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ABSTRACT

The webPDBinder (http://pdbinder.bio.uniroma2.it/
PDBinder) is a web server for the identification of
small ligand-binding sites in a protein structure.
webPDBinder searches a protein structure against
a library of known binding sites and a collection
of control non-binding pockets. The number of
similarities identified with the residues in the two
sets is then used to derive a propensity value for
each residue of the query protein associated to the
likelihood that the residue is part of a ligand binding
site. The predicted binding residues can be further
refined using conservation scores derived from the
multiple alignment of the PFAM protein family.
webPDBinder correctly identifies residues belong-
ing to the binding site in 77% of the cases and is
able to identify binding pockets starting from holo or
apo structures with comparable performances. This
is important for all the real world cases where the
query protein has been crystallized without a ligand
and is also difficult to obtain clear similarities with
bound pockets from holo pocket libraries. The input
is either a PDB code or a user-submitted structure.
The output is a list of predicted binding pocket
residues with propensity and conservation values
both in text and graphical format.

INTRODUCTION

The identification of ligand-binding sites is a crucial part
in functional annotation of proteins, which benefits enor-
mously from the knowledge of the protein 3D structure.
It can provide clues about the molecular function of a
protein, even in cases in which the relationship between

molecular and biological function is not clear and where
there is scarce sequence similarity between the protein of
interest and available annotated proteins.

Indeed, a large fraction of the protein structures de-
posited in Protein Data Bank (PDB) (1) remains with
unknown function (2). This happens because methods
that are commonly used to transfer functional annotations
from homologous proteins, i.e. BLAST (3) and Dali (4),
are not able to capture from the sequence all the informa-
tion needed to infer the function, especially when the
global sequence similarity falls in the twilight zone
(below 25% sequence identity) (5).

As the protein global fold is more conserved than its
sequence in protein families (6), structure-based methods
outperform sequence-based methods in functional anno-
tations (7) when they operate in the twilight zone.

The increase in size of solved protein structures with
poorly characterized biochemical functions or molecular
interactions has led to the need for computational
methods able to detect and characterize functional sites
on protein structures (8). Functional site detection is
also important for targeting specific pockets in structure-
based and fragment-based drug design (9,10), drug discov-
ery (11) and molecular docking (12,13).

The ligand-binding site detection procedure is generally
divided in two steps: the identification of the location of an
appropriate cavity on the protein surface and the prediction
of a suitable ligand that could fit into it. The latter step is a
challenging task and generally requires extremely high com-
putational resources. Accordingly, a variety of algorithms
have been developed to identify ligand-binding pockets in
protein structures to limit the search space in molecular
docking pipelines. The available methods use geometric
criteria (14–17), energy functions (18–21) or other types
of characteristics, such as surface accessibility, the net
charge on the protein residues in a protein as a function
of pH, sequence conservation and so forth (22–27).
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Obviously, when the structure of a homologue of
the protein of interest is available, the identification of
binding sites can take advantage from the transferred
structural information. Different methods have been pub-
lished such as 3DLigandSite (28), FINDSITE (29) and
Firestar (30). They achieve better performances in identify-
ing the correct location of binding sites by superposing
homologue(s) of the protein of interest, whenever avail-
able, onto the query protein structure, to determine the
location of the ligand binding site(s) and/or the residues
involved in binding (31). However, the major limitation of
these methods is that they cannot be used when no
annotated homologues is available.

The performance of binding site prediction methods
differs according to whether the analysis is performed on
apo (ligand-unbound) or holo (ligand-bound) structures
because proteins often undergo conformational changes
on ligand binding. In general, most of these methods cor-
rectly identify the location of the binding site in 70–95%
of the cases if the protein analyzed is in the bound con-
formation. In contrast, the same analysis performed on
the apo structures achieves a success rate ranging from
50 to 75% (32,33).

Although knowledge-based approaches have been de-
veloped that use these data to dock ligands onto
proteins (34–36), no method exists that uses available
protein-ligand complexes to predict binding sites on a
query structure, irrespective of the nature of the ligand.
For this reason, we have developed the PDBinder algo-
rithm (37), a knowledge-based method based on the ob-
servation that unrelated binding sites often share small
structural motifs that bind the same chemical fragments,
irrespective of the type of ligand they are able to bind. The
method correctly identifies residues belonging to the
binding site in 77% of the cases. In particular, we have
proved it to be the best available method on both holo and
apo protein structures, obtaining for the latter perform-
ances similar to those for proteins in their bound conform-
ation. These results are extremely important for all the real
world cases where the query protein has been crystallized
without a ligand and is also difficult to obtain clear
similarities with bound pockets from holo pocket libraries.
In this web server version, the method has been improved
by the addition of a novel conservation scoring function
with an improvement of 3% in positive predictive value
and 13% in sensitivity both in the apo and holo test set.
The interface of webPDBinder is designed to facilitate the
input process and to obtain a clear and user-friendly
graphical output that makes the method accessible to a
broad audience.

