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a b s t r a c t

Inelastic neutron scattering at high momentum transfers, in the neutron Compton scattering regime,

provides an access to the neutron Compton profiles, the analogous of Compton profiles in X-ray

scattering. The line shape analysis of the neutron Compton profiles is usually carried out making use of

multiparametric nonlinear fitting, garnering detailed information about the momentum distribution of

the target atoms. This paper presents the proposal to directly determine numerically the momentum

distribution from the profiles, thus eliminating the possible instabilities present in multiparametric

fitting. A comparison with Monte Carlo simulations and with previous measurements on polycrystal-

line ice provides quantitative assessments of the proposed method.

& 2012 Elsevier B.V. All rights reserved.

1. Introduction

Since the early development of X-ray Compton scattering, the
realisation that the target atom in the systems necessarily con-
tains bound electrons, which cannot be stationary, led to the
interpretation that Compton scattered beams were Doppler
broadened due to the motion of the target electrons [1]. Du Mond
used the novel Fermi–Dirac distribution function to predict the
line shape for beryllium samples [2]. His results possibly consti-
tute the earliest direct evidence for the validity of the Fermi–Dirac
statistics for the electron gas. Thus, for target electrons possessing
a probability density distribution n(p), the Compton profile, JðpzÞ,
where z is the direction of the scattering vector, is the projection
of n(p) along the scattering vector:

JðpzÞ ¼

Z
px

Z
py

nðpx,py,pzÞ dpx dpy ð1:1Þ

In isotropic systems n(p) depends only on the magnitude of p, and
it can be shown that [3]

JðpzÞ ¼ 2p
Z 1
9y9

pnðpÞ dp ð1:2Þ

and hence that

nðpÞ ¼ �
1

2ppz

dJðpzÞ

dpz

����
pz ¼ p

ð1:3Þ

the latter expression for the momentum distribution in terms of
the derivative of the Compton profile is originally due to Du
Mond [2]. Inelastic neutron scattering at high wave vector and eV
energy transfers [4] provides access to the Deep Inelastic Neutron
Scattering (DINS), or neutron Compton Scattering (NCS), regime
[5,6]. Here the momentum distribution of atomic nuclei is probed,
with the scattering law being described within the same frame-
work (impulse approximation) as X-Ray Compton scattering [7]:
the energy, _o, and momentum, _q, transfers are related by

_o¼ ðpn�p0nÞ
2

2M
þ
ðpn�p0nÞ � p

M
ð1:4Þ

where M and p are the mass and the momentum of struck particle
before collision, whereas pn and p0n are the momenta of the
incident and scattered neutron (i.e. pn�p0n¼_q), respectively.
Rearranging in terms of the recoil energy of the struck nucleus:

_or ¼
_2q2

2M
ð1:5Þ

It is possible to define a scaling variable, first introduced by West
[8], that couples the two dynamic variables o and q and
represents the component of the atomic momentum along the
scattering vector (i.e. pz in the X-Ray formalism above):

y¼
M

_2q
ð_o�_orÞ ¼ q̂ � p ð1:6Þ
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The momentum distribution-broadened recoil profile is therefore
referred to as Neutron Compton Profile [6]. In real experimental
situations the wave vector transfer is finite: for example, on the
Vesuvio spectrometer at ISIS, qZ25 Å

�1
. Therefore deviations

from the impulsive approximations occur, generally referred to
as Final State Effects (FSE) [3]. FSE are due to the localisation of
the struck atom in its final state, by surrounding atoms. The
overall effect is a broadening of the observed J(y), which is similar
to that introduced by an instrumental resolution effect. When FSE
are present, the Neutron Compton Profile becomes q dependent, i.e.
J(y) needs to be replaced by Jðy,qÞ for isotropic systems. Repre-
senting the FSE as a series in powers of 1/q, one finds for the
isotropic case according to Sears [3]

