
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright


Author's personal copy

Direct kinetic energy extraction from neutron Compton profiles

R. Senesi a,b,n

a Universit �a degli Studi di Roma ‘‘Tor Vergata’’, Dipartimento di Fisica, Via della Ricerca Scientifica 1, 00133 Roma, Italy
b Centro NAST, Nanoscienze & Nanotecnologie & Strumentazione, Universit �a degli Studi di Roma ‘‘Tor Vergata’’, Via della Ricerca Scientifica 1, 00133 Roma, Italy

a r t i c l e i n f o

Article history:

Received 18 August 2011

Received in revised form

16 September 2011

Accepted 20 September 2011
Available online 1 October 2011

Keywords:

Deep inelastic neutron scattering

Electronvolt neutron spectometers

Inelastic neutron scattering data analysis

Proton momentum distributions

a b s t r a c t

Deep inelastic neutron scattering experiments provide access to atomic momentum distributions and

mean kinetic energies. These quantities are intimately connected to nuclear quantum effects associated

to the equilibrium ground state of condensed systems. The method to derive the single particle mean

kinetic energy, directly employing the sum rules associated to the scattering functions, from a set of

deep inelastic neutron scattering spectra is discussed. This method does not make use of nonlinear

fitting of the scattering spectra.

& 2011 Elsevier B.V. All rights reserved.

1. Introduction

Inelastic neutron scattering experiments at high wave vector
and energy transfers provide microscopic information on single
particle microscopic dynamics of condensed matter systems [1].
In particular, when energy and wave vector transfers are in excess
of about 1 eV and 25 Å�1, it is possible to reach the Deep Inelastic
Neutron Scattering (DINS), or Neutron Compton Scattering (NCS),
regime [2]. The latter represents a unique technique to probe the
very short scale (time and distance) dynamics, measuring the
single-particle momentum distribution n(p) and mean kinetic
energy, /EKS of the scattering atoms [3,4]. In the DINS regime,
the scattering is described within the framework of the Impulse
Approximation (IA), which is exact in the limit of infinite
momentum transfer [2,5]. This assumes that a single particle of
the system, struck by the neutron, recoils freely from the collision,
with inter-particle interaction in the final state being negligible
(i.e. the wave function of the particle in its final state is a plane
wave). Under these conditions, applying the momentum and
energy conservation laws, the energy, ‘o and momentum, ‘q,
transfers are related by

‘o¼ ðpn�p0nÞ
2

2M
þ
ðpn�p0nÞ � p

M
ð1:1Þ

where M and p are the mass and the momentum of struck particle
before collision, while pn and p0n are the momenta of the incident

and scattered neutron (i.e. pn�p0n¼‘q), respectively. Thus, the
energy distribution of the scattered neutrons is directly related to
the distribution of particle momenta parallel to the wave vector
transfer. The IA can be regarded as a special case of the incoherent
approximation, where, in the case of high energy collisions, a
short time ðt�!0Þ expansion of the atomic position operator, RðtÞ
is applied to the position operator of the struck atom of mass M

and momentum p: RðtÞ ¼Rð0Þþðt=MÞp [5]. Within the framework
of the IA, the dynamical structure factor is described by

SIAðq,oÞ ¼ ‘
Z

nðpÞd ‘o�‘or�
p � ‘q

M

� �
dp ð1:2Þ

where nðpÞ is the atomic momentum distribution, and ‘or is the
recoil energy:

‘or ¼
‘ 2q2

2M
: ð1:3Þ

The physical implication of Eq. (1.2) is that scattering occurs
between the neutron and a single particle, with conservation of
kinetic energy and momentum of the particleþneutron system,
as introduced in Eq. (1.1). If the IA is valid, the two dynamic
variables o and q can be explicitly coupled through the definition
of the West scaling variable y as [5]

y¼
M

‘ 2q
ð‘o�‘orÞ: ð1:4Þ

Eq. (1.2) can be then reduced to the form

SIAðq,oÞ ¼ M

‘q
Jðy,q̂Þ ð1:5Þ
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where

Jðy,q̂Þ ¼ ‘
Z

nðp0Þdð‘y�p0 � q̂Þ dp0: ð1:6Þ

Jðy,q̂Þ is the Neutron Compton Profile. The quantity q̂ is a unit
vector, as Jðy,q̂Þ no longer depends on the magnitude of q. The
function Jðy,q̂Þ dy represents the probability for an atom to have a
momentum parallel to q̂ of a magnitude between ‘y and ‘ ðyþdyÞ.
In an isotropic system, the direction q̂ is immaterial and Eq. (1.6)
becomes