METHODS AND EXPERIMENTAL RESULTS

The webPDBinder is based on the PDBinder method for
the identification of protein structure residues in contact
with a putative ligand. PDBinder searches for small (three
residues) similarities between a query structure and two
libraries of binding and non-binding residues using
Superpose3D (38), a fast local structure comparison
method.

The binding and non-binding residue datasets are
derived from a subset of the PDB protein structures
obtained from the BLASTClust (39) sequence clusters at
30% sequence identity. Binding pockets were defined by
selecting all the residues having an atom closer than 3.5 Å
to any atom of a ligand. This distance threshold was
determined during the training of the method. In total,
the ligand-binding data set was composed of 1896
binding pockets comprising 25 905 residues and the non-
binding one of 423 556 residues not interacting with any
ligand.
When the residues are compared with those of the query

structure, they are considered similar by Superpose 3D if
they can be superimposed with a Root Mean Square
Deviation (RMSD) lower than a given threshold, using
a two point (c-alpha and side chain centroid) amino acid
representation. The ratio of similarities identified in the
two sets (binding and not-binding) is then used to
derive a propensity value for each residue belonging to
the protein of interest. Surface areas with high
propensity values denote the position of the predicted
binding site.
The PDBinder method has been tested on a data set of

239 holo and apo protein structures. The method achieved
an average sensitivity of 30%, an average specificity of
98% and a precision of 41% on holo protein structures.
Using the apo test set, the method achieved average
sensitivity of 25%, specificity of 98% and precision of
37%. The ability of the classifier in correctly identifying
binding residues from non-binding ones is 77% in both
holo and apo protein structures.
An improved version of the algorithm that takes in

account the sequence conservation is optionally available
on the web server for all those cases where a PFAM
domain (40) can be associated to the query structure. A
residue conservation score is derived from the available
PFAM multiple alignments in two steps. (i) The
percentage of similar residues (BLOSUM62 scores �1)
in each alignment columns is computed. (ii) The score is
normalized across differently overall conserved PFAM
families, by using for each residue the percentile score of
its conservation versus the distribution of conservation
scores of the whole protein.
This modified version of the algorithm has been trained

on the same training data set of the PDBinder method
(1356 high-quality non-redundant protein structures).
We were able to assign a conservation score to 1237 of
these proteins, and we identified a combination of
conservation threshold (58) and propensity value
threshold (0.125) that obtained the best performance.
The application of these new thresholds on the data set
produced a 5% increase on the Positive Predictive Value
of the method while leaving all the other values almost
unchanged (data not shown).
After the identification of the best combination of

conservation and propensity value thresholds, we tested
the new version of PDBinder on the LigASite (41) test
set used by the older version of PDBinder (239 holo and
apo protein structures). The results (Table 1) show that
the combination of conservation and propensity value
increases the performance of PDBinder both on bound
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and unbound protein structures. We obtained a slight
increase both in Positive Predictive Value and
Specificity, an increase of 13.5 and 12.7% in Sensitivity,
0.071 and 0.071 in Matthew’s Correlation Coefficient,
respectively, on holo and apo protein structures.
We tested the method in conditions that mimic the

prediction for protein structures without known
homologues in the PDB. We performed a leave-one-out
experiment using protein structures from the data set
used in the original PDBinder manuscript, comprising
1356 high-quality protein structures. For each protein
analyzed, we used for comparison only residues from
the binding and non-binding data sets that belong to
protein structures sharing less than a fixed threshold of
sequence identity with the query protein binding pocket.
Table 2 reports the performances of PDBinder for
different thresholds of binding pockets sequence
identity, in terms of Sensitivity, Specificity, Positive
Predictive Value and Matthew’s Correlation Coefficient.
The results show that also in the worst scenario in which
we are able to use only structures that share <5%
sequence identity with the query protein in the binding
pocket, the method identifies �27% of the binding site
residues, without loosing in precision (Positive Predictive
Value).

Input and output

To submit a job to webPDBinder, the user can: (i) input a
PDB ID (or a list of PDB IDs) in the textbox of the ‘Run
your job’ section or (ii) upload a PDB formatted file in the
‘Upload your file’ section. In both modes by using the
advanced parameters, the user can choose to run a more
or less stringent search. The user can change the RMSD
threshold used in the structural comparison phase as well
as the Propensity value and Conservation score used in the
identification of the binding residues. The RMSD
thresholds can be set to 0.5, 0.6 and 0.7, the Propensity
threshold can be set anywhere in the range from 0 to 1 and
the conservation threshold can range from 0 to 100.
Default parameters as specified in ‘Methods and
Experimental Results’ section are 0.7 for RMSD, 0.125
for the Propensity value and 58 for Conservation score.
To use the old version of PDBinder (without the sequence
conservation) the propensity and the conservation
thresholds must be fixed to 0.143 and 0, respectively.
The user can also provide an email address to which

links to the results will be sent, although providing an
email address is not mandatory. An auto-refresh
intermediate page will report when every submitted job
is finished.

