we have outlined can be applied to any other hℓ

physical quantity the large µh behaviour of which is known (typically from large quark
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mass arguments).
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A Chiral and continuum extrapolations

For the reader’s convenience we collect in this appendix the standard formulae we have

used to perform the necessary chiral (µ̂l → µ̂u/d) and continuum (a → 0) extrapolations of

our lattice data on pseudoscalar masses and decay constants.

Fit ansatz for hℓ meson masses and decay constants. We have modeled the µ̂ℓ-

dependence of Mhℓ and fhℓ in a form that is consistent with the known results of (NLO)

SU(2) chiral effective theories for pseudoscalar mesons made up by a light plus a heavy

quark. The form of the fit ansatz was chosen generic enough so as to encompass (see discus-

sion below) the expected µ̂ℓ-dependence both in the case when the heavy quark is treated

as static [69–71] and when the latter is considered non-light but still relativistic [72, 73].

In r0-units we write for masses and decay constants

Mhℓr0 = C0 + C1µ̂ℓr0 +
a2

r2
0

CL , (A.1)

fhℓr0 = D0 + D1µ̂ℓr0 + d1
2B0µ̂ℓ

(4πf0)2
log

(

2B0µ̂ℓ

(4πf0)2

)

+
a2

r2
0

DL , (A.2)

where the last terms, with parameters CL and DL, have been included to cope with the

expected O(a2) discretization effects. The fit parameters C...’s and D...’s in general depend

on µ̂h, though the form of the fit ansatz (A.1) and (A.2) has been actually employed only

for a fixed value of the heavy quark mass, namely for µ̂h = µ̂
(1)
h , when we evaluate the

so-called triggering meson mass and decay constant, respectively.

We checked that, within the statistical accuracy of our data, no µ̂ℓ dependence is

visible in the O(a2) terms in eqs. (A.1) and (A.2). The fit ansatz for Mhℓr0 does not

include logarithmic terms. This is consistent with the results of the chiral effective theory

for hℓ pseudoscalar mesons with a light plus a non-light and relativistic quark [72, 73],

but it can be equally well regarded as a simple Taylor expansion leading to a polynomial

interpolation of data points with a very smooth dependence on µ̂ℓ (see figure 3). In this

sense the fit ansatz for Mhℓr0 is also consistent with the spirit of the effective theory for

static-light mesons [69–71], where the µ̂ℓ dependence of Mhℓ is expected to be a tiny effect

(as we indeed find).

The coefficient d1, multiplying the term ∼ µ̂ℓ log(µ̂ℓ) in eq. (A.2), was taken as a free

fit parameter. Numerically we get for d1/D0 at µ̂h = µ̂
(1)
h a value (−1.0 ± 0.4) which falls

in between (and agrees within statistical errors with) what is expected from the arguments

of refs. [69–71] (where the heavy quark is treated as a static source) and those of ref. [72]

– 18 –
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(where it is taken as a relativistic particle). The result we find for d1 is not surprising as

our heavy quark mass lies in the charm region.

The low energy constant f0 and B0 have been taken from recent ETMC analyses of

light meson quantities [51, 52].

Fit ansatz for ratios. For the quantities

ML
hℓ(µ̂

(n)
h ; µ̂ℓ, a)

ML
hℓ(µ̂

(n−1)
h ; µ̂ℓ, a)

,
fL

hℓ(µ̂
(n)
h ; µ̂ℓ, a)

fL
hℓ(µ̂

(n−1)
h ; µ̂ℓ, a)

, n = 2, 3, 4 , (A.3)

which enter the ratios y and z at the various µ̂h-values, we employed fit ansatz analogous to

(and derived from) eqs. (A.1) and (A.2) above. They all are of the following form: a leading

term plus a term linear in µ̂ℓ and another one proportional to a2 (and µ̂ℓ-independent).

Note that, if we assume that d1 does not appreciably vary as µ̂h changes by the factor

λ ∼ 1.27–1.28 (which is a natural expectation in any effective theory for hℓ mesons), one

finds that in the ratios (A.3) the possible µ̂ℓ log(µ̂ℓ) dependence cancels at NLO, and is

pushed to NNLO.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution Noncommercial License which permits any noncommercial use, distribution,

and reproduction in any medium, provided the original author(s) and source are credited.

References

[1] Particle Data Group, C. Amsler et al., Review of particle physics,

Phys. Lett. B 667 (2008) 1 [SPIRES].

[2] http://www.utfit.org/.

[3] http://www.slac.stanford.edu/xorg/ckmfitter/.

[4] K. Jansen, Lattice QCD: a critical status report, PoS(LATTICE 2008)010 [arXiv:0810.5634]

[SPIRES].

[5] A.S. Kronfeld, The weight of the world is quantum chromodynamics,

Science 322 (2008) 1198 [SPIRES].
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