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Abstract

Human Ntera2/cl.D1 (NT2) cells treated with retinoic acid (RA) differentiate towards a well characterized neuronal
phenotype sharing many features with human fetal neurons. In view of the emerging role of caspases in murine stem cell/
neural precursor differentiation, caspases activity was evaluated during RA differentiation. Caspase-2, -3 and -9 activity was
transiently and selectively increased in differentiating and non-apoptotic NT2-cells. SiRNA-mediated selective silencing of
either caspase-2 (si-Casp2) or -9 (si-Casp9) was implemented in order to dissect the role of distinct caspases. The RA-induced
expression of neuronal markers, i.e. neural cell adhesion molecule (NCAM), microtubule associated protein-2 (MAP2) and
tyrosine hydroxylase (TH) mRNAs and proteins, was decreased in si-Casp9, but markedly increased in si-Casp2 cells. During
RA-induced NT2 differentiation, the class III histone deacetylase Sirt1, a putative caspase substrate implicated in the
regulation of the proneural bHLH MASH1 gene expression, was cleaved to a ,100 kDa fragment. Sirt1 cleavage was
markedly reduced in si-Casp9 cells, even though caspase-3 was normally activated, but was not affected (still cleaved) in si-
Casp2 cells, despite a marked reduction of caspase-3 activity. The expression of MASH1 mRNA was higher and occurred
earlier in si-Casp2 cells, while was reduced at early time points during differentiation in si-Casp9 cells. Thus, caspase-2 and -9
may perform opposite functions during RA-induced NT2 neuronal differentiation. While caspase-9 activation is relevant for
proper neuronal differentiation, likely through the fine tuning of Sirt1 function, caspase-2 activation appears to hinder the
RA-induced neuronal differentiation of NT2 cells.
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Introduction

The human teratocarcinoma cell line Ntera2/cl.D1 (NT2 cells)

represents a well-established model to study the retinoic acid (RA)-

induced terminal differentiation of human neural progenitors into

post-mitotic neurons (NT2-N) [1–3]. The many features that

NT2-N share with human fetal neurons has generated great

interest for their potential use as graft source for cell therapy in

neurodegenerative diseases [4], a perspective that warrants a deep

understanding of the molecular mechanisms underlying NT2 cell

differentiation.

Caspases, cysteine-dependent aspartate-specific proteases, are
classified according to phylogenetic relationships, structure, sub-

strate specificity, location in signaling pathways (‘‘initiator’’, i.e.

upstream activator of the apoptotic cascade, or ‘‘executioner’’, i.e.

effector of apoptosis) and function. The functional definition of

‘‘apoptotic’’ and ‘‘pro-inflammatory’’ caspases defines the two

best-studied processes in which these proteases are operative,

though it may not include all their possible functions [5,6].

Apoptosis occurs massively in the developing brain, where it

eliminates neurons that fail to reach their proper targets and helps

shaping/refining neuronal networks. However, caspase’s implica-

tion in neurodevelopment may exceed the morphogenetic and

‘‘systems matching’’–i.e. modulation of optimal connectivity

between neurons and their targets or afferents– role fulfilled by

apoptosis in the developing brain [7]. Indeed, following the

seminal observation by Ishizaki et al. [8], the implication of

caspases in the differentiation of diverse cell types, and particularly

neurons, as well as in various aspects of neuronal plasticity, is

becoming more accepted [9–11]. Across species, both ‘‘initiator’’

and ‘‘executioner’’ caspases appear involved in neuronal differen-

tiation/maturation, and the evidence gathered thus far in the

mammalian brain appears to suggest the ultimate involvement of

caspase-3 [11–16]. Whether the latter is a necessary requirement

or an epiphenomenon consequent to the hierarchical activation of

caspases, as shown to occur following appropriate stimuli leading

to apoptosis [5], is so far unclear.

Sirt1 is a NAD+-dependent class III histone/lysine deacetylase

whose activity is implicated in chromatin remodeling, transcrip-

tional silencing, stress response and cellular differentiation [17,18].

Sirt1 also appears to regulate in a redox-dependent manner

murine neural precursor differentiation, where conditions de-

termining its activation or inhibition direct neural precursors

towards the glial or the neuronal lineage, respectively, by

controlling the expression of the proneural bHLH factor MASH1

[19]. Of particular relevance in this context, is the finding that,

under apoptotic conditions, Sirt1 was shown to be cleaved by

caspases-1, -3,-6, -8 and -9 [20].