Jðy,qÞ ¼ JðyÞ�
A3

q

d3

dy3
JðyÞþ

A4

q2

d4

dy4
JðyÞþ � � � ð1:7Þ

where the coefficients An are related to the interatomic poten-
tial [3]. The measurements on a variety of systems show that FSE
are effectively well described by a power series of q, and are a few
percent of intensity as compared to the intrinsic neutron Comp-
ton profile [9]. The second broadening term of the neutron
Compton profile is the instrumental resolution, Rlðy,qÞ, which
depends on y,q at a particular scattering angle l. For proton
momentum distribution studies on VESUVIO, the FWHM of the
experimental Compton profiles is a factor Z 6 larger than the
FWHM of the resolution line shape. These two broadening terms
are therefore a minor contribution to the observed profiles, with
the resolution width of increasing magnitude as the recoiling
mass increases [9,10]. Thus, the profile measured at a particular
scattering angle l is

Flðy,qÞ ¼ ½JðyÞþDJlðy,qÞ� � Rlðy,qÞ ð1:8Þ

DJlðy,qÞ are the q-dependent deviations from the impulse approx-
imation. This expression is adopted to represent DINS spectra
using both direct-geometry chopper spectrometers [11–17], as
well as for inverse geometry instruments such as VESUVIO
[5,9,18,19]. The DINS data analysis is generally carried out using
parametric methods, such as nonlinear fitting of the Flðy,qÞ, using
model functions for J(y). The most relevant model functions used
are the Gauss–Hermite expansion, or the multivariate Gaussian;
the former representing a model-independent method and the
latter representing anisotropic harmonic motions, such as a light
particle confined in harmonic potentials, e.g. the proton in ice Ih
[5,20]. The nonlinear fitting is applied to the set of fixed angle
experimental Compton profiles, in order to minimise the follow-
ing chi-square:

w2 ¼SlSi
ðFth

l ðyi,qiÞ�Flðyi,qiÞÞ
2

E2
l,i

ð1:9Þ

where the model function is Fth
l ðyi,qiÞ ¼ ½JðyiÞþDJlðyi,qiÞ� � Rlðyi,qiÞ.

Here the index l represents the detector index, the index i

represents the y value at the i-th bin, and E2
l,i is the experimental

uncertainty for each data point. The fit generally includes a large
number of parameters: those relative to the intrinsic profile J(y),
such as the standard deviation, non-Gaussian terms, those
describing the final state effect terms (An), as well as centroids
shifts and normalisation constants for each of the Flðy,qÞ, for a
total number of parameters approaching 100.

In order to complement and provide a more direct access to
the full line shape of the underlying momentum distribution, in
recent years, non-parametric methods have been proposed and
applied for the analysis of the neutron Compton profiles: (1) a
direct extraction of the variance of the momentum distribution
through numerical integration of the detector-averaged Compton
profiles, F ðyÞ ¼

Pn
l ¼ 1 Flðy,qÞð1=nÞ, where n is the total number of

detectors [17,20–22]; (2) determination of the mean force,
f ðxÞ ¼ ð�log nðxÞÞ0�Mx=b_2, where n(x) is the spherical end-to-
end distribution, i.e. the Fourier transform of n(p), while the
second term is the free particle contribution which is independent
of the environment [23]. f(x) was derived from the experimental
detector-averaged JðyÞ data obtained after correcting the detector-
averaged NCP data (simple average without error weighting) F ðyÞ,
for Final State Effects DJðy,qÞ. The corresponding expression is [20]

f ðxÞ ¼�
Mx

b_2
þ

R1
0 dy y sinðxy=_ÞJðyÞ

_
R1

0 dy cosðxy=_ÞJðyÞ
ð1:10Þ

This analysis was used in Ref. [20] to complement the standard
nonlinear fitting analysis, Eq. (1.9), providing further confirmation
that indicating that the quantum state of the proton in ice is well
represented by a quasi-harmonic anisotropic motion.