JðyÞ ¼ 2p‘
Z 1
9‘y9

pnðpÞ dp: ð1:7Þ

The single particle mean kinetic energy is /EKS¼ ð3‘
2=2MÞ

R1
�1

y2

JIAðyÞ dy¼ ð3‘ 2=2MÞs2. The deviations from the IA which occur at
finite q are generally referred to as Final State Effects (FSE). FSE are
due to the localization of the struck atom in its final state, by
surrounding atoms. These make the momentum in the final state
uncertain and since the dynamic structure factor, in Eq. (1.2), is
determined by Fourier transform of the product of initial and final
state wave functions, the momentum in the initial state is also
uncertain. The overall effect is a broadening of the observed J(y),
which is similar to that introduced by an instrumental resolution
effect. When FSE are present, the Neutron Compton Profile becomes
q dependent i.e. J(y) needs to be replaced by Jðy,qÞ, so that Eq. (1.5) is
replaced by

Jðy,qÞ ¼
‘q

M
Sðq,oÞ: ð1:8Þ

Representing the FSE as a series in powers of 1/q, one finds for the
isotropic case according to Sears [6]

Jðy,qÞ ¼ JðyÞ�
A3

q

d3

dy3
JðyÞþ

A4

q2

d4

dy4
JðyÞþ � � � ð1:9Þ

where the coefficients An are related to the interatomic potential [6].
It has to be stressed that the sum rules obeyed by Jðy,qÞ are directly
related to the sum rules of the incoherent dynamical structure
factor, which are preserved under the West-scaling transformation
of Eq. (1.5) [6]. Systematic studies of the zero-point atomic kinetic
energies allow an insight into the relevance of quantum effects in
the energetics of monoatomic and molecular systems. At the same
time, accurate studies of momentum distribution line shapes
provide unique information on the local environment and potential
energy surfaces experienced by the target atom. Indeed the behavior
of protons, and more generally of light nuclei in condensed phases,
is significantly affected by quantum effects even at ambient tem-
peratures. The isotopic effect in water, the ferroelectric behavior
of potassium diphosphate, and the formation of high pressure ice
phases, are just a few of the relevant phenomena where the
quantum behavior of the nuclei plays a role. Because of the non-
commuting character of position and momentum operators in
quantum mechanics, n(p) and /EKS are very sensitive to the local
environment. A typical example is the dependence of /EKS on the
macroscopic density in monoatomic liquids and solids, such as 4He
[7–9] or 3He [10]. This is a genuine quantum effect, where the
increased space localization of the atoms in the high density liquid
or solid phases, with reduced fluctuations in position space, results
in increased fluctuations in momentum space, with an excess of
kinetic energy due to localization, following the Heisenberg inde-
termination principle. At the same time molecular systems, includ-
ing water, in nanoscale confinement, show a variety of responses in
terms of n(p) and /EKS, due to the localization and/or delocalization
effects induced by the interaction with the confining substrate
[11–13]. Moreover, recent theoretical studies in bulk water have
been focussed in the quantum interplay between position and
momentum spaces responses in the phases of ice [14]. Therefore,

systematic studies of the proton mean kinetic energy in bulk liquid
water from the supercooled metastable phase to supercritical
conditions highlight the connection between the proton short-scale
response to the changes in the hydrogen bond network [15–25]. At
the same time, studies of the proton kinetic energies of water in a
variety of settings have provided an insight into the response of the
quantum state of water’s protons to the perturbation induced by
nanoscale confinement or a macromolecular surface [26–29]. Neu-
tron scattering experiments in the DINS regime are routinely carried
out on the Vesuvio time of flight electronvolt spectrometer at the
ISIS pulsed neutron source [30,31]. Here the scattering occurs in the
range 2:5 eVr‘or r30 eV. The instrument is equipped with 64
scintillators in the forward scattering angles (Wr751) and 132
scintillators in backscattering range (1301rWr1651). At each scat-
tering angle the energy of the scattered neutrons, E1, is selected by
using Au analyzers (E1 ¼ 4897 meV). The time of flight spectrum is
obtained by differencing techniques that allow the removal of the
sample-independent background and a sharpening of the resolution
with respect to a single measurement [32–41]. Data reduction on
time of flight spectra is then carried out using procedures allowing to
correct for multiple scattering [42], and heavy atom signals, such as
oxygen and aluminum from the sample containers, in order to
isolate the single scattering from the light element of interest, e.g.
the proton, deuteron, 3He, etc. [31]. After the above corrections a
time of flight spectrum contains the single scattering contribution
from the isolated mass of interest and is therefore related to the
neutron Compton profile by