Neuronal differentiation is relevant not only to shape the brain

connectivity during development but also in the context of
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neurodegenerative diseases, where differentiation of resident

neuronal progenitors may represent an adaptive approach to

replace, at least in part, the neurons that are killed, though not

exclusively, by caspase activation [7,10]. Hence, as the available

evidence suggests [11–16], caspases may behave as double edge

swords in the pathophysiology of neurodegenerative diseases.

Following this line of thinking, caspase’s pharmacological in-

hibition, albeit beneficial in reducing/slowing down neuronal

death [21–24], theoretically may hinder the intrinsic brain

neurogenic potential. Altogether, these considerations prompted

us to evaluate whether and which caspases are operative in the

differentiation of NT2 cells.

The present results show that although the activity of caspase-2,

-3 and -9 is transiently increased during the RA-induced

differentiation of NT2 cells, caspase-2 and 9 appear to play the

most relevant, though opposite, roles in the process. In fact,

siRNA-mediated silencing of caspase-9 delays/reduces the expres-

sion of neuronal markers in differentiating non-apoptotic NT2

cells. The silencing of caspase-9 expression also greatly reduces the

cleavage of Sirt1 that occurs during NT2-cell differentiation.

Hence, caspase-9 activation seems relevant for the proper RA-

induced neuronal differentiation of NT2 cells, likely through the

fine-tuning of Sirt1 function. In contrast, silencing of caspase-2

increases the expression of neuronal differentiation markers,

suggesting that caspase-2 activation operates as a restraining

mechanism on NT2 cell differentiation.

Materials and Methods

Cell Culture
NT2 cells (ATCC, Manassas, VA, USA) were grown in DMEM

(Invitrogen, Carlsbad, CA, USA) supplemented with 10% fetal

bovine serum (FBS), 1% glutamine and penicillin/streptomycin

(10,000 UI/ml and 10 mg/ml, respectively) and were induced to

differentiate following a cell aggregation protocol [25], with minor

modifications [3]. Retinoic acid (1 mM) was added to the cultures

twice weekly for 4 weeks. Post-mitotic neurons were obtained by

replating the cells on Matrigel (BD, San Jose, CA, USA)-coated

dishes, in fresh medium containing mitotic inhibitors (1 mM
cytosine arabinoside, 10 mM fluorodeoxyuridine, 10 mM uridine)

to reduce proliferation of non-neuronal cells. After 10–15 days of

treatment with mitotic inhibitors the cultures contained .99%

pure post-mitotic neurons (NT2-N).

Removal of Apoptotic Cells
Non-apoptotic cells were purified from apoptotic ones by

negative selection using the Apoptotic cell isolation kit (Biovision,

CA, USA). Briefly, the cells were collected, washed twice with PBS

cells and re-suspended in binding buffer containing Annexin V-

biotin, according to the manufacturer’s instructions. After in-

cubation at room temperature for 15 min in the dark, the cells

were washed, re-suspended in binding buffer containing strepta-

vidin-coated magnet beads and incubated for 15 min at room

temperature. The apoptotic Annexin V-positive cells were

separated from living cells using a magnetic surface (Dynal

MCP-S, Invitrogen).

Caspase Activity Assay
Quantitative enzymatic activity assays were carried out as

previously described [26]. Fifty mg of total cell lysates were assayed
for caspase activity using 7-amino-4-trifluoromethylcumarin

(AFC)-conjugated peptide substrates: YVAD-AFC, VDVAD-

AFC, DEVD-AFC, VEID-AFC, IETD-AFC and LEHD-AFC

(Biovision, CA, USA) as specific for caspase-1, -2, -3, -5, -6, -8 and

-9, respectively. Briefly, cytosolic cell lysates were incubated with

each fluorogenic substrate in appropriate buffer for 2 h at 37uC.
The peptide-AFC was hydrolyzed by the enzyme and the

fluorescence measured using a Victor plate fluorometer (Perki-

nElmer, MA, USA) at Ex400/Em505 nm. Some assays were

performed in the presence of broad spectrum caspase inhibitor Z-

VAD-FMK (20 uM) (Biovision).