In this work we propose and assess the direct determination of
the momentum distribution from the application of Eq. (1.3) to
the experimental Compton profile, F ðyÞ, obtaining

nnðpÞ ¼�
1

2py

dF ðyÞ

dy

�����
y ¼ p

ð1:11Þ

i.e. neglecting the effect of resolution and FSE broadening. The use
of Eq. (1.11) can be introduced by considering the properties of
the derivative of a convolution [24]:

dFlðy,qÞ

dy
¼

d½JðyÞþDJlðy,qÞ�

dy
� Rlðy,qÞ ð1:12Þ

The subsequent application of the distribution properties of the
convolution then allows us to extend the derivative to F ðyÞ:

dF ðyÞ

dy
¼

d ½ JðyÞþDJðyÞ�

dy
� RðyÞ ð1:13Þ

2. Proof of concept and application to experimental neutron
Compton profiles

The differences between the ‘‘true’’ nnðpÞ and the ‘‘true’’ n(p)
are the resolution broadening and the derivative of the (resolu-
tion-broadened) FSE term. Recent developments on detector
technologies and energy selection methods have allowed us to
optimise and reduce the resolution broadening to approximately
13% FWHM of the Compton profile, for proton momentum
distribution studies [10,25–27]. The FSE are of the order of 1=q

or smaller, therefore the modulation due to FSE in the signal is of
the order of less than 3% for the typical wave vectors values
accessed on VESUVIO [9]. In order to assess the extent to which
nnðpÞ can be considered as a reliable determination of n(p), we
have first carried out a proof of concept, analysing the data to
extract nnðpÞ from a DINS Monte Carlo simulation of known values
of n(p), FSE, and resolution. We then apply the method to a real
experiment, extracting the proton’s nnðpÞ for a polycrystalline ice
Ih at 271 K, whose analysis in terms of parametric fitting was
presented in Ref. [20], and compare the two determinations.

The simulation consists of a set of Monte Carlo simulated
experimental Compton profiles for a proton-containing system.
The DINSMS code [28] incorporates the resolution in a virtually
exact manner, tracking and weighting individual neutron his-
tories by probability distribution function for the geometrical
uncertainties, emission time from the moderator, energy analyser
transfer function, and other parameters. Applying the method to
such synthetic data is a self-consistent test providing a proof of
concept. The sample was monoatomic hydrogen with isotropic
Gaussian momentum distribution with standard deviation
sMC ¼ 4:70 Å

�1
. Final state effects were also included assuming

an isotropic harmonic proton effective potential with mean
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frequency _o ¼ 275 meV, including terms up to 1=q2 (see Eq. (1.7)).
Standard data reduction [5] was carried out on these data to obtain
Flðy,qÞ,Rlðy,qÞ and F ðyÞ,RðyÞ. Eq. (1.11) was then applied to F ðyÞ using
a three-point numerical derivative and the results are reported in
Fig. 1. From this figure it appears that the low momentum region of
nnðpÞ shows scattered intensities, up to approximately 3 Å�1. This
feature is due to the presence of FSE in the simulation, which
introduce a slight asymmetry in F ðyÞ, causing an effective shift to
negative y, that is amplified when the derivative is calculated near the
origin, nnðpC0Þ ¼�ð1=2pyÞðdF ðyÞ=dyÞ9yC0. This is however reassur-
ing that the simulation captures this feature, typically present in the
experimental spectra. On the other hand, data above 3 Å�1 are
considerably smooth and provide an accurate detail of the line shape.
Moreover, the agreement between nnðpÞ and n(p) is remarkable, as
shown by their difference, which is always below 0.2 �10�4. This
behaviour reflects the shape of the FSE component, decaying rapidly
above 5 Å�1 (about one standard deviation). The resolution compo-
nent is again very narrow and shows a rapid decay above 2 Å�1.
These findings imply that nnðpÞ is an accurate representation of the
‘‘true’’ momentum distribution at intermediate and high momenta,
where the non-Gaussian (anharmonic and/or anisotropic) character of
the momentum distribution in molecular and quantum systems is
more prominent [5,23].

To test these hypotheses on more realistic grounds, we have
carried out an analogous derivation of nnðpÞ for the water’s proton
in polycrystalline ice at 271 K, from the DINS experiment of
Flammini et al. [20]. The momentum distribution, n(p), for this
sample has been derived using parametric fitting methods, as
well as numerical evaluation of the variance and of the proton
mean force. Similar to the previous case, a three point numerical
derivative was carried out for F ðyÞ and the results are reported in
Fig. 2.