Flðy,qÞ ¼
BM

E0FðE0Þ
qClðt,WÞ ð1:10Þ

where Flðy,qÞ is the fixed-angle experimental Compton profile for
the l-th detector, E0 is the incident neutron energy, FðE0Þ is the
energy-dependent incident neutron fluence rate, Clðt,WÞ is the count-
rate at the l-th detector, and B is a constant taking into account the
detection solid angle, the detector efficiency at E¼ E1, the time–
energy Jacobian, the free-atom neutron–proton cross-section, the
number of protons hit by the neutron beam [2]. The expression
above implies the following representation of Flðy,qÞ, namely [2]:

Flðy,qÞ ¼ ½JðyÞþDJlðy,qÞ� � Rlðy,qÞ: ð1:11Þ

DJlðy,qÞ are the q-dependent deviations from the impulse approx-
imation (Final State Effects, FSE), and Rlðy,qÞ is the fixed-angle
instrumental resolution function. The latter expression is commonly
adopted and assessed to represent DINS spectra using both direct-
geometry chopper spectrometers [9,43–48], as well as on inverse
geometry instruments such as VESUVIO [2,21,49]. In some cases the
additive form for representing Final State Effects has been compared
with a convolution form that used a broadening function to account
for FSE, indeed providing the same results within the experimental
uncertainty [45,50]. Moreover, a number of works have assessed the
validity of representing the instrumental broadening effects by the
convolution with a resolution function such as Rlðy,qÞ [32,51,52].
The DINS data analysis is generally carried out using parametric
methods, such as nonlinear fitting of the Flðy,qÞ, using model
functions for J(y). The most relevant model functions used are the
Gauss–Hermite expansion [2]

JðyÞ ¼
e�y2=2s2ffiffiffiffiffiffi

2p
p

s
1þ

X1
n ¼ 2

an

22nn!
H2n

yffiffiffi
2
p

s

� �" #
ð1:12Þ

where s is the standard deviation of J(y), H2n are the Hermite
polynomials and an is the corresponding coefficients or the spheri-
cally averaged multivariate Gaussian for molecular systems [25],
where the following expression is assumed:

nðpÞ ¼
1ffiffiffiffiffiffiffiffiffi

8p3
p

szsxsy

exp �
p2

z

2s2
z

�
p2

x

2s2
x

�
p2

y

2s2
y

 !* +
O

ð1:13Þ
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where si are the standard deviations along the principal axes of the
molecular frame of reference. In all the cases above, the fitting
parameters are the set of s, an, si, and the FSE coefficients An. The fit
relies on the minimization of

w2 ¼
X

l

X
i

ðFth
l ðyi,qiÞ�Flðyi,qiÞÞ

2

e2
l,i

ð1:14Þ

where the model function is Fth
l ðyi,qiÞ ¼ ½JðyiÞþDJlðyi,qiÞ� � Rlðyi,qiÞ.

Here the index l represents the detector index, the index i represents
the y value at the i-th bin, and e2

l,i is the error for each data point.
The aim of this work is to discuss and provide the basis of a

different, non-parametric method, to determine s, i.e. from the
numerical calculation of the variance of experimental Compton
profiles, Flðy,qÞ, and of the detector-averaged Compton profile,
F ðyÞ ¼

Pn
l ¼ 1 Flðy,qÞ1=n, where n is the total number of detectors.