siRNA Constructs and Stable Transfection of NT2 Cells
Kits of Ready-cloned HuSH 29mer shRNA against human

caspase-2 and -9 in pGFP-V-RS plasmids were purchased from

Origene (Rockville, MA, USA). Each kit included four shRNA

constructs targeting different regions of each gene. NT2 cells were

separately transfected with each construct to identify the shRNA

that caused maximum inhibition for subsequent experiments. Cells

were transfected using Lipofectamine 2000 (Invitrogen), following

the manufacturer’s instructions. Forty-eight hours after trans-

fection, cells were selected by adding 1 mg/ml puromycin. Stably

transfected NT2 cells were maintained in medium containing

1 mg/ml puromycin. Silencing of caspase-2 or -9 gene was

confirmed by RT-PCR and Western blotting for each clone that

carried a stable transfection. The following shRNA sequences were

selected and used for experiments in which caspase-9 and-2 were

interfered, respectively: AGG ATT TGG TGA TGT CGA GCA

GAA AGACC and CAA GGC CAC CTG GAG GAT ATG

TTG CTC AC. Control NT2 cells also received a plasmid

containing a non-effective 29-mer scrambled shRNA in pGFP-V-

RS to take into account non-specific effects of the shRNA.

Real Time PCR
NT2 cells were harvested at the indicated time points. Taqman

quantitative real-time PCRs (NCAM, MAP2, TH, Mash1,

GAPDH) were performed using commercially available Assay-

On-Demand kits, n. Hs00941821_m1, Hs00258900_m1,

Hs00165941_m1, Hs00269932_m1 and 4333764F, respectively

(Applied Biosystems, Inc., Foster City, CA, USA). Total RNA was

isolated from NT2 using the RNeasy plus mini-kit (Qiagen,

Hilden, Germany) and the concentration was determined by

spectrophotometry. For the generation of the first strand cDNA,

1 mg of total RNA was reverse transcribed by random primer

extension using SuperScript III reverse transcriptase (Invitrogen)

according to the manufacturer’s instructions. Gene expression

assays were performed according to manufacturer’s instructions,

with an ABI 7300 cycler. Triplicate CT values were analyzed in

Microsoft Excel using the comparative CT(DDCT) method,

according to the manufacturer’s instructions. The amount of

target transcript (22DDCT) was obtained by normalizing the values

to endogenous GAPDH.

Antibodies and Western Blot Analysis
Antibodies: polyclonal anti-nCAM (R&D Systems, Minneapo-

lis, USA), polyclonal anti-TH (Millipore, Billerica, MA, USA),

polyclonal anti-caspase-9, monoclonal anti-caspase-2 and poly-

clonal anti-PARP (Cell Signal Technology, Danvers, USA),

polyclonal anti-Sirt1 and monoclonal anti-bactin (Sigma, St Louis,

USA), Goat anti-mouse and goat anti-rabbit HRP (GE Health-

care, Bio-Sciences Corp., NJ, USA) were used as secondary

antibodies. Western blotting: NT2 cells were collected, lysed in

RIPA buffer containing 25 mM Tris-HCl pH 7.6, 150 mM NaCl,

1% NP-40, 1% sodium deoxycholate, 0.1% SDS and protease

inhibitors (protease inhibitor cocktail, Sigma). Protein concentra-

tion for each sample was determined by Bio-Rad protein assay

reagent (Bio-Rad Laboratories, Inc, Richmond, CA, USA),

separated by SDS-PAGE and transferred to PVDF blotting
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membrane. Membranes were washed in TBS-T buffer, blocked

for 2 hr at RT with 5% fat free dried milk and incubated

overnight with primary antibodies. After washing, the membranes

were incubated with HRP-conjugated secondary antibody for 1 h

at RT. The protein signals were visualized using the ECL-Plus

Chemiluminescence kit (GE Healthcare, USA). Densitometric

analysis was performed with TINA image software (version 2.09f,

Raytest, Straubenhardt, Germany).

Statistical Analysis
The data, representing the means 6 SD of three experiments,

each run either in duplicate or triplicate, were analyzed by

ANOVA followed by post-hoc Dunnett test or by Kruskal-Wallis

test, followed by post-hoc Student-Neuman-Keuls test, as appro-

priate.

