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SUMMARY

Members of the SH2 domain family modulate signal
transduction by binding to short peptides containing
phosphorylated tyrosines. Each domain displays
a distinct preference for the sequence context of
the phosphorylated residue. We have developed
a high-density peptide chip technology that allows
for probing of the affinity of most SH2 domains for
a large fraction of the entire complement of tyrosine
phosphopeptides in the human proteome. Using
this technique, we have experimentally identified
thousands of putative SH2-peptide interactions for
more than 70 different SH2 domains. By integrating
this rich data set with orthogonal context-specific
information, we have assembled an SH2-mediated
probabilistic interaction network, which we make
available as a community resource in the PepspotDB
database. A predicted dynamic interaction between
the SH2 domains of the tyrosine phosphatase SHP2
and the phosphorylated tyrosine in the extracellular
signal-regulated kinase activation loopwas validated
by experiments in living cells.

INTRODUCTION

Posttranslational modifications (PTMs) and modular protein
domains underlie dynamic protein interaction networks and
represent one of the key organizing principles in cellular
systems (Pawson, 2004). In particular, kinases modulate cell
response to growth signals by adding phosphate groups to
short linear sequence motifs in their substrates. These phos-

phorylated residues in turn serve as docking sites for proteins
containing phospho-binding modules such as the SH2, PTB,
and BRCT domains (Yaffe, 2002). The SH2 domain family
includes a total of 120 domains in 110 proteins and, as such,
represents the largest class of tyrosine phosphopeptide recog-
nition domains (Liu et al., 2006). The peptide recognition prefer-
ence of each member of this large domain family has been the
subject of a number of studies with genome-wide perspectives.
The pioneering work of Cantley’s group exploited oriented
peptide libraries to characterize the preference for specific resi-
dues in the positions flanking the phosphorylated tyrosine in the
targets of 14 SH2 domains (Songyang et al., 1993). Machida
and collaborators used a far-western approach and a new
strategy termed ‘‘reverse-phase protein array’’ to profile nearly
the full complement of the SH2 domain family (Machida et al.,
2007). This strategy allowed for the classification of SH2
domains according to their ability to bind classes of phosphor-
ylated proteins, but lacked sufficient resolution to precisely
define recognition specificity and to permit the identification
of the targets of each SH2-containing protein. Another
approach exploited OPAL, a variant of the oriented peptide
library approach, to derive position-specific scoring matrices
for 76 of the 120 human SH2 domains (Huang et al., 2008).
Finally, the full complement of human SH2 domains was ar-
rayed on glass chips and probed with a collection of phospho-
tyrosine peptides from the ErbB receptor family (Jones et al.,
2006). This latter strategy offers the advantages of directly ad-
dressing the interactions with specific phosphopeptides from
the human proteome and of being amenable to quantitative
analysis. However, the throughput of its present implementa-
tion does not permit screening of the entire human phospho-
proteome. These approaches have represented a considerable
advancement in our understanding of the recognition specificity
within this domain family, and together they have contributed to

Cell Reports 3, 1–13, April 25, 2013 ª2013 The Authors 1

Please cite this article in press as: Tinti et al., The SH2 Domain Interaction Landscape, Cell Reports (2013), http://dx.doi.org/10.1016/j.cel-
rep.2013.03.001



the characterization of approximately two-thirds of the SH2
domains.

We have addressed the problem from a different angle by
developing and exploiting a new technology that permits us to
probe the recognition specificity of each phosphotyrosine
binding domain on a high-density peptide chip containing nearly
the full complement of tyrosine phosphopeptides in the human
proteome. In addition, we integrate these in vitro experimental
data with orthogonal genome-wide data sets to propose an
SH2-mediated probabilistic interaction network that takes into
account both in vitro affinity data and in vivo contextual
evidence. Finally, we have captured from the published literature
more than 800 pieces of experimental evidence pertaining to
SH2 recognition specificity, and we have used this information
as a gold standard to benchmark our predictors.

Our strategy combines harnessing the strengths of a powerful
experimental assay and integrating its quantitative output with
a wide range of orthogonal genome-wide context information.
The raw experimental data and the probabilistic network can
be accessed and explored in the context of the SH2 domain
interaction curated from the literature in a new publicly available
resource, the Pepspot database (PepspotDB; http://mint.bio.
uniroma2.it/PepspotDB/home.seam).

RESULTS AND DISCUSSION

Phosphotyrosine Peptide Chips: A Nearly Complete
Complement of the Human Phosphotyrosine Proteome
The SPOT synthesis approach (Frank, 1992) is based on the
ability to synthesize a few thousand oligopeptides in an ordered
array on a cellulose membrane. This approach has been used
extensively to study protein interactions when one of the part-
ners can be represented as a short unconstrained peptide. For
this project, we have moved forward the approach by increasing
by approximately one order of magnitude the number of
peptides that can be tested in a single experiment (Figure 1).
This is based on the ability to (1) synthesize several thousands
of peptides by spatially addressed SPOT synthesis, (2) punch-
press the peptide spots into wells of microtiter plates, (3) release
peptides from the resulting cellulose discs, and (4) print them
onto aldehyde-modified glass surfaces, which results in high-
density peptide chips displaying the probes in three identical
replicates.

The tyrosine phosphopeptide chip (pTyr-chip) used in this
work was initially designed to represent most of the phospho-
proteome known when this project started. At that time, the
Phospho.ELM (Diella et al., 2008) and PhosphoSite (Hornbeck
et al., 2004) databases contained 2,198 tyrosine phosphopep-
tides. This collection of experimentally determined phospho-
peptides was completed with approximately 4,000 additional
peptides having a high probability of being phosphorylated ac-
cording to the NetPhos predictor (Blom et al., 1999). Overall,
6,202 phosphopeptides, 13 residues long with the tyrosine
phosphopeptide in the middle position, were printed in tripli-
cate with the appropriate controls (Table S1). Each pTyr-chip
can be used to profile the recognition specificity of a phospho-
tyrosine binding domain fused to a tag and revealed with an
anti-tag fluorescent antibody.

Profiling the Recognition Specificity of the SH2 Domain
Family
The pTyr-chips were used to profile a collection of 99 human
SH2 domains fused to glutathione S-transferase (GST) (Table
S2) (Machida et al., 2007). Experimental reproducibility ranged
from 0.7 to 0.99 Pearson’s correlation coefficient (PCC), with
most results being well over 0.95, when two replica arrays are
compared (intrachip reproducibility), and of approximately 0.95
in two independent experiments carried out with two different
preparations of the same domain (interchip reproducibility) (see
Figure S1; Table S3).
Among the 99 domains in the collection, 26 did not express as

a soluble product and 3 gave a poor signal in the peptide chip
assay. Only experiments with replica arrays having a PCC higher
than 0.7 were considered for further analysis. Overall, 70
domains gave a satisfactory result by this approach. The speci-
ficity of 15 of them had, to our knowledge, never been described
before.
The sequences of the peptides whose binding signal ex-

ceeded the average signal by more than two SDs (Z score > 2)
were aligned and used to draw sequence logos illustrating the
preferred binding motif of each domain (Figure 2).
Differently from what has been recently described for PDZ,

SH3, and WW domains (Gfeller et al., 2011), we could not
find evidence for multiple specificities for any of the character-
ized SH2 domains. The results of the profiling experiments
were used to cluster the domains according to their preference
for phosphotyrosine sequence context (Figure 3A). Based on
the resulting tree, we arbitrarily define 17 specificity classes
characterized by representative amino acid sequence logos
(Figure 3B). In Figure 3C, we have drawn a second tree where
SH2 domains are clustered according to homology in their
primary sequence. Specificity class membership is illustrated
by background colors matching the colors in Figure 3A.
Although closely related domains tend to be members of the
same class, the correlation between sequence homology
over the whole domain and peptide recognition specificity is
overall poor (PCC = 0.30; Figure S2). This is consistent with
the results of Machida and collaborators (Machida et al.,
2007), who failed to identify a correlation between domain
sequence and band patterns in far-western type experiments.
Attempts to identify diagnostic residues that would help assign
uncharacterized domains to specificity classes using MultiHar-
mony software (Brandt et al., 2010) have not been successful.
The finding that little divergence in sequence homology can
account for relatively large changes in binding specificity is
consistent with the reported observations that a few amino
acid changes are sufficient to induce a specificity shift in
peptide recognition modules such as SH2, SH3, and PDZ
(Ernst et al., 2009; Marengere et al., 1994; Panni et al., 2002)
and has implications for the interpretation of the observed
rapid evolution of protein interaction networks (Kiemer and Ce-
sareni, 2007).
Liu and collaborators have proposed that nonpermissive

amino acid residues that oppose binding could play a role
in shaping SH2 domain recognition specificity (Liu et al.,
2010). We have confirmed that some SH2 ligands dislike
specific residues at specific positions (Figure S3). However,
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our comprehensive analysis failed to confirm that negative
selection could play a prominent role in modulating pep-
tide recognition specificity within the defined specificity
classes.