This method has been successfully applied in previous works to
bulk helium [48] and, more recently, to confined molecular
hydrogen [12], and ice [53]. In particular, the latter work made
use of a recent theoretical study on proton momentum distribu-
tion [54], where a quantity named mean force was proposed to
access the details of three-dimensional momentum distributions;
the mean force can be directly calculated from DINS data to
provide a further independent and non-parametric estimate of s.
However, the above works did not discuss in details the basis of
applicability of the method by providing proofs of concept and
demonstration, in terms of sum rules and properties of the
scattering function. The work presented here aims at providing
the above basis for an assessment of the method in views of its
routine use in experiments. The advantage of this method is a
direct access to the single particle mean kinetic energy without
resorting to parametric, nonlinear fitting. The variance obtained
in this way can be used as a model-free constraint in the fitting,
providing physical limits to /EKS, or be used as a final determi-
nation of /EKS in high statistical quality experimental data.
Indeed, the use of F ðyÞ is particularly useful on Vesuvio, since
averaging the spectra allows one to reduce the error bar on
individual data points, but more importantly helps in reducing
the effects of noise. Ref. [36] accurately shows that the count rate
at a particular detector is obtained from a differencing technique
between two large count rates, one with the energy analyzer
between sample and detector, and one without it. Data points are
thus affected by counting errors which are of similar magnitudes
at the peak and on the tails of the spectrum, as well as by noise,
which is more pronounced at high positive y values. The evalua-
tion of F ðyÞ allows to average the noise and to reduce it close to its
mean (zero) value. This property can be exploited to calculate the
second moment, which is very sensitive to the tails of the
experimental spectra. In Section 2 the sum rules and the con-
volution approach behind the method are presented, while in
Section 3 the method is applied to Monte Carlo simulation of
Flðy,qÞ and F ðyÞ spectra, to provide a proof of concept of the
method. Section 4 reports the discussion and conclusions.

2. Sum rules and convolution approach

The sum rules for the neutron Compton profile derive from the
general sum rules of the incoherent dynamical structure factor,
with special regards to its Impulse Approximation limit, SIAðq,oÞ [6].
The most relevant areZ 1
�1

dy JðyÞ ¼ 1

Z 1
�1

dy yJðyÞ ¼ 0¼ J1ðyÞ

Z 1
�1

dy JðyÞy2 ¼ s2: ð2:1Þ

While the sum rules for the final state effects are [6]Z 1
�1

dyDJðy,qÞ ¼ 0¼DJ0ðy,qÞ

Z 1
�1

dy yDJðy,qÞ ¼ 0¼DJ1ðy,qÞ

Z 1
�1

dyDJðy,qÞ y2 ¼ 0¼DJ2ðy,qÞ: ð2:2Þ

Therefore, for finite wave vector transfers, the sum rules valid for the
incoherent dynamical structure factors retain their validity [5,55],
and the following sum rules apply for Jðy,qÞ:Z 1
�1

dy Jðy,qÞ ¼ 1

Z 1
�1

dy yJðy,qÞ ¼ 0

Z 1
�1

dy Jðy,qÞ y2 ¼ s2: ð2:3Þ

While J(y) is a probability density distribution (longitudinal momen-
tum distribution), with unitary zeroth moment, zero first moment,
and second moment equal to s2, for any line shape of the underlying
momentum distribution, the FSE corrections must have zeroth, first,
and second moments equal to zero to satisfy the sum rules of the
incoherent dynamical structure factor [56]. The resolution function
depends on the spectrometer, in particular on the q,o values
accessed by a particular detector, with index l, and their relative
uncertainties. In any circumstances the following sum rules apply:Z 1
�1

dy Rlðy,qÞ ¼ 1

Z 1
�1

dy Rlðy,qÞ y2 ¼ s2
l : ð2:4Þ

It has to be stressed that, thanks to the improvements in detector
and energy analysis concepts, namely the Foil Cycling Technique
applied to resonance detectors [34,35,38,41], the resolution function
has a finite second moment, at variance with the previous setup
using the Single Difference method [2] that provided a resolution
function of Voigt line shape with Lorentzian tails with virtually
infinite second moment. In the kinematical range q,o accessed by
fixed detector spectra, it as been shown that, for the q–dependent
quantities Jðy,qÞ and Rlðy,qÞ, the zeroth-order sum rules are valid
within 5� 10�5 [57], while the correspondent accuracy for second-
order sum rules are presented in this work.