Results

Caspase-2, -3 and -9 Activities Selectively Increase During
RA-induced Neuronal Differentiation of NT2 Cells
Among various caspases examined, only caspase-2, -3 and -9

were transiently but significantly activated during RA treatment

(RA, Figure 1 A, B and C). For each caspase assay, control samples

were run in parallel in the presence of the pan-caspase inhibitor z-

VAD-fmk (z-VAD-fmk, Figure 1 A-C). As the substrate used in the

caspase-3 assay could also be cleaved by caspase-7 [27], the

activity measured in the caspase-3 assay will be referred to as

caspase-3/7. One week after the beginning of RA treatment,

activation of caspase-2, -3/7 and -9 was maximally increased by

approximately 4, 7 and 3 fold, respectively. At day 14 the activity

of each caspase had returned to the same level displayed by NT2

cells prior to RA treatment. Notably, not only a great fraction of

caspase-2, -3/7 and -9 activity was associated with non-apoptotic

(NA, Annexin V-negative) cells, but the time course of caspase

activation was similar to that observed in the entire cell population

(Figure 1, A-C). At day 7, the relative activity of caspase-2, -3/7

and -9 in non-apoptotic cells was +175%, +366% and +265%,

respectively (P,0.05) of that measured in undifferentiated NT2

cells. On the other hand, the activity of caspase-1,-5,-6,-8 was not

significantly affected throughout the differentiation process

(Figure 1 D). These results indicate that caspase activation in

differentiating NT2 cells is independent of apoptosis, that was

found only in a small percentage of cells in the cultures (, 20%)

and is known to occur during the first 3–4 days after RA induction

[28]. Accordingly, no appreciable cleavage of poly-(ADP-ribose)

polymerase (PARP), was detected at any time point during NT2

cell differentiation (Figure 2A). PARP is a known 116-kD substrate

for caspase-3 and some caspase-3–like caspases that is cleaved

during apoptosis to yield a 85 kDa fragment [29,30].

Despite the similar time course, the relative activity of caspase-

3/7 was twice that of caspase-2 and -9, suggesting that caspase-3

could be downstream of caspase-9 and/or -2 activation. To verify

this hypothesis and elucidate the role of the two latter caspases in

the RA-induced neuronal differentiation of NT2 cells, siRNA-

mediated silencing of either caspase-9 (si-Casp9 cells) or caspase-2

(si-Casp2 cells) was carried out. Success of caspase-9 and caspase-2

silencing was confirmed by Western blotting analysis (Figure 2B

and 2C, respectively), that showed a drastic reduction of each

caspase expression at every time point examined.

Caspase-9 Silencing Reduces the Expression of Neuronal
Differentiation Markers
With respect to control (scrambled si-RNA-transfected) NT2

cells, si-Casp9 cells displayed marked differences in the

Figure 1. Caspase-2, -3 and -9 are selectively activated during
RA-induced NT2 cell neuronal differentiation. Total population
(RA, filled circles) and non-apoptotic (NA, filled triangles) were
harvested at the indicated time points during RA treatment and their
lysates were incubated for the assay of caspase-2 (A), -3 (B) and -9 (C)
activity with the respective fluorogenic substrate (VDVAD-AFC, for
caspase-2, DEVD-AFC, for caspase-3/7 and LEHD-AFC for caspase-9).
Control samples, in the presence of the pan-caspase inhibitor Z-VAD-
fmk, were run in parallel (Z-VAD-fmk, filled squares). Each point
represents the mean 6 SEM of 3 experiments, each run in duplicate.
*P,0.05, compared to the respective value in undifferentiated NT2 cells
(day 0 ). The activity of caspase-1, -5, -6 and -8, expressed as percentage
of the respective basal activity in undifferentiated cells, failed to show
significant changes throughout the RA-induced differentiation (D).
doi:10.1371/journal.pone.0036002.g001
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expression of neuronal differentiation markers (Figure 2). In

control NT2 cells, RA induced a time dependent increase in the

expression of NCAM mRNA, that by the third week reached

a maximal level of expression of ,25 fold (P,0.01), with

respect to undifferentiated cells (Figure 3A). In si-Casp-9 cells

the maximal expression of NCAM mRNA appeared earlier, day

10–14, and reached values higher than those in control cells,

although NCAM mRNA expression was similar in control and

si-Casp-9 cells at later time points (Figure 3A). The Western

immunoblotting analysis of NCAM expression showed that,

during RA-induced differentiation, NT2 cells expressed two

major species of NCAM protein derived from mRNA alterna-

tive splicing [31]: NCAM-140 kDa that is detectable since day 3

from RA induction and NCAM-180 kDa that, in agreement

with its higher expression in more differentiated neurons [32],

begins to appear from day 14 and increases until day 21 of RA

treatment (Figure 3B). While the NCAM-140 protein band was

more intense than in control cells at day 7, 10 and 14 of RA

treatment, the signal relative to NCAM-180 was markedly

down-regulated in si-Casp-9 cells (Figure 3B). Silencing of

caspase-9 also altered the level of MAP2 mRNA. In si-Casp-9

cells the expression of MAP2 mRNA was significantly reduced

during the first week of treatment, when compared to control

NT2 cells (Figure 3C). Although MAP2 mRNA expression was

similar in si-Casp-9 and control cells at day 14, it was again

lower at day 21 and 28 with respect to control cells (Figure 3C).