The method, applied to an experimental data set, shows the
principal features already reported in the simulation that was
used as a proof of concept: the larger noise present at low
momenta, and subsequent substantial agreement between nnðpÞ

and n(p) above 3 Å�1. This demonstrates that nnðpÞ can provide a
determination of the underlying momentum distribution to a
good degree, without resorting to multiparametric fitting. Theo-
retical models of momentum distributions can be then directly
compared to nnðpÞ, without going through the intermediate steps
of fitting. The quantitative estimates of the degree of accuracy
required for the optimised determination of nnðpÞ are out of the
scope for the present study, but can be enumerated as follows:
(1) optimisation of the numerical derivative with more refined
techniques (five point derivatives, filtering, etc.), in order to
reduce the noise; (2) optimised weighting of the contributions
arising from positive and negative y, which have intrinsically
different noise and uncertainties [20]; and (3) subtraction of the
FSE-dependent modulation before or after the determination of
nnðpÞ. In particular, these would improve the determination of the
standard deviation, s, of the momentum distribution, which is
directly related to the proton zero-point mean kinetic energy. In
the present case, numerical integration of the second moment of
the radial momentum distributions obtained from nnðpÞ gives the
following results: (1) for the simulated data sn ¼ 4:770:2 Å

�1
, to

be compared with the input value sMC ¼ 4:70 Å
�1

; (2) for the
experimental data sn ¼ 5:171:4 Å

�1
, to be compared with the

values obtained from the line shape analysis in Ref. [20],
s¼4:9970:03 Å

�1
, and from the numerical integration of Comp-

ton profiles, s¼5:270:3 Å
�1

[20]. It therefore appears that, at
present, the best non-parametric determination of the kinetic
energies can be carried out using the integration of neutron
Compton profiles [21], while the determination of nnðpÞ allows
the non-parametric determination of the line shapes of the
momentum distributions.
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Fig. 1. Direct numerical determination of the momentum distribution, nnðpÞ from

the DINSMS Monte Carlo simulation (points with error bars); input momentum

distribution of the simulation, n(p), representing the target momentum distribu-

tion to be reconstructed, continuous line; resolution in momentum space, dashes

line; contribution arising from the FSE terms, dotted line. The lower panel reports

the difference between nnðpÞ and the ‘‘true’’ n(p). The inset reports F ðyÞ (points

with error bars) and RðyÞ (dashed line).

.
.

.

...

..
...
.............................................................................

....
.
...

....................................................................
.......
.....
....
....
.....
..........................................................................................................

Fig. 2. Direct numerical determination of the proton momentum distribution,

nnðpÞ, for polycrystalline ice at 271 K (points with error bars); momentum

distribution derived by Flammini et al. [20], n(p), continuous line. The lower

panel reports the difference between nnðpÞ and n(p). The inset reports F ðyÞ (points

with error bars) and RðyÞ (dashed line).
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3. Discussion and conclusions

The work presented here is part of a series of approaches for
data analysis and interpretation proposed recently to enhance
and strengthen the scope of eV neutron scattering for the
determination of atomic momentum distributions [20–23,29].
The direct numerical determination of the momentum distribu-
tion can be used to unambiguously identify nuclear quantum
effects, the chemical environment, and the anisotropic-harmonic
or anharmonic character of atomic motions in condensed sys-
tems. Powerful theoretical schemes are currently underway to
provide quantitative comparison with first-principles atomistic
modeling [30,31], and efforts for the advances in analysis and
interpretation of experiments play a fundamental role for both
reliable testing of atomistic modeling, and more importantly, to
provide experimental results that stimulate further theoretical
investigations. The method proposed here is intended to be part
of a set of non-parametric determinations of the momentum
distributions [20–23] that can be used synergistically with the
parametric fitting analysis, broadening the capabilities of the
deep inelastic neutron scattering technique. Moreover, the direct
numerical determination of nnðpÞ can be applied to the recent
studies of heavier mass systems, such as lithium and oxygen
[31,32], that aim at assessing the magnitude of nuclear quantum
fluctuations in any condensed matter system.
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