The same sum rules are now examined in the context of the
convolution representation of the experimental Compton profile
Flðy,qÞ in Eq. (1.11). We first recall the moments of the convolu-
tion of two real functions, f 1ðxÞ, and f 2ðxÞ, having finite zeroth, first
and second moments [58]. Following the notations of Ref. [58],
we have

hðxÞ ¼ f 1ðxÞ � f 2ðxÞ: ð2:5Þ

The zeroth moment of h(x) is

Zh ¼ Z1 � Z2 ð2:6Þ

where Z1 and Z2 are the zeroth moments of f 1ðxÞ and f 2ðxÞ,
respectively. The first moment of h(x) is

Fh ¼ F1 � Z2þZ1 � F2 ð2:7Þ
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where F1 and F2 are the first moments of f 1ðxÞ and f 2ðxÞ,
respectively. The second moment of h(x) is

Sh ¼ S1 � Z2þ2F1 � F2þZ1 � S2 ð2:8Þ

where S1 and S2 are the second moments of f 1ðxÞ and f 2ðxÞ,
respectively. In applying the above formulas to the case of the two
functions Jðy,qÞ and Rlðy,qÞ, we can also make use of the distribu-
tive property of the convolution, since Jðy,qÞ ¼ JðyÞþDJðy,qÞ. There-
fore, the zeroth and second moments of Flðy,qÞ areZ 1
�1

dy Flðy,qÞ ¼ 1

Z 1
�1

dy Flðy,qÞ y2 ¼ s2þs2
l : ð2:9Þ

These results are valid for any momentum distribution line shape
as they derive from the definition of probability density distribu-
tions with finite variance. The same formalism can be thus
applied to the angle-averaged or detector-averaged experimental
neutron Compton profile:

F ðyÞ ¼
Xn

l ¼ 1

Flðy,qÞ
1

n
ð2:10Þ

where n is the total number of detectors. In the above average, the
q dependence is smeared as the contributions from different
detectors accessing different q values for the same y value are
averaged [57]. Using the same arguments as before it can be
demonstrated thatZ 1
�1

dy F ðyÞ ¼ 1

Z 1
�1

dy F ðyÞ y2 ¼ s2þ/s2
l S: ð2:11Þ

Thus the quantity F ðyÞ conveys information on the variance of the
momentum distribution and on the single particle kinetic energy,
similar to the variances obtained from individual detectors.

3. Monte Carlo simulation of Flðy,qÞ and F ðyÞ spectra and
determination of mean kinetic energy

The method of direct integration of y2F ðyÞ has been applied to
a set of Monte Carlo simulated experimental Compton profiles for
a proton-containing system. The DINSMS code [42] is routinely
used for data reduction on Vesuvio, in particular for the evalua-
tion of multiple scattering contributions and for the determina-
tion of the resolution. The code incorporates the resolution in
a virtually exact manner, without relying on the convolution
approximation, tracking and weighting individual neutron his-
tories by probability distribution function for the geometrical
uncertainties, emission time from the moderator, energy analyzer
transfer function, etc. Applying the method to such synthetic data
is a self-consistent test providing a proof of concept. The simula-
tions presented here were carried out with a modification to the
DINSMS code that takes into account the Foil Cycling transfer
function and the time and efficiency responses of the YAP
detectors, as currently employed on Vesuvio. The sample was
monoatomic hydrogen with isotropic gaussian momentum dis-
tribution with standard deviation sMC ¼ 4:7 Å

�1
, corresponding to

/EKS¼138 meV.
Final state effects were also simulated, assuming an isotropic

harmonic proton effective potential with mean frequency
‘o ¼ 275 meV, including terms up to 1=q2 in the FSE expansion.
The quantity chosen are typical of protons in liquid water around
room temperature. Data have been simulated for 106 neutron
histories for each detector, for a subset, 32 instead of 64, of the

Vesuvio forward detector bank, without loss of generality. The
resolution has been determined by simulating a hydrogen con-
taining sample with isotropic Gaussian momentum distribution
with sR ¼ 5:0� 10�3 Å