NT2 cells differentiate into neurons endowed with different

neurotransmitter phenotypes, including the dopaminergic one

[33]. In control NT2 cells the mRNA of TH, the rate-limiting

enzyme in dopamine synthesis, was induced by RA (,2–3 fold)

beginning at day 7 (Figure 3D). TH expression was ,60 and

150 fold greater than in undifferentiated cells at day 21 and 28

of RA treatment, respectively. The mRNA expression of TH

showed a similar time course in si-Casp-9 cells, but from day 7

Figure 2. Lack of apoptotic activity in differentiating NT2 cells (A) and expression of caspase-9 (B) and caspase-2 (C) after si-RNA
transfection of NT2 cells. Notwithstanding the increased caspase activity, no noticeable cleavage of poly-(ADP-ribose) polymerase (PARP) to its
89 kDa fragment was detected at any time point during NT2 cell differentiation (A). Specific si-RNA treatment ( see Material and Methods section)
achieved an almost complete depletion of caspase-9 (B, si-Casp9) and caspase-2 (C, si-Casp2), that in both cases persisted throughout the RA-induced
differentiation period of NT2 cells.
doi:10.1371/journal.pone.0036002.g002
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onward was constantly lower than in control NT2 cells. TH

mRNA reached a maximal increase of ,90 fold at day 28,

versus the respective undifferentiated cells, thus showing a ,40%

reduction (p,0.05) in comparison to control cells (Figure 3D).

The TH protein expression in control NT2 cells appeared at

day 10 of RA treatment and increased thereafter to reach its

maximal expression at day 28. In si-Casp-9 cells the TH protein

became visible only after 3 weeks of RA treatment and its

expression was markedly lower than in control cells at day 28

(Figure 3E).

Caspase-2 Silencing Increases the Expression of Neuronal
Differentiation Markers
In si-Casp-2 cells the NCAM mRNA expression was higher

(p,0.05) than in control cells at every time point, beginning at

day 7 (Figure 4A). The higher expression of NCAM transcript

in si-Casp2 cells was confirmed at the protein level: NCAM-140

was more abundantly expressed, particularly at day 10, 14 and

21, and NCAM-180 was markedly up-regulated at day 14, 21

and 28, respectively (Figure 4B). The apparent discrepancy

between the NCAM mRNA, showing a peak at day 14, and the

NCAM-180 protein level that appears to reach a peak in si-

Casp2 cells at day 21, likely depends on the fact that the

mRNA data include both NCAM-140 and NCAM-180

proteins, as the probe utilized in the real time PCR does not

discriminate between the alternatively spliced mRNAs. The time

course of MAP2 mRNA expression in si-Casp-2 cells was

similar to that shown by control NT2 cells. Although showing

a decreased expression at day 3 (260%), MAP2 mRNA was

up-regulated starting from day 10 of RA induction and was

higher (P,0.05) than in control cells thereafter (Figure 4C).