The ‘Results page’ (Figure 1) contains a summary of the
input data, reporting the query protein and parameters
used in the analysis (a). Buttons are available that can
be used to download the results in a parsable text file
(c), or go back to the Summary page (d). Using the
‘Redraw’ button (b), the user can change the propensity
value and the conservation score thresholds and view the
new results without the need to re-run the whole search.
The analyzed structure is shown using the Jmol Java
applet, an open-source Java-based viewer for 3D
chemical structures (http://www.jmol.org/). By default,
the protein structure is represented as a gray ribbon,
whereas predicted binding residues are represented in
balls and sticks mode and colored in red (e). Under the
Jmol applet interface, some shortcuts options are available
to modify the default visualization (f) together with a
button for the visualization of a table with the predicted
binding residues (g). This table (Figure 2) shows the
residues identified in a binding site and for each prediction
information is reported about the residue name (a),
number (a) and chain (c), the Propensity Value achieved
(d) and, if available, the residue Conservation Score (e) in
its PFAM family. The user can also highlight binding
residues on the Jmol structure by checking the associated
residue’s radio button (f). A Usage guide is provided to
the user, which describes every step graphically and by
means of simple instructions. The web site is freely
available at http://pdbinder.bio.uniroma2.it/PDBinder
and does not require registration.

CONCLUSIONS

PDBinder is a web server for the prediction of ligand-
binding pockets on protein structures. The identification
of ligand-binding sites is a difficult task when there is
scarce sequence similarity between the protein of interest
and available annotated proteins or when the similar
structures are only crystallized in their apo form. The
analysis of apo/holo structure pairs shows that the

Table 2. PDBinder results after the removal of protein structures at

different thresholds of sequence identity in their binding pockets

Sequence identity
threshold (%)

SENS SPEC PPV MCC

5 0.271 0.977 0.441 0.300
10 0.269 0.979 0.450 0.304
15 0.267 0.980 0.456 0.305
20 0.266 0.981 0.461 0.306

The sequence identity threshold refers to the maximum percentage of
sequence identity between the query protein-binding pocket and the
binding pockets of each protein of the binding and non-binding
residues data set. The results report performances in terms of
Sensitivity (SENS), Specificity (SPEC), Positive Predictive Value
(PPV) and Matthew’s Correlation Coefficient (MCC).

Table 1. Results for PDBinder and the modified version in

webPDBinder (PDBinder+conservation score) on the original test set

of 239 holo and apo protein structures (LigASite) in terms of

Sensitivity (SENS), Specificity (SPEC), Positive predictive value (PPV)

and Matthew’s Correlation Coefficient (MCC)

Method SENS SPEC PPV MCC Dataset

PDBinder 0.295 0.983 0.413 0.313
HOLOPDBinder+cons 0.430 0.968 0.433 0.384

PDBinder 0.251 0.984 0.372 0.271
APOPDBinder+cons 0.378 0.969 0.400 0.342
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performance of PDBinder is almost similar in both cases.
This could be explained by the fact that, even though the
ligand induces some rearrangements in the overall
structure of the binding site, the local conformation of
small sets of residues, which is the level of detail relevant
for PDBinder, does not vary much upon binding.
Therefore, PDBinder can be applied to all those structures

of unknown function that lack homologue(s) and have
been crystallized without the ligand.
This web server provides a user-friendly version of

the PDBinder method, enriched with a new parameter,
the conservation value and improved performance. It
gives an interactive and easy to use interface to visualize
the predicted binding sites on the query structure

Figure 1. Example of a webPDBinder results page. The figure shows the prediction made on the Orotidine 50-monophosphate decarboxylase from
Methanobacterium thermoautotrophicum (PDB code 3G1S) with the default parameters (an RMSD threshold of 0.7 Å, a Propensity value of 0.125
and a conservation score of 58%). In the upper part, a summary of the parameters used in the search is reported (a), together with a button
to download a parsable result file (c), a button to go back to the Summary page (d) and a button to re-submit a new job after changing parameters
(b). In the Java Applet, the predicted residues are colored in red and displayed as ball and sticks, whereas the query protein is showed in ribbon style
and colored in gray (e). In the bottom part, buttons are available to change the Jmol visualization options (f) and to view a list of the predicted
residues (g).
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directly on the web, without the need to install locally
the program.
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