�1
and simulating 109 events for each

detector. An example of time of flight simulated data for a subset
of detectors is reported in Fig. 1. Data have been then transformed
in longitudinal proton momentum, y, to provide the fixed angle
experimental Compton profiles, Flðy,qÞ as reported in Fig. 2. A self-
consistent test of the convolution approximation was first carried
out by fitting the set of Flðy,qÞ spectra by minimizing the chi-
squared in Eq. (1.14), using the model function

Fth
l ðyi,qiÞ ¼

e�y2
i
=2s2ffiffiffiffiffiffi

2p
p

s
1þ

c1

qi

� H3
yiffiffiffi
2
p

s

� �� �" #
� Rlðyi,qiÞ ð3:1Þ

Fig. 1. Time of flight spectra of Monte Carlo simulated data for a subset of

detectors (counting errors omitted). With the exception of the detector at W¼ 671,

all spectra are shifted upwards for clarity.

Fig. 2. Flðy,qÞ spectra of Monte Carlo simulated data for a subset of detectors. With

the exception of the detector at W¼ 671, all spectra are shifted upwards for clarity.
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where s and c1 are fitting parameters; the c1 parameter repre-
sents the Final State Effects coefficient, in the following repre-
sentation:

DJðy,qÞ ¼
e�y2=2s2ffiffiffiffiffiffi

2p
p

s
c1

q
H3

yffiffiffi
2
p

s

� �
ð3:2Þ

where

c1 ¼
M2o2

12‘ 2

1

s323=2

and M is the proton mass [6]. The fit yielded s¼ ð4:7170:04Þ Å
�1

,
c1 ¼ ð0:570:1Þ Å, with a corresponding /EKS¼ ð13972ÞmeV, in
agreement with the input value of the Monte Carlo simulations.
The c1 value in the fit is also in good agreement with the input
value used in the simulation, that, based on the harmonic fre-
quency ‘o ¼ 275 meV, gives, for the coefficient of the 1=q term,
c1¼0.62 Å. Besides providing a self-consistent assessment of the
convolution approximation of Eq. (1.11), this result provides a
stringent test of the methods for estimating the resolution from
Monte Carlo simulations. The uncertainty of 72 meV can be
regarded as the typical value of uncertainty from parametric
estimations of the proton mean kinetic energy from high quality
DINS data on the Vesuvio spectrometer.

The aim of the method outlined in this work is to apply the
direct integration of the neutron Compton profile to the detector-
averaged signal. The detector-averaged spectrum, F ðyÞ, and the
corresponding detector-averaged resolution, RðyÞ are reported in
Fig. 3.

From this figure it can be noticed that a residual asymmetry is
present in F ðyÞ, but this is not surprising since Final State effects
are not canceled out by the average over scattering angles (i.e.
detectors). The ratio between the FWHM of F ðyÞ and RðyÞ is appro-
ximately 17%.

In Fig. 4 the ‘‘kinetic energy distribution’’, y2F ðyÞ, is reported,
together with the corresponding quantity for the resolution,
y2RðyÞ.

This figure allows one to appreciate the relative importance of
the underlying momentum distribution and that of the spectro-
meter’s resolution in the evaluation of the proton mean kinetic

energy: for DINS scattering from protons, the former is the main
contribution to the variance of the experimental Compton profile,
while the variance of the resolution is a small percentage. It can

be noticed that the left–right asymmetry in y2F ðyÞ results from both
the presence of final state effects, and form a small asymmetry in
the resolution line shape. This is the main contribution that accounts
for any deviation of Eq. (2.11) from being exact. Numerical integra-

tion of y2F ðyÞ and of y2RðyÞ resulted in: y2F ðyÞ ¼ ð22:670:32Þ Å
�2

,

and y2RðyÞ ¼ 0:78 Å
�2

, thus confirming a C3% contribution of the
resolution to the variance of the experimental signal. The results for
the standard deviation and mean kinetic energy are: s¼ ð4:677

0:03Þ Å
�1

and /EKS¼ ð13772ÞmeV. These quantities are in agree-
ment, within uncertainty, to the input values of the Monte Carlo
simulation.