Also the TH mRNA expression was significantly up-regulated in

si-Casp-2 cells starting at day 7 of RA treatment, when the

difference was about 10 fold, and showed roughly twice the

expression exhibited by control cells at the following time points

(Figure 4D). Western blot analysis confirmed the earlier and

Figure 3. Caspase-9 silencing decreases the expression of neuronal markers in differentiating NT2 cells. NT2 cells stably transfected
with scrambled si-RNA or with caspase-9 si-RNA (see Material and Methods section) were harvested at the indicated time points during RA treatment.
A, C and D: relative expression of NCAM, MAP2 and TH mRNA, respectively, analyzed by real-time PCR. Results were normalized to GAPDH mRNA
levels. For each neuronal marker, the expression in control undifferentiated NT2 cells (day 0) was set at a value of 1. Each point represents the mean
6 SD of three experiments. B: representative western blots of NCAM protein expression in not interfered (si-RNA) and si-Casp-9 NT2 cells. The
experiment was repeated three times with similar results. Densitometric analysis revealed, after normalization to actin, a decrease of NCAM-180
protein band to ,10 and 40% of the intensity in control cells at day 21 and 28. E: representative western blots of TH protein expression in control (si-
RNA) and si-Casp-9 cells showing that TH protein expression was both delayed and reduced in si-Casp9 cells, with respect to control cells. The
doublets in the TH Western blots are likely the result of the expression of alternatively spliced TH mRNA. Inserts show on a smaller scale the results at
the earlier time points of differentiation for MAP2 (insert 2C) and TH (insert 2D) mRNA expression. *P,0.05, versus the respective value in control NT2
cells.
doi:10.1371/journal.pone.0036002.g003
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higher expression of TH protein in si-Casp-2 cells, starting at

day 7 and persisting up to day 28 (Figure 4E). Interestingly, the

mRNA expression of the homeobox transcription factor Pitx-3,

known to be expressed in a subset of dopaminergic neurons and

to promote their maturation/survival [34], was decreased in si-

Casp-9 cells but was 4 fold higher than in control cells at day

28 of RA treatment in si-Casp-2 cells (results not shown). As

silencing of caspase-2 may have induced adaptive regulation of

other caspases and particularly of caspase-9, we measured

caspase-9 activity in si-Casp2 cells and found that was

unchanged, with respect to control cells (data not shown).

Silencing of Caspase-9, but not Caspase-2 Reduces Sirt1
Protein Cleavage and, Transiently, MASH1 Expression
Sirt1 is a NAD+-dependent class III histone deacetylase

whose redox-dependent function controls neural precursor cell

differentiation towards a glial or neuronal fate [19]. Because

Sirt1 is also a putative substrate of several caspases in apoptotic

conditions [20], we evaluated its expression during NT2 cell

differentiation. The expression of the 120 kDa full length Sirt1

protein appeared rather constant during RA-induced differen-

tiation (Figure 5A, B). The Western immunoblotting, however,

showed that in addition to the full length protein, the anti-Sirt1

antibody (directed against a C-terminal epitope of Sirt1)

identified a second immune-reactive band, migrating with an

apparent m.w. of ,100 kDa (Figure 5A,C). While in control

cells the expression of the latter band showed a tendency to

increase, between day 3 and 10, in si-Casp-9 cells was reduced

between day 3 and 14 of RA treatment (Figure 5D), thus

decreasing the ratio between the ,100 kDa fragment and the

full length Sirt1, that failed to significantly differ in comparison

to control cells (Figure 5B). In contrast, the expression of the

,100 kDa Sirt1 fragment was similar in si-Casp-2 cells and in

control cells (Figure 5 C, D). As Sirt1 could be a substrate also

for caspase-3 [20], the activity of the latter was measured in si-

Casp-9 and si-Casp-2 cells. Caspase-3 activity before and during

RA treatment, rather unexpectedly [5], was unchanged by

caspase-9 silencing, but was markedly reduced in si-Casp2 cells

(Figure 6A), thus pointing to a major role of caspase-9 in Sirt1

cleavage in differentiating NT2 cells.

Figure 4. si-RNA-mediated caspase-2 silencing increases the expression of neuronal differentiation markers in differentiating NT2
cells. NT2 cells stably transfected with scrambled si-RNA or with caspase-2 si-RNA (see Material and Methods section) were harvested at the indicated
time points during RA treatment. A, C and D: relative expression of NCAM, MAP2 and TH mRNA, respectively, analyzed by real-time PCR. Results were
normalized to GAPDH mRNA levels. For each neuronal marker, the expression in control undifferentiated NT2 cells (day 0) was set at a value of 1. Each
point represents the mean 6 SD of three experiments. B: representative western blot of NCAM protein expression. Each blot was repeated three
times with similar results. Densitometric analysis revealed, after normalization to actin, a ,3, 32, 2.4 and 1.9 fold increase in the intensity of the
NCAM-180 protein band in si-casp-2 cells, with respect to control cells at day 10, 14, 21 and 28, respectively. E: representative western blot of TH
protein expression in control (si-RNA) and si-Casp-2 cells. The TH protein band appeared much earlier (7 versus 14 days) in si-Casp2 cells and
densitometric analysis (n = 3) revealed higher intensity than in control cells. *P,0.05, versus the respective value control NT2 cells.
doi:10.1371/journal.pone.0036002.g004
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Because the anti-Sirt1 antibody recognizes the Sirt1 protein C-