ANN Predictors of SH2 Binding
The pTyr-chip used in this work was initially designed to contain
most of the human phosphotyrosine peptides that were known
at the start of this project. However, recent developments in

Figure 1. Schematic Illustration of the Strategy Used to Draw an SH2-Mediated Protein Interaction Network
See also Figure S1 and Table S1.
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(legend on next page)
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mass spectrometry-based technology have caused an explo-
sion of information, and the collection of phosphorylated
peptides contained in databases (Diella et al., 2008; Hornbeck
et al., 2004) now significantly exceeds the number of experimen-
tally verified peptides represented in our array. Thus, in order to
be able to offer a resource that could reliably infer the SH2
ligands of any recently discovered phosphopeptide, we devel-
oped artificial neural network (ANN) predictors (NetSH2) for
each of the 70 profiled SH2 domains (see Experimental
Procedures).
To utilize all the information from pTyr-chips, the peptide

sequences and normalized log-ratio intensities were used as
input for the ANN. In this way, we trained the ANNs to predict
if a given peptide is a weak or strong binder of a specific SH2
domain. In total, 70 predictors were trained with an average
PCC of 0.4 (Figure 4). These predictors have been integrated in
the Netphorest community resource (Miller et al., 2008).

Benchmarking the SH2 ANN Predictors
An independent large-scale effort has investigated the substrate
specificities of SH2 domains using oriented peptide libraries
(Huang et al., 2008). The results are available in a resource,
termed SMALI (scoring matrix-assisted ligand identification),
which uses position-specific scoring matrices (PSSMs) to
predict ligands of 76 different SH2 domains. The main difference
between PSSMs and ANNs is that the latter can capture
nonlinear correlations between residues. In order to compare
the performance of SMALI to the ANN developed here, we
compiled an independent benchmark data set of the known
in vivo ligands of SH2 domains. For this purpose, the information
from the MINT database was supplemented with new interac-
tions captured by an extensive search and curation of published
information (see Experimental Procedures). The integrated
interaction list (see Table S4 and Figure S4) was used as the
‘‘positive’’ benchmarking data set, while the ‘‘negative’’ data
set consisted of phosphotyrosine peptides from the Phos-
pho.ELM database (Diella et al., 2008) that had not been shown
to bind any SH2 domain. After discarding benchmark peptides
that were more than 90% identical to the ANN training data
(see Experimental Procedures), we evaluated the performance
of each predictor based on their receiver operating characteristic
(ROC) curves, which show sensitivity as function of false-positive
rate. We summarized each curve in a single number, the area
under the receiver operating characteristic curve (AROC), which
is a convenient performance measure because it does not
depend on defining a threshold to separate positive predictions
from negative ones. Provided that at least eight positive exam-
ples were left, we were able to benchmark 13 ANN and SMALI
predictors with an average AROC of 0.81 and 0.74, respectively
(Figure 4B). Since random performance corresponds to an
AROC of 0.5, both methods perform well in predicting in vivo
ligands of SH2 domains, even though the data used to develop
the methods were based on in vitro screens. However, NetSH2

has a competitive advantage because it is based on a larger
experimental data set and exploits a higher-order machine
learning, which in part can capture the complexity in the interac-
tion motifs that guide SH2-ligand binding.

Functional Prediction by Integration of Contextual
Information
While the ANN predictors of NetSH2 accurately capture and
model the actual binding site in a narrow sequence window,
they do not take into consideration evidence of the functional
relevance of the inferred SH2-mediated complex in a physiolog-
ical context. Thus, we integrated an additional prediction layer to
accommodate functional information (Linding et al., 2007). To
this end, we developed a ‘‘functional’’ confidence score that
was obtained by integrating, by a naive Bayes approach,
different contextual evidence. The contextual features that
were considered included (1) cellular colocalization, (2) tissue
coexpression, (3) predicted order/disorder, (4) degree of conser-
vation of the sequence of the peptide target in related species,
and (5) graph distance between the supposedly interacting
proteins in the human interactome. All of the considered features
contributed to a different extent to the performance of the
predictor (see Figure S5). The efficiency of the Bayesian predic-
tors, as compared with the ANN predictor, was evaluated by
drawing ROC curves and by calculating the AROC. Although
this analysis is statistically meaningful only for the few SH2
domains for which the ‘‘gold standard’’ of bona fide in vivo inter-
actors is sufficiently large, we can conclude that, in general, the
Bayesian predictor performs better than or equally as well as the
experimental score. The results of this analysis for two different
domains are displayed in Figures 4C and 4D. In the case of
PIK3R1 and GRB2, the Bayesian predictors clearly outperform
the ‘‘experimental’’ predictors (p values of 0.0006 and 0.1,
respectively). Bayesian functional scores were calculated for all
possible SH2 domain-phosphopeptide pairs; a total of 955,010
scores were stored in PepspotDB, along with the information
that was used to calculate the score.

PepspotDB: A Database for the Storage and Analysis of
Experiments based on Peptide Chip Technology
The SH2 interactome project yielded a large number of experi-
mental and computationally derived data points. To cope with
the associated data management challenge and facilitate the
fruition of the data and the integration with published information
in a single integrated resource,wehavedeveloped a newpublicly
accessible database, PepspotDB (http://mint.bio.uniroma2.it/
PepspotDB/home.seam) (see also Figure S6; Table S6).
PepspotDB contains four main data types: (1) raw and pro-

cessed experimental data points; (2) neural network predictions;
(3) literature curated interactions; and (4) Bayesian context
scores. In addition, PepspotDB is tightly integrated with the
protein-protein interaction database MINT (Licata et al., 2012).
All the neural network binding predictions on a set of !13,600

Figure 2. Sequence Logos Representing the Recognition Specificity of the SH2 Domain Family
For each SH2 domain, the peptides whose binding signal was higher than the average signal plus 2 SDs were aligned on the phosphorylated tyrosine. These

peptides were used to draw the peptide logos by a logo drawing tool implemented in PepspotDB (see Extended Results in Supplemental Information). Domain

logos of the same specificity class are framed in identical colors. The logo total information content is also indicated in each frame. See also Table S2.
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Figure 3. Classification of SH2 Domain Specificity
(A) To draw the recognition specificity tree, we computed the amino acid frequency at each of the13 positions of the SH2 binding peptides to compile a 73 (SH2

domains)3 240 (12 positions3 20 amino acids) matrix describing the domain specificity as amino acid frequencies at each of the 12 positions. We excluded from

the analysis the peptide position corresponding to the invariant phosphotyrosine. This matrix was used as input for EPCLUST (http://www.bioinf.ebc.ee/EP/EP/

EPCLUST/) to cluster the domains by using the algorithm ‘‘linear coefficient based distance, Pearson centered.’’ We next chose an arbitrary branch depth to

identify the 17 specificity classes highlighted with different colors in the figure.

(legend continued on next page)
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phosphopeptides retrieved from the PhosphoSite (Hornbeck
et al., 2004) and Phospho.ELM databases (Diella et al., 2008)
are also stored in the PepspotDB. Among the nearly one million
possible combinations of the 70 SH2-containing proteins and
13,600 phosphorylated tyrosine peptides, some 10,580 interac-
tions are supported by some signal observed in the peptide chip
experiment and 49,175 are computationally predicted by the
neural network algorithm, the overlap being 4,207 interactions.
This latter set of domain-peptide interactions with both experi-
mental and computational support is enriched in interactions
confirmed by published experiments (p value < 1.11$10"16 by
the hypergeometric test) and can thus be deemed high
confidence.
PepspotDB comes with a rich web application providing

a user-friendly interface for easy information retrieval. The infor-

mation provided with each retrieved interaction includes exper-
imental, computational and contextual evidence supporting the
interaction, cross-references to MINT records describing an
interaction between the domain-containing protein and the
peptide-containing protein, and links to published articles re-
porting the currently displayed domain-peptide interaction.
Query results can be downloaded in text format for further anal-
ysis. See Extended Results for a more detailed description of the
database and a guide to its use.