It is of particular importance, from the experimental point of
view, that the role played by the experimental noise in real data
may modify the value as well as the uncertainty on the derivation

of /EKS. For example, in Fig. 4 it can be noticed that for 9y9Z

20 Å
�1

, the tails of the kinetic energy distribution are zero within
error and do not contribute to /EKS. Therefore, from a conserva-
tive point of view, an integration in the range �4:25sryr4:25s
would be sufficient to evaluate /EKS. In other words, if the

FWHM of F ðyÞ is a factor Z6 larger than the FWHM of RðyÞ (6.5 in

this case), then an integration range within 9y9Z20 Å
�1

can be

safely chosen.
Based on previous experience [53], on VESUVIO the noise for

9y9Z25 Å
�1

induces fluctuations on the values of y2F ðyÞ of the

order of 70.5 Å�2. Moreover, the noise has a left–right asym-
metry due to the fact that large positive y correspond to bin
widths with large incident energy width, due to the energy-time
of flight Jacobian. Therefore, these are more affected by fluctua-
tions compared to negative y values. While a realistic simulation
of this type of noise, as well as the simulation of gamma/neutron
backgrounds in time of flight spectra, is beyond the capability of
the present simulation code, it is possible to provide estimates

Fig. 3. Detector-averaged spectrum, F ðyÞ (dots with error bars), and detector-

averaged resolution, RðyÞ (dashed line). The latter is normalized to the peak height

of F ðyÞ.

Fig. 4. Kinetic energy distribution, y2F ðyÞ (dots with error bars), and the same

quantity evaluated for the detector-averaged resolution, y2RðyÞ (dashed line). At

variance with Fig. 3, RðyÞ is normalized to unit area, following the sum rules.
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of the quality of the experimental F ðyÞ for reliable estimates of
/EKS that provide an uncertainty of the order of r10% on the
kinetic energy: (1) the counting statistics has to be characterized

by approximately 1% error at the centroid of F ðyÞ and of approxi-
mately 15% at 1/15 of the peak height, respectively; (2) given the

current resolution for protons, if the FWHM of F ðyÞ is a factor Z6

larger than the FWHM of RðyÞ, then the integration of y2F ðyÞ in

the range �20 Å
�1

ryr20 Å
�1

would provide a reliable estimate
of /EKS.

These results show that the non-parametric determination of
the mean kinetic energy, through direct integration applied
together with the convolution approximation of the experimental
resolution, can be used to derive /EKS of the proton, as well as
heavier elements, in condensed matter systems. It appears that
the sum rules applied to the detector-averaged neutron Compton
profile introduce a systematic underestimations of the order of
0.6% on the standard deviation, and 0.7% on the proton kinetic
energy, well within the typical experimental uncertainties. This
calculation can offer an additional data analysis tool for deep
inelastic neutron scattering experiments that, without resorting
to any bias induced by parametric data analysis, allows one to
derive the quantum zero-point kinetic energies.

4. Discussion and conclusions

Deep inelastic neutron scattering studies have undergone
remarkable improvements in the last five years, thanks to the
efforts in research and development on energy analysis and
devices, together with novel theoretical approaches allowing a
direct and quantitative comparison between theory and experi-
ment. These efforts have been focussed mainly on momentum
distribution and mean kinetic energy of the proton in hydrogen-
bonded systems, where the role of anharmonic inter-particle
effective potentials and anisotropic harmonic potentials can be
investigated in great details. The interest in non-parametric
methods of analysis of DINS data relies on the possibility of
accessing details of the proton local environment with recently
proposed quantities, such as the proton mean force [54], that are
derived from the experimental neutron Compton profiles, and are
sensitive to the anisotropic-harmonic or anharmonic character of
the proton motion along hydrogen bonds. The method described
here can be applied to isotropically averaged samples such as
liquids or polycrystalline materials, but can be further extended
to oriented and monocrystalline samples. The determination of
/EKS from the direct integration of the neutron Compton profile
introduces a systematic underestimate that is well below the
typical uncertainties of experiments. The proof of concept pro-
vided by the analysis of Monte Carlo simulated data demonstrates
that the mean kinetic energy can be reliably determined without
resorting to parametric fitting methods. The method applied to
simulated data does not however take into account the role of
noise, which is inevitably present in real experiment. It appears
therefore that a necessary prerequisite for the application of
the method presented here is the recording of experimental data
sets with high statistical quality, such as those currently possible
on Vesuvio, or with any future eV neutron spectrometer at next
generation spallation sources.
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