terminus, it was reasonable to assume that the ,100 kDa Sirt1

fragment visualized by our antibody lacks the N-terminus of the

protein, and may thus represent an enzymatically/transcription-

ally defective molecule. In murine neural precursor cells Sirt1 is

recruited by the repressor bHLH factor(s) HES1/5 to the

promoter of the proneural gene MASH1 and contributes to its

repression [19]. We therefore tested whether the changes in Sirt1

cleavage observed in si-Casp-9 cells correlated with an altered

expression of MASH1. As previously shown [35], MASH1 mRNA

expression increased upon RA treatment in control cells, reaching

a peak of expression (, 90 fold over the value in undifferentiated

cells) at day 14 and substantially decreasing thereafter (Figure 6B

and C). In si-Casp-9 cells MASH1 mRNA showed a similar time

course, but its expression was markedly down-regulated at day 3

(P,0.05) (Figure 6B, insert). MASH1 expression in si-Casp-9 cells

although higher at day 7 and 10, was similar to that of the

respective control cells at later time points (Figure 6B). In contrast,

in si-Casp-2 cells Sirt1 cleavage was effective (Figure 5C,D). Not

only in si-Casp2 cells the RA-induced rise of MASH1 mRNA

expression occurred 1 week earlier than in control cells, but up to

day 14 its expression was markedly higher with respect to control

NT2 cells (Figure 6C).

Discussion

The present results show that caspase-2,-3 and -9 are selectively

and transiently activated, in an apoptosis-independent manner,

during the RA-induced neuronal differentiation of NT2 cells.

Silencing of either caspase-9 or -2 shows that these two enzymes

take part in the regulation of neuronal differentiation in an

opposite manner: while caspase-9 activation facilitates, caspase-2

activation appears to hinder/delay the differentiation process, as

shown by the downregulated or increased/earlier expression of

neuronal differentiation markers in si-Casp9 or si-Casp-2 cells,

respectively. The NAD+-dependent histone deacetylase Sirt1 is

cleaved during NT2 neuronal differentiation in a caspase-9

dependent manner and the decrease of Sirt1 cleavage in si-Casp9

cells is associated with a transiently reduced expression of the

proneural transcription factor MASH1 at early times of differen-

tiation. Though, with respect to control cells, Sirt1 cleavage is not

significantly affected in si-Casp2, the latter show an earlier and

increased expression of MASH1 which is consistent with the

earlier/higher expression of neuronal differentiation markers.

The timing of caspase activation and Sirt1 cleavage does not

match the changes in neuronal marker expression, which last

much longer. Such a temporal discrepancy suggests that the action

Figure 5. si-RNA-mediated silencing of caspase-9, but not of caspase-2, reduces Sirt1 cleavage. NT2 cells stably transfected with
scrambled si-RNA, caspase-9 or caspase-2 si-RNA (see Material and Methods section) were harvested at the indicated time points during RA
treatment. A: representative western blot of Sirt1 showing the,100 kDa fragment recognized by the anti-Sirt1 antibody (directed against an epitope
in the C-terminus of the protein) in control and si-Casp9 cells during RA-induced differentiation. In si-Casp9 cells the intensity of the band
corresponding to the 100 kDa Sirt1 fragment is clearly reduced between day 3 and 14 days. B: representative Sirt1 western blot in control and si-
Casp2 cells, showing that the abundance of the 100 kDa Sirt1 fragment in si-Casp2 cells is comparable to that in control cells. C: results of
densitometric analysis for the 100 kDa Sirt1 fragment (each bar represents the mean 6 SD of 3 experiments). D: results of densitometric analysis for
the full length Sirt1 (120 kDa, each bar represents the mean6 SD of 3 experiments), showing its constant expression in control, si-Casp9 and si-Casp2
cells.
doi:10.1371/journal.pone.0036002.g005
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of activated caspases on the expression of the neuronal differen-

tiation markers examined, none of which to our knowledge been

shown to behave as a caspase substrate, is indirect.

The activation of caspase-9 has been shown to play a crucial

role in cellular differentiation and neuronal maturation through

the cleavage/inactivation of gene products, i.e. Nanog, that

support the multipotential and self-renewal features of stem cells

[15] or semaphorin-7A, whose optimal concentration is important

for the proper organization of mouse