Experimental Validation by Phosphopeptide Pull-Down
In order to validate the prediction based on peptide chip exper-
iments, we used 57 synthetic phosphopeptides linked to
magnetic beads to affinity-purify ligand proteins from extracts
of HeLa cells stimulated with epidermal growth factor (EGF).

(B) Amino acid logos for one representative domain for each specificity class.

(C) The SH2 domain sequenceswere alignedwith the ClustalW algorithm (4) and the homology tree was drawnwith the FigTree program (http://tree.bio.ed.ac.uk/

software/figtree1). Each domain name is highlighted with a background color corresponding to the specificity class in (A).

See also Table S3.

Figure 4. Benchmarking NetSH2 Predictors
(A) Distribution of the PCCs of the 70 NetSH2 predictors.

(B) Comparison of the AROC of 13 pairs of predictors tested against a literature-curated data set. Green bars represent the AROC of the SMALI PSSMpredictors,

while yellow bars are the AROC of the NetSH2 predictors presented here. *p < 0.05 (see Experimental Procedures).

(C and D) ROC curve obtained by plotting true positives versus false positives at a varying experimental (blue) or Bayesian (red) score using as a gold standard

a set of experimentally validated interactions extracted from the literature. The number of the gold standard interactions for PI3K and GRB2 were 31 and 24,

respectively.

See also Figure S4 and Table S4.
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To increase the statistical significance of the analysis, we inte-
grated already published data (25 phosphopeptide baits)
(Schulze et al., 2005) with new experiments (32 phosphopeptide
baits). This bait collection contains a large fraction of peptides
(Table S5) that are phosphorylated on tyrosines upon stimulation
of receptor kinases of the EGF receptor family. Affinity-purified
proteins were identified by liquid chromatography coupled to
high-resolution mass spectrometry. The recovered proteins
mostly contain SH2 domains, with a few exceptions. Overall,
these pull-down experiments define a network of 47 proteins
linked by 85 interactions (Figure 5A). Unlike ‘‘traditional’’ protein
interaction graphs, many proteins in this graph are represented
as covalently linked nodes, where each node is an independent
binding domain (Santonico et al., 2005). This representation is

Figure 5. Comparison between Experimen-
tally Verified and Predicted Interactions
(A) The graph represents all of the interactions

detected by pull-down experiments. Proteins are

labeled with their gene names. SH2-containing

proteins are represented as yellow circles, while

proteins containing target phosphopeptides are in

green. Proteins containing multiple SH2 target

sites are represented as covalently linked multiple

nodes labeled with the coordinates of the phos-

phorylated tyrosines. Interactions that are also

supported by the neural network predictors (Z

score > 2) are drawn in red.

(B) ROC curve obtained by plotting true positives

and false positives at varying neural network

score. The red curve is obtained by using a ranked

list limited to predictions of interactions with SH2

domains that have been identified in HeLa cells.

See also Figures S4, S5, and Tables S4, S5,

and S6.

made possible by the resolution of the
interaction information obtained by this
approach and allows us to distinguish
whether the interactions engaged by a
highly connected protein are mutually
exclusive or rather involve different bind-
ing regions and are mutually compatible.

Only 45 of the 125 SH2-containing
proteins have ever been identified by
liquid chromatography mass spectrom-
etry (LC-MS) experiments in HeLa cells
(Blagoev et al., 2004; Wi!sniewski et al.,
2009) (Table S6). For 28 of these we had
an SH2 specific neural network predictor
that could be used to rank the SH2
domains according to their preference
for the phosphopeptide baits. Approxi-
mately 33% of the interactions deter-
mined experimentally were ranked high
by the predictors developed in this work,
Z score higher than 2 (red edges in the
graph in Figure 5A). To measure the
performance of our predictors by a more

general approach, we plotted an ROC curve using the experi-
mentally derived SH2 containing proteins as positive instances
and the remaining as negative ones. The AROC was 0.81 with
a precision (true/false positives) of approximately 0.11 at a recall
of 50% (Figure 3B). However, there are a number of reasons why
the performance of our predictors is underestimated by this
analysis. First, some of the interactions that are predicted by
the neural network might have been missed by the affinity purifi-
cation experiment because of the low abundance of the corre-
sponding SH2 protein partners. In addition, some of the proteins
may bind to the bead-linked phosphopeptide by a domain that is
different from SH2. For instance, the protein SHC1 has a second
domain (PTB) that binds phosphopeptides containing theNPxpY
motif. Indeed, more than 50% of the phosphopeptides that
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affinity purified SHC1 contain this or related motifs. Finally, some
of the interactions detected by pull-down could be indirect. For
instance, SHC1 and GRB2 form a relatively stable complex
upon EGF induction. The SH2 domain of GRB2 binds peptides
containing a typical pYxN motif. The observation that SHC1
was detected in most of the pull-downs obtained with peptides

containing the pYxN GRB2 motif, despite having a different
recognition specificity, suggests that SHC1 binds this phospho-
peptide bead via a GRB2 bridge. Conversely, a SHC1 bridge
could explain the indirect binding of GRB2 to peptides contain-
ing an NPxpY motif. These considerations explain the relatively
poor performance of our SHC1 (and to a lesser extent GRB2)
SH2 domain predictor.

The EGF Dynamic Network
Protein interaction networks are typically pictured as static
graphs lacking a time dimension. However, most biological
processes are dynamic, and protein concentrations and modi-
fications change in time in response to external or internal
molecular cues. For instance, after addition of growth factors
such as EGF, the signal is propagated from the receptor on
the membrane to the nucleus via a cascade of modifications
(mostly additions and removal of phosphate groups), which in
turn promote the association and dissociation of enzymes
and adaptors containing phosphopeptide binding domains.
Olsen and colleagues (Olsen et al., 2006) have reported the
global in vivo phosphorylation dynamics following activation
of the EGF receptor in HeLa cells. Overall, they have identified
6,600 phosphorylation sites on 2,244 proteins containing at
least one phosphorylated Ser, Thr, or Tyr. Of the 293 phospho-
tyrosine peptides identified on 243 proteins, 53 dynamically
change their phosphorylation state after incubation with EGF.
We have combined this dynamic data set with our proteome-
wide prediction of the SH2 target sites to come up with
a description of the dynamic association and dissociation of
proteins following the activation of the tyrosine kinase signaling
cascade.
To this end, we downloaded from the HomoMINT database

(Chatr-Aryamontri et al., 2007; Persico et al., 2005) all of the inter-
actions where one of the partners is a protein participating in the
EGF pathway according to the Reactome database (Vastrik
et al., 2007). Only interactions with a MINT confidence score
(Chatr-Aryamontri et al., 2008) higher than 0.4 were considered.
This network represents the basal static interactions in the cell.
We next downloaded from PepspotDB all the interactions
between SH2-domain-containing proteins and the tyrosine-con-
taining peptides whose phosphorylation varies with time after
EGF stimulation. Interactions with a ‘‘final posterior probability’’
higher than 0.3, according to the Bayesian model developed
here, were taken into consideration. This inferred dynamic
network was superimposed onto the static literature-derived
network. For network legibility, all of the proteins linked to the
network by a single edge were removed. The predicted changes
occurring in the dynamic interactome are illustrated in Figure 6A,
where the proteins containing SH2 domains are in orange and
the interactions mediated by peptides whose phosphorylation
levels change after EGF stimulation are in red. Five minutes after
receptor stimulation, several EGF receptor peptides are phos-
phorylated and act as receptors for SH2-containing proteins.
Many of these interactions are predicted to vanish at time
20min while new ones, mediated by peptides that are phosphor-
ylated late, appear. Some of the inferred interactions, such as the
ones between the receptor and GRB2, SHC1, PLCG, or PI3K,
already have plenty of support in the literature. Some others

Figure 6. Dynamic EGF Network
(A) The four time-resolved graphs combine the information about (1) the kinetic

of tyrosine peptide phosphorylation following incubationwith EGF (Olsen et al.,

2006), (2) protein-protein interaction data mined from the literature, and (3) the

prediction of SH2 phosphopeptide interactions. Edges representing dynamic

interactions mediated by SH2 domains are in red, while orange and green

circles represent proteins containing or not containing SH2 domains,

respectively.

(B) GST fusions of three different SH2 domains (PI3K, GRB14, and SHP2) were

used in pull-down experiments after incubation of 500 mg of a HeLa cell extract

preincubated for 5 min with EGF. Affinity-purified proteins were analyzed by

SDS-PAGE and, after staining with Coomassie blue, transferred to mem-

branes and revealed with anti-phospho-ERK antibodies.

(C) After 16 hr starvation (time 0), HeLa cells were induced with EGF for 5, 10,

and 30 min. Protein extracts were incubated with the tandem SH2 domains of

SHP2 expressed as a GST-fusion protein. The affinity-purified SH2 ligands

were resolved by SDS-PAGE and revealed with anti-phospho-ERK antibody.

(D) After starvation, HeLa cells were treated with EGF for 5, 10, and 30 min.

Cellular lysates were separated by SDS-PAGE and transferred onto a nitro-

cellulose membrane. The blot was incubated with anti-phospho-ERK and anti-

ERK antibodies.

(E) The whole protein extract (1 mg) of HeLa cells treated with EGF was

immunoprecipitated with anti-SHP2 antibody. Beads were washed with lysis

buffer and the immunoprecipitation (IP) was revealed with anti-phospho-ERK

and anti-SHP2 antibodies.

(F) HeLa cells were starved (00 min) or induced for 5, 10, and 30 min with EGF.

After cell lysis, 1 mg of protein extract was immunoprecipitated with anti-ERK

antibody and protein complexes (IP) were separated by SDS-PAGE and re-

vealed with anti-ERK and anti-SHP2 antibodies.
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have never been reported and might represent new functionally
important protein links.

We focused on the interactions mediated by the SH2 domains
of the phosphatase SHP2/PTPN11. SHP2 is known to be acti-
vated by binding to phosphorylated GAB1 (Holgado-Madruga
et al., 1996). This interaction releases the autoinhibitory binding
between the N-terminal SH2 domain and the phosphatase
domain, activates the phosphatase enzymatic activity, and, via
an incompletely understood mechanism, promotes a sustained
activation of extracellular signal-regulated kinase (ERK). Our
dynamic network recapitulates the interaction between the
SH2domains of SHP2 andGAB1, but in addition predicts a previ-
ously unrecognized interaction between the SH2 domains of
SHP2 and the phosphorylated Tyr204 in the activation loop of
extracellular signal-regulated kinase 1 or 2 (ERK1/2). The results
of the pull-down and coimmunoprecipitation experiments in
Figure 6B clearly show that SHP2 forms a dynamic complex
with ERK, starting 5 min after incubation with EGF. After
30 min, we observe a sharp decrease in the amount of
immunoprecipitated ERK, which parallels the reduction in ERK
phosphorylation levels.

The validation of the predicted dynamic interaction of SHP2
with ERK1/2 attests that the new experimental data presented
here, combined with orthogonal genome-wide context informa-
tion, contribute useful hints of new interactions to be experimen-
tally tested for functional relevance. The PepspotDB provides
easy access to these data and related predictions and thus
represents a useful resource to shed light on mechanisms that
rely on the formation of complexes mediated by phosphotyro-
sine peptides.

For a further explanation, please see the Extended Results.

EXPERIMENTAL PROCEDURES

Peptide Arrays
The 13-mer phosphotyrosine peptides were selected by combining the

2,198 peptides that were annotated in the Phospho.ELM (Diella et al.,

2008) and PhosphoSite databases (Hornbeck et al., 2004) at the time we

started this project and approximately 4,000 additional peptides from the

human proteome that received a high score by the NetPhos predictor

(Blom et al., 1999). Overall, 6,202 phosphopeptides, 13 residues long,

were synthesized and printed in triplicate identical arrays with appropriate

controls (Table S1).

Amino-oxy-acetylated peptides were synthesized on cellulose membranes

in a parallel manner using SPOT synthesis technology according to Frank

(1992) and Wenschuh et al. (2000). Following side-chain deprotection, the

solid-phase-bound peptides were transferred into 96 well microtiter filtration

plates (Millipore, Bedford, MA, USA) and treated with 200 ml of aqueous trie-

thylamine (2.5% by volume) in order to cleave the peptides from the cellulose

membrane. Peptide-containing triethylamine solution was filtered off and used

for quality control by LC-MS. Subsequently, solvent was removed by evapora-

tion under reduced pressure. Resulting peptide derivatives (50 nmol) were

redissolved in 25 ml of printing solution (70% DMSO, 25% 0.2 M sodium

acetate [pH 4.5], 5% glycerol; by volume) and transferred into 384 well micro-

titer plates. Different printing procedures (noncontact printing versus contact

printing) were tested for production of final peptide chips. The best results

were reached using contact printing with ceramic pin tools (48 in parallel) on

aldehyde-modified slides (enhanced surface; Erie Scientific). Printed peptide

microarrays were kept at room temperature for 5 hr, quenched for 1 hr with

buffered ethanolamine, washed extensively with water followed by ethanol,

and dried using microarray centrifuge. Resulting peptide microarrays were

stored at 4#C.

A Large Manually Curated Data Set of Human SH2-Mediated
Interactions
Since the discovery that SH2 domains mediate binding to peptides containing

phosphorylated tyrosines (Anderson et al., 1990; Moran et al., 1990), several

reports have appeared in the literature describing the sequence of peptide

ligands for several SH2 domains. We have made an effort to recapture this

valuable information, organize it in a computer readable format, and store it

in a database. To this end, we have developed a simple text-mining approach

to recover from the Medline database abstracts containing the text ‘‘SH2’’ and

a ‘‘Y’’ followed by a number in a protein-interaction textual context. The recov-

ered abstracts were examined by expert curators, and whenever the abstract

hinted that the manuscript was reporting evidence for an interaction between

an SH2 domain and a specific phosphorylated peptide, the manuscript was

read through to extract the relevant information. Approximately 50% of the

abstracts recovered by text mining were deemed relevant by the curators.

When this work was in progress, we learned of a similar effort by Gong and

collaborators (Gong et al., 2008). The data curated by this group, including 489

SH2 related articles, are available in a public database. A total of 141 of the arti-

cles in our curation effort were not present in the PepCyber database, while

124 were in common. Among the entries in this latter collection, we found 20

discrepancies in the information extracted by the curators. These entries

were re-examined and the discrepancies fixed. Finally, the PepCyber data-

base contained 365 articles that were not yet curated in our effort. We analyzed

these 365 articles, and for 135 of them we could not find any experimental

evidence supporting an interaction between an SH2 domain and a specific

phosphorylated peptide. The remaining 230 articles were recurated by MINT

curators according to the Proteomics Standards Initiative molecular interac-

tion standards and controlled vocabularies (Hermjakob et al., 2004) (see

vent diagram in Figure S4).

Training and Benchmarking ANNs
In order to build predictors to infer if a given peptide is a weak or a strong ligand

of a particular SH2 domain, we employed ANNs of the standard three-layer

feed-forward type and encoded the amino acids as previously described (Niel-

sen et al., 2003). Only peptides with a length of 13 and with the phosphotyro-

sine residue centrally placed were taken into account. To avoid overfitting, the

data set was homology reduced using CD-HIT (Li and Godzik, 2006) with

default values and 90% sequence identity threshold. These operations

reduced the total data set from 6,202 peptides to 3,896. For each SH2 domain,

we normalized the log-ratio intensity values to range between 0 and 1, where

higher numbers correlate with stronger binding affinity. The data set was

divided into four subsets by random partitioning. We trained an ANN on two

subsets, determined the optimal network architecture and training parameters

on the third subset, and obtained an unbiased performance estimate from the

fourth subset. This was repeated in a round-robin fashion to utilize all data for

training, test, and validation. For each test set, the number of hidden neurons in

the ANN (0, 2, 4, 6, 10, 15, 20, and 30) was optimized according to the PCC.

The reported PCC performance measure of each ANN was based on the inde-

pendent validation subsets.

To validate the performance of developed ANNs, we used the data set of

known in vivo ligands of SH2 domains specifically curated for this work

(referred to the gold standard data set). This training-independent data set

served as the positive instances, while the negatives comprised 1,307 phos-

photyrosine peptides from Phospho.ELM (Diella et al., 2008) that have not

previously been shown to bind any SH2 domains. In order not to validate on

instances that are identical or highly similar in sequence to what was used

to train the ANNs, we used the BLAST algorithm to discard benchmark

peptides that were more than 90% identical to the training set. To compare

the performance of the ANNs with previously published methods, we ran the

benchmark data set through the SMALImethod that employs position-specific

scoring matrices to predict ligands of SH2 domains (Huang et al., 2008). We

tested each predictor on its respective validation set and calculated the

AROC for the SH2 domains for which we had at least eight positive instances

in the benchmark data set. To test if the observed performance of the PSSMs

was significantly different from the ANNs, we constructed bootstrap estimates

of the uncertainty associated with each AROC by resampling the score distri-

butions for positive and negative examples.
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Contextual Score Ranking Interactions according to Likelihood
of Functional Significance
The Bayesian model supporting the contextual score is based on a number of

independent genome-wide features describing the probability that the peptide

is exposed to the solvent or in a disordered part of the parent protein, that the

SH2 domain protein and its predicted partner are expressed in the same

tissues, and that they are close in the protein interaction network and

conserved in evolution. Finally, we have added the neural network score as

a property in the Bayesian inference scheme to give an overall probability of

interaction between the SH2 domain and the protein from which the peptide

in question was derived.

For each set of possible interactors (SH2-domain-containing protein and

peptide-containing protein), we retrieved information that could help deter-

mine whether that particular interaction is likely to take place under physiolog-

ical conditions.

The ‘‘tissue-specific expression’’ data were taken from Su et al. (2004), and

the subcellular localization was extracted partly from CellMINT (G.C., unpub-

lished data) and partly from Gene Ontology annotations. Both of these sets of

data were scored by counting the number of co-occurrences of organelle

terms and dividing by the highest number of occurrences for either the SH2

domain containing protein or the peptide containing protein, thus obtaining

a score between 0 and 1.

‘‘Structural disorder’’ was determined using IUPred by running the predic-

tion method on the full sequences and then cutting out the relevant part (Dos-

ztányi et al., 2005). A score between 0 and 1 was obtained by taking the

average score of all the residues constituting the peptide.

‘‘Degree of conservation’’ of the binding site in related species was evalu-

ated by inspecting it in multiple alignments of orthologs and paralogs from

ENSEMBL (Flicek et al., 2012). The relevant peptides were cut out of the

related sequences and evaluated for binding by the neural networks. The score

contribution for each orthologous sequence with the particular domain was

calculated by multiplying the neural network score with the overall sequence

distance from the original sequence obtained from a neighbor-joining tree.

This procedure was followed to award more to binding-site conservation in

distant sequences than to that in close sequences. The scores obtained

from all the orthologous sequences were added up to produce a single score

for each binding site/SH2 domain combination.

Conservation score = Si dist_sequencei * ANN_sequencei, where i runs

through all orthologous sequences in the alignment for that particular peptide.

Finally, the ‘‘raw neural network scores’’ were incorporated in the Bayesian

framework as a feature on its own.

To assess the importance of contextual evidence, we applied the naive

Bayes algorithm:

PðIjEÞ=PðIÞ & PðE1jIÞ & PðE2jIÞ:::PðExjIÞ
PðE1Þ & PðE2Þ:::PðExÞ

This computes the probability of interaction given the evidence [P(IjE)]. The
components of this calculation are the probabilities of seeing each piece of

evidence given interaction (PExjI) and the probability of seeing this evidence

in the full set of combinations of domain-containing proteins and peptides

P(Ex). In practice, this latter probability is calculated by evaluating both the

probability of the evidence given interaction and the probability of the evidence

given noninteraction (see Figure S5).

The parameters for themodel are determined from a set of known SH2 inter-

actions that was collected and curated manually, deemed ‘‘the foreground

set,’’ as well as the full range of possible combinations of SH2-domain-con-

taining protein and peptides (‘‘the background set’’), assuming that most of

these combinations are noninteracting in vivo.

Assembly of the EGF-Dependent Dynamic Network
The EGF-dependent dynamic network is a graph with a temporal dimension.

This is assembled via the following steps.

We first downloaded from theMINT database all of the interactions involving

as a partner one of the proteins that participate in signal transduction in the

EGF pathway, as described in the Reactome pathway database. Only interac-

tionswith aMINT confidence score greater than 0.4were considered. Next, we

inferred all the possible interactions between SH2-containing proteins and the

peptides described by Olsen et al. (2006) as phosphorylated in tyrosines

following EGF stimulation.

Phosphotyrosine Peptide Pull-Downs and Mass Spectrometric
Analysis
SILAC Cell Culture and Lysis

Adherent human cervix carcinoma cells (HeLa; ATCC number CCL-2) were

SILAC encoded in Dulbecco’s modified Eagle’s medium deficient in arginine

(Arg) and lysine (Lys) and supplemented with 10% dialyzed fetal calf serum

and antibiotics. One cell population was supplied with normal L-Arg and

L-Lys (‘‘light SILAC’’) and the other one with the stable isotope-labeled heavy

analogs 13C615N4-L-arginine and 13C615N2-L-lysine (‘‘heavy SILAC’’). After

five cell doublings, the cells were lysed in an ice-cold buffer consisting of 1%

NP-40, 150 mM NaCl, 50 mM Tris-HCl (pH 7.5), 1 mM dithiothreitol, protease

inhibitor mixture (Roche complete tablets), and 1 mM sodium ortho-vanadate

as tyrosine phosphatase inhibitor. Following centrifugation at 16,000 3 g for

15 min, the supernatant was used for peptide affinity pull-down experiments.

Peptide Synthesis

Peptides were synthesized as pairs in phosphorylated and nonphosphorylated

forms on a solid-phase peptide synthesizer using an amide resin (Intavis,

Germany) as previously described (Hanke and Mann, 2009). Briefly, an amino

acid sequence stretch of 13 residues surrounding the central in vivo tyrosine

phosphorylation site that we have previously identified by mass spectrometry

(Olsen et al., 2006) was synthesized with an N-terminal SerGly-linker and a N-

amino-modified desthiobiotin moiety for coupling to streptavidin-coated

beads and efficient elution via biotin. The purity of the all synthetic peptides

was confirmed by mass spectrometric analysis.

Peptide Pull-Down

Peptide pull-downs were performed automatically on a TECAN pipetting robot

using the peptide pull-down protocol described previously (Schulze et al.,

2005). The synthetic peptides were bound to streptavidin-coated magnetic

beads (Dynal MyOne, Invitrogen), and cell lysate corresponding to 1 mg of

protein (!5 mg/ml protein) was added to 75 ml of beads containing an esti-

mated amount of 2 nmol of synthetic peptide. Heavy-SILAC-labeled lysate

was incubated with the phosphorylated version of the peptide, whereas

light-SILAC-labeled lysate was added to the nonphosphorylated counterpart.

After rotation at 4#C for 4 hr, the beads were washed three times with lysis

buffer. Beads from each peptide pair were combined and bound proteins

were eluted using 20mMbiotin. Eluted proteinswere then precipitated by add-

ing 5 vol ethanol together with sodium acetate and 20 mg glycoblue (Ambion).

In-Solution Protein Digestion

The precipitated proteins were resuspended in 20 ml of 6 M urea, 2 M thiourea,

and 20 mM Tris-HCl (pH 8.0) and reduced by adding 1 mg of dithiothreitol for

30 min, followed by alkylation of cysteines by incubating with 5 mg iodoaceta-

mide for 20 min. Digestion was started by adding endoproteinase Lys-C

(Wako). After 3 hr, samples were diluted with 4 vol 50 mM NH4HCO3, and

trypsin (Promega) was added for overnight incubation. Proteases were applied

in a ratio of 1:50 to protein material, and all steps were carried out at room

temperature. Digestion was stopped by acidifying with trifluoroacetic acid,

and the samples were loaded onto homemade StageTips packed with

reverse-phase C18 disks (Empore, 3M, MN) for desalting and concentration

prior to LC-MS analysis.

Nanoflow LC-MS/MS

Digested peptide mixtures were separated by online reverse-phase nanoscale

capillary liquid chromatography and analyzed by electrospray tandem mass

spectrometry (MS/MS). Experiments were performed with an Easy-nLC nano-

flow system (Proxeon Biosystems) connected to an LTQ-Orbitrap XL or 7T-

LTQ-FT Ultra mass spectrometer (Thermo Fisher Scientific, Bremen,

Germany) equipped with a nanoelectrospray ion source (Proxeon Biosystems,

Odense, Denmark). Binding and chromatographic separation of the peptides

took place in a 15 cm fused silica emitter (75 mm inner diameter) in-house

packed with reverse-phase ReproSil-Pur C18-AQ 3 mm resin (Dr. Maisch

GmbH, Ammerbuch-Entringen, Germany). The mass spectrometer was oper-

ated in the data-dependent mode to automatically switch between high-reso-

lution orbitrap full scans (R = 60 K at m/z = 400) and LTQ ion trap CID of the top

ten most abundant peptide ions. All full scans were automatically recalibrated

in real time using the lock-mass option.
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Peptide and Protein Identification and Quantification

Peptide and proteins were identified by using Mascot and the MaxQuant soft-

ware suite (Cox and Mann, 2008) and filtered for an estimated false-discovery

rate of less than 1%. All SILAC pairs were quantified by MaxQuant, and the

corresponding protein ratios were calculated from the median of all peptide

ratios and normalized such that the median of all peptide ratios (log trans-

formed) was zero.

For further details, please refer to Extended Experimental Procedures.

ACCESSION NUMBERS

The domain-peptide interaction data have been deposited into a new publicly

available resource, the Pepspot database (PepspotDB; http://mint.bio.

uniroma2.it/PepspotDB/home.seam).
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Supplemental Information

EXTENDED RESULTS

Reproducibility of Chip Experiments
The correlation coefficient of the results of the triplicate arrays represents a good measure of the quality of the experiment. In Table
S2, we have reported the Pearson correlation coefficients between the results of triplicate arrays or between independent experi-
ments carried out at different times with different preparation of the same domain. Typical correlation graphs are reported in
Figure S1.

PepspotDB: Motivation and Brief Description
PepspotDB is a new database, specifically designed to store in a single integrated resource the results of experiments exploiting
molecular array technology. We decided to develop a brand new database, because readily available alternative solutions were
either too broad (Ceol et al., 2010; Ceol et al., 2007), or too narrow (Gong et al., 2008) in scope.
Although PepspotDB has been developed primarily to support research activities within our group, we have opened it to the

community as a key reference for the storage and retrieval of peptide chip data.
PepspotDB contains five main data types:

(a) Experimental evidence supporting SH2 peptide interaction
(b) Computational predictions
(c) Binary interactions
(d) Bayesian integration of contextual evidence
(e) Phosphorylation sites

Among all domain-peptide pairs that have either experimental or computational support, only those with signal intensity or predic-
tion score above a certain threshold are considered. These candidate binary interactions are singled out and stored in the database in
a separate table for easy visualization and retrieval. The Bayesian integration of experimental data with orthogonal contextual
evidence provides a Bayesian score for each tested domain-peptide pair.
Since SH2 domains bind to phospho-tyrosine containing peptides, and since other families of interaction domains also recognize

phosphorylated residues, we imported into the database information on experimentally determined phosphorylation sites, as anno-
tated in the twomost comprehensive publicly available databases hosting phosphorylation data, PhosphoSite (Hornbeck et al., 2012)
and Phospho.ELM (Diella et al., 2008). Information on protein sequences was also imported from an external database, UniProtKB
(UniProt Consortium, 2009), the reference repository for protein records. Furthermore, PepspotDB is tightly integrated with the MINT
protein interaction database (Chatr-Aryamontri et al., 2007).

PepspotDB: Requirements and Guidelines
The key requirement for PepspotDB was flexibility to ensure the database could grow smoothly, with no need for major redesign
steps, as the number and diversity of projects increased.
The integration of external data sources was another issue. The two most common alternative integration strategies are ‘‘deep’’

and ‘‘shallow’’ integration. Deep integration basically consists in replicating the information stored in an external data source into
the in-house database; it requires the translation or mapping of the external database datamodel to the datamodel of the destination
database and periodic updates to bring the local copy of the data in line with the original source. Shallow integration is much easier to
accomplish: the data remain in the primary data source (no replication occurs) and some sort of hyperlink pointing to them is created
in the secondary data source. The advantage of the first solution lies in the superior performance achievable in terms of response
times since no additional network traffic is generated. On the other hand, deep integration involves a considerable design effort
to work out a more complex unified schema and comes with major maintenance issues. Shallow integration imposes a much lighter
burden on the database design, often involving nothingmore than the storage of a Unified Resource Locator (URL) in the proper table
column. However, this second solution presents serious drawbacks in terms of performance, due to network latency and possibly
failure. Maintenance issues are also not completely absent (URLs should be updated once in a while as broken links may occur).
Our design choices were oriented toward the achievement of the most suitable trade-off between flexibility and performance.

PepspotDB is not yet another protein interaction database but focuses on experiments based on peptide array technology. As for
integration of external data sources, we did not fully commit ourselves to either to a deep or a shallow strategy, but we decided
on a case by case basis which one wasmost appropriate to gain performance without losing toomuch flexibility. Hence, for instance,
we chose deep integration to import protein data from UniProtKB (UniProt Consortium, 2009) and phosphorylation data from Phos-
pho.ELM and PhosphoSite (Diella et al., 2008; Hornbeck et al., 2004), whereas shallow integration seemed to us more effective for
linking binary interactions stored in PepspotDB with relevant records in the general purpose Molecular INTeraction database.

PepspotDB: Data Model
Although the database was originally conceived as a repository of experiments employing peptide arrays to detect domain-peptide
interactions, we aimed at making the database structure as general as possible, to be able to accommodate virtually any kind of
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interaction assay based on array technology. Figure 1 shows a class diagram portraying a subset of classes, extracted from the larger
PepspotDB data model, capturing the concept of experiment and the concepts related to it.

First of all, it should be noted that PepspotDB assumes that any experiment involves the probing of one ormore arrays of some kind
with a potential interactor. In other words, PepspotDB assumes experiments are based on array technology. This, of course, imposes
a strict constraint to the number of different types of experiments that can be stored in the database, but, on the other hand, it paves
the way for a database structure specifically tailored for these kinds of experiment, thus allowing PepspotDB to organize the data
more effectively and with a greater level of detail than other more general purpose databases of molecular interactions, such as
MINT. More specifically, an Experiment is composed of one or more ArrayAssays, each one referring to a specific ArrayChip and
identifying a group ofMeasures, each of which is related to a single ArraySpot (see Figure 1). ArrayChips are composed of ArraySpots
and represent a particular array layout. ArraySpots correspond to positions in the array and can be either control spots, marker spots
(used by the scanner software to align the quantization grid), blank spots or spots containing an Interactor. A Measure object encap-
sulates most of the data produced by the scanner software upon quantization of a particular array spot. Experiments are often
performed in duplicate or in triplicate: different replicates of the same array layout within the same experiment are modeled by
different ArrayAssay objects, one for each replicate, referring to the same ArrayChip and Experiment. Thus, in an experiment
performed in triplicate, three Measures for each ArraySpot will be associated to the respective ArrayAssay object representing
one replicate of the same ArrayChip. The Interactor class conveys the general idea of a molecule that can interact with some other
molecule, abstracting from the actual type ofmolecule we are talking about (e.g., a protein, a region of a protein, a nucleic acid, etc...).
ModifiableMolecule is a particular class of Interactor provided with a sequence to which one or more PTM (Post-Translational
Modification) objects can be attached. ModifiableMolecule is further specialized into Peptide, Domain and Protein. A Peptide can
be associated to many proteins through PeptideProteinAssociation entities (most often a peptide matches the sequence of several
homologous proteins); a Protein in turn can be composed ofmany domains. These layers of abstraction allow PepspotDB to deal with
experiments of different nature exactly in the same manner: since experiments are modeled as interaction assays testing, in one-
versus-all fashion, a generic Interactor against one or more arrays composed of ArraySpots containing also generic Interactors,
domain-peptide, domain-domain, antibody-antigen or protein-protein interaction assays are viewed as perfectly equal.

Furthermore, PepspotDB foresees the possibility that an Interactor may participate in different experiments inmodified forms, e.g.,
it could be mutated in one experiment and phosphorylated in another: InteractorForm objects signify the particular configurations
assumed by Interactors in the context of a specific experiment and are used to create experiment-wise variants of an Interactor
by associating to it one or more Features (the only implemented one so far being PTM, Post-Translational Modification). This is
the reason why the ArraySpot class is associated to the Interactor class through the InteractorForm class and not immediately.
The same is true for the Experiment class. To illustrate this concept with an example: let’s suppose we wanted to capture the fact
that protein A participates in experiment X in its canonical form and in experiment Y in a phosphorylated form and no InteractorForm
class was present; we would have to create two distinct Protein objects, one representing A in its canonical form and another rep-
resenting A in its phosphorylated form and link them to the respective experiments, thus unnecessarily duplicating information. With
the introduction of the InteractorForm class, we can now create two InteractorForms, associate one of them to the proper post-trans-
lational modification (PTM), and link both forms to the same Protein object corresponding to protein A.

Besides raw data, i.e., the figures output by the laser scanner, encapsulated by the Measure object, PepspotDB’s data model
allows the storage also of experimental data after processing, a procedure during which filters are applied to the data to attenuate
noise and the redundant information contained in the two or more replicates is collapsed into one figure. In a typical triplicated exper-
iment, the three Measures associated to a particular spot undergo processing and are merged into a single NormalizedMeasure
instance relative to the spot. As was mentioned earlier, PepspotDB encompasses not only experimental observations, but also
computational predictions obtained from neural network predictors. The NeuralNetworkPrediction class models such computational
predictions, linking the target Interactor for which the prediction was made to the Experiment whose data were used to train the
neural network predictor.

Finally, scanned images (Image class) of the chip may be stored in the database and linked to their respective experiment.

PepspotDB: Web Interface
On top of the relational database, we have built a user friendly web interface, with the aim of facilitating data access and retrieval to
non-computer experts (http://mint.bio.uniroma2.it/PepspotDB/home.seam). Access to the web site is open to anyone using the
‘‘guest’’ account, which comes with reading privileges only. Authenticated users are granted different privileges in accordance
with their assigned role(s): Reader, Writer, Curator or SuperUser. Since the PepspotDB short term goal was to support the research
projects carried out in our lab, an entire section of the web site is dedicated to presenting these projects: the aim of each project is
briefly described and its final results can be browsed through direct links. The SH2 specificity data can be explored from an interac-
tive homology tree obtained by hierarchical clustering of the human SH2 domains according to sequence homology. Node color
reflects the domain target recognition specificity, as established from the results of our experimental and computational analysis.
Domains similarly colored have similar consensus sequences, as apparent from the logos popping up upon mouse hovering,
whereas white nodes indicate a SH2 domain that we have not profiled yet. A click on a tree leaf forward the user to the search
page, where the candidate domain targets we have identified for that particular SH2 domain are listed.
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The Search page allows quick retrieval of domain-peptide interactions. After the protein containing the domain (let us call it protein
A) and the protein containing the peptide (let us call it protein B) have been selected, interactions involving any of the domains
belonging to protein A and/or (depending on user selection) any of the peptides belonging to protein B are looked up and are dis-
played on the page. It is also possible to specify a range within the sequence of the peptide containing protein, to narrow the result
set to certain peptides only. An interactionmay be supported by experimental evidence, if it has been observed in at least one peptide
chip experiment, by computational evidence, if it has received a sufficiently high score from a neural network predictor, or both.
Which is the case can be easily grasped by looking at the search result: experimentally verified interactions are associated with
an ‘‘experimental score,’’ calculated as the logarithmic ratio between the foreground and background signals quantified by the
scanner, whereas predicted interactions come with a ‘‘NeuralNetwork score,’’ that is the output of the neural network predictor.
On the bottom of the page there is a panel displaying several buttons controlling the set of operations that can be performed on
the result set, such as filtering out records based on their content, sorting and exporting the query result in a textual format with
comma-separated columns. Each retrieved interaction is also assigned a ‘‘global score,’’ as calculated by the Bayesian classifier
integrating orthogonal sources of information. In addition to the score itself, it is also possible to inspect the pieces of contextual
evidence that were combined in the Bayesian framework to obtain the final value. A simple click on ‘‘Details’’ opens up a new panel
containing such information. Another valuable piece of information provided by the query result table regards the status of our
previous knowledge of an interaction stored in PepspotDB. Given a domain-peptide interaction between a domain of protein A
and a peptide of protein B, if one or more protein interactions between A and B are annotated in MINT, regardless of whether the
binding regions correspond or not, cross-references to the relevant MINT records appear on the corresponding row of the result
table. Furthermore, if PepspotDB contains one or more interactions, that have been manually curated from the literature, for which
both the proteins and the binding regions (e.g., domain and peptide) match, a little gold bar icon shows up next to the cross-refer-
ences. After clicking on the icon, a list of these ‘‘golden standard’’ interactions is produced, complete with links to the original papers
they were taken from.
The search page that we have just described is very powerful for mining domain-peptide interactions, but PepspotDB allows the

user to browse in great detail also proteins, domains, domain targets (e.g., peptides) and experiments. The ‘‘Advanced Search’’ page
is the entry point to start digging into the available data. From there, we can move on to the ‘‘Protein View,’’ the ‘‘Domain View’’ or the
‘‘Peptide View,’’ depending on the object of our quest. The ‘‘Protein View’’ provides us with a basic description of the selected
protein, which is essentially a short version of the UniProtKB description of the protein. Moreover, we can find a list of post-trans-
lational modifications the protein may undergo carrying out its activity in the cell. The original source of the information is reported
aswell. At the bottom of the page, two panels display respectively a list of the peptidesmatching the sequence of the protein and a list
of the domains the protein is composed of. It is important to note that, in order to be listed here, a peptide or domain must have been
tested in at least one experiment, or, in the case of a peptide, with at least one binding predictor.
The ‘‘Domain View’’ and the ‘‘Peptide View’’ have similar structure, with a general description at the top of the page and further

details as we scroll down. The most relevant pieces of information the ‘‘Domain View’’ gives us are: 1) what experiments involving
this domain are available; 2) what predictors have been trained for this domain. By clicking on the relevant link, we are taken either
to the ‘‘Experiment View’’ or to the ‘‘Neural Network Predictor View,’’ where the outcome of the experiment or of the predictor can be
carefully scrutinized, manipulated through filtering and sorting, and finally exported. There is also the possibility to draw a sequence
logo of the peptides currently selected and displayed in the table.
The ‘‘Peptide View’’ collects four pieces of data about the selected peptide: 1) what protein sequences arematched by the peptide

sequence (a range identifying the location of the match in the protein sequence is specified); 2) what modifications were effected on
the peptide upon synthesis; 3) what experiments the peptide participated in and what was the outcome (observed to bind or not); 4)
what predictors produced a score for the peptide and what these scores indicated (predicted to bind or not).

PepspotDB: Technical Details
The realization of PepspotDB required the development and the concerted operation of multiple pieces of software employing
different technologies: 1) a relational database; 2) an object-oriented API implementing PepspotDB’s data model and providing
a low-level interface to populate the database tables, as well as to retrieve the data; 3) a web application providing a user-friendly,
universally accessible, high-level interface to the data; 4) a collection of scripts to process experimental results and computational
predictions; 5) a tool to draw sequence logos.
The objected-oriented API is written in the Java language and is built on top of the Java Enterprise platform version 5. The Enter-

prise Edition of the Java platform was chosen because technologies like Enterprise Java Beans (EJB) 3.0, Java Persistence, Java
Transaction and Java Architecture for XML Binding (JAXB) 2.0 greatly facilitate the task of developing the server-side part of distrib-
uted, transactional and data-oriented applications. Thanks to the Java Persistence API, a Plain Old Java Object (POJO) model,
implementing PepspotDB’s data model, could be readily employed to generate a relational database schema. The underlying engine
actually providing object-relational mapping (i.e., providing automatic conversion from Java objects to records in a relational data-
base and viceversa) and querying services is Hibernate.
The web application has been developed with JavaServer Faces (JSF) 1.2, a technology designed to simplify the building of user

interfaces for JavaServer applications by providing a ready-to-use library of UI components with server-side event handling capa-
bilities. To further reduce the complexity originating from the simultaneous employment of multiple advanced technologies, we
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exploited a powerful open source platform for building rich Internet applications in Java, called Seam. The Seam framework
effectively glues together technologies such as Asynchronous JavaScript and XML (AJAX), JSF, Java Persistence and EJB 3.0:
its unifying role is fundamental to simplify the development of web applications.

The tool for drawing sequence logos, dubbed rXLogo, has also been developed on the Java 5 platform; the Standard edition of the
platformwas used. The tool allows to draw a logo according to information content or relative entropy, to correct for sampling error, to
calculate a frequency matrix from the alignment, to align the input sequences according to a user-defined regular expression and to
produce multiple logos in a single run. Its source code has been integrated in PepspotDB’s web application, though only a limited set
of features are available in the online version.

The scripts used to process experimental results and computational predictions have been developed with R.
PepspotDB database runs on PostgreSQL 8.1, an open source Relational Database Management System (RDBMS), while

PepspotDB web application runs on JBoss AS 4.2, a Java application server implementing the full J2EE 1.4 specification, plus
some features of J2EE 5, such as EJB 3.0. Both server programs run on a dual-processor Intel Xeon 3.4 GHz machine, with 4GB
RAM and two SATA 250GB Hard Drives configured in a RAID1 array.

PepspotDB: Content
PepspotDB so far contains close to 80 experiments, from which we could successfully profile 70 human SH2 domains. Both the raw
and processed experimental data have been stored in the database. Besides the amino acid sequences spotted on the chips used for
the experiments (!6,000), PepspotDB also contains all human peptides (13-mers) with a phosphorylated tyrosine residue in the
central position, as reported by the PhosphoSite and Phospho.ELM repositories of experimentally observed phosphorylation sites.
For each of the profiled SH2 domains, a neural network predictor has been trained and applied to the full set of peptides collected in
the database (!13,600 sequences); after processing, all the binding predictions were stored in the database as well. From the whole
experimental and computational data sets, all binary domain-peptide interactions with strong support from either data set (or both
data sets) have been extracted: two sets of 10,580 experimentally determined and 49,175 computationally predicted binary interac-
tions, with an overlap of 4,207 interactions, have thus been produced and stored in PepspotDB. Finally, Bayesian integrated confi-
dence scores have been generated (one for each possible domain-peptide pair) and have been stored in the database.

EXTENDED EXPERIMENTAL PROCEDURES
Spatial Smoothing of Array Signal
Initial inspection of the array scans revealed the presence of spatial signal bias across the surface of the physical array. Spatial signal
bias may arise from hybridization dynamics or array manufacturing affects related to washing steps or differences in print tip perfor-
mance. Such affects should be removed before further analysis. The spatial signal bias was observed to similarly affect both the fore-
ground (FG) and background (BG) spot intensity estimates. Two-dimensional effects of this type can be considered as background
signal and can be removed when the FG is adjusted to remove the BG.

The shape and extent of spatial bias was observed to vary dramatically from array to array. Due to this, conditional steps were
performed to best correct the specific bias depending on the array. The reduction of bias was assessed by the reduction in variance
for replicated spots that were located across the array. Three BG estimation methods were considered: un-adjusted BG, 2Dmedian
smoothed (median of 7x7 feature window), or using a low-pass filter (LPF) (lowpass function from the rimage package). The BG that
resulted in the lowest sum of squared replicate error (SSE) was selected on an array-by-array basis. The image analysis based LPF
method was much faster but gave poorer results than the simple median 2D windowing approach.

The relative signal, log(FG/BG), often retained some spatial bias. The remaining spatial bias was removed by subtracting median
smoothed estimates of log(FG/BG) using an iterative method, decreasing the smoothing window at each step and stopping when no
improvement in SSE was achieved. No adjustment was made if the first iteration increased the SSE. With this smoothed BG and
log(FG/BG) adjustment method, 43% of the replicate error was removed as assessed by SSE.
Data Processing Pipeline
In order to identify possible flawed spots, a sample of glass slides for each chip batch was probed against a collection of three
different anti-pY antibodies. The chips were tested separately with a preparation containing each single antibody and with a mixture
of all three antibodies as probe. The spots that did not light up in any of the experiments were flagged ‘BAD’ and were not taken into
account in further data processing steps.

The glass chipswere incubatedwith purifiedGST-SH2 fusions (1 mg/ml) for 3 hr in blocking buffer (BSA 5% in PBS) at room temper-
ature. Spot bound GST fusion proteins were revealed by incubating with a fluorescently labeled anti-GST antibody. A control slide
was probed with GST to identify false positive peptides that either bind to the tag or to the antibodies used in the assay. Since each
slide contains three replica arrays the foreground and background intensity values for each spot were computed by taking themedian
of the three replicated measures.

The log-ratio of foreground versus background intensity, which is obtained by subtracting the intensity values in logarithmic rather
than linear scale (i.e., log(FG) – log(BG) was taken as a measure of signal strength. Measuring intensities as log ratios between fore-
ground and background can be prone to artifacts when background values are very low. To prevent log-ratios from increasing indef-
initely when background intensity is close to zero, we added a small fixed amount (delta) to all foreground and background intensity
values. The value of delta is defined on a per experiment basis and it is equal to the median background intensity of the experiment.
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In a few cases, due to a wrong positioning of the grid delimiting spot areas by the software of the array reader, one obtains an
excessively high background intensity which results in a low log ratio value. In such cases, there is a risk of missing good binding
candidates, that is spots with considerably high foreground intensity that would also have high FG-BG or log (FG/BG) values, if
such an artifactually high background estimate had not occurred. To detect likely instances of this problem, we introduced a couple
of flags, ‘high foreground’ (fg_flag) and ‘low background’ (bg_flag): spots whose foreground intensity value is greater than twice the
median foreground intensity of the experiment have their fg_flag set to ‘GOOD’; conversely, spots whose background intensity value
is greater than twice themedian background intensity of the experiment have their bg_flag set to ‘BAD’. Thus, problematic spotsmay
be identified by looking for spots with fg_flag set to ‘GOOD and bg_flag set to ‘BAD’.
When the signal intensity of a spot exceeds a certain threshold, we consider that a successful binding reaction between the peptide

spotted on that position in the chip and the tested domain. For each experiment, the threshold was set to the median signal intensity
of the experiment plus twice the standard deviation from the median.
We distinguish between three classes of binders: true binders, potential binders and non-binders, identified with 2, 1 and 0 respec-

tively in the data files. True binders are defined as spots with signal intensity above the binding threshold and having their fg_flag set
to ‘GOOD’. Spots with either signal intensity lower that the binding threshold or fg_flag set to ‘BAD’ are classified as potential binders.
Finally, non-binders are those spots with both low signal and low foreground intensity (fg_flag = ‘BAD’).
A few peptides are spotted more than once in each array the spot with the highest smoothed log-ratio value was chosen

and the others were not considered further. If different replicas of a domain profiling experiment were carried out, the highest
normalized measure was considered. For all interactions that are stored in the database we keep track of the experimental evidence
supporting it.
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Figure S1. Intra- and Interexperiment Correlation, Related to Figure 1
Two replica arrays were probed, at different times, with two different preparations of the domain VAV2. A Pearson correlation coefficient of 0.97 was calculated

between the results of the two experiments. The correlation between the results of different replicas in the same chip experiment was also calculated and found to

range from 0.8 to 0.98 in different experiments (Table S2).
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Figure S2. Correlation between peptide target and domain sequence similarity, related to Figure 3
The samematrix used to draw the specificity tree in Figure 1 was given as input to the EPCLUST program (http://www.bioinf.ebc.ee/EP/EP/EPCLUST/) to obtain

a specificity distance by using the algorithm ‘‘linear coefficient based distance, Pearson centered.’’ The complement to 1 of the domain-domain distances output

were then plotted against and equivalent the distance based on sequence homology distance retrieved with ClustalW.
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Figure S3. Two Sample Logos Representation of the Motifs Recognized by SH2 Domains, Related to Figure 3
Peptides with binding intensity higher than the chip median intensity plus one standard deviation were considered ‘‘binders’’ (positive data set), whereas the

peptides with a fluorescence signal lower than the median signal are the negative data set. The peptides sequences were aligned on their phosphotyrosine

residues and used as input for the Two Sample Logo software (Vacic et al., 2006) to generate a sequence Logo representing the specificity profile of each SH2

domain.The two Sample Logo visualization represents the amino acids enrichment at each position of the aligned sequences. The phosphorylated tyrosine,

shared by both interacting and non interacting peptides, is shown in the central position. The upper part of the Logo shows the over-represented amino acids in

the positive data set, while the lower section displays the under-represented residues in the positive data set, as compared to the negative data set.
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Figure S4. Summary of Literature Curation, Related to Figure 5
The numbers in the Venn diagram represent curated articles. The details of the curation strategy are described in Experimental Procedures.
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Figure S5. Estimate of the Parameters of the Bayesian Model, Related to Figure 5
The bar graph represents the distribution of the posterior probabilities of the evidence given interaction (foreground) and the probability of the evidence given non-

interaction (background). These parameters, whichwere used in the Bayesianmodel, are determined from a set of known SH2 interactions that was collected and

curated manually, deemed ‘the foreground set’, as well as the full range of possible combinations of SH2 domain containing protein and peptides (‘the back-

ground set’), assuming that most of these combinations are non-interacting in vivo. Scores were binned for each predictor optimizing separation between the

foreground set and the background set using a cross-validation approach. The contribution to the overall prediction varies greatly as can be inspected in the

different graphs, where the bins and distributions for the foreground and the background set are shown.’’
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Figure S6. UML Class Diagram Portraying the Entities in PepspotDB Data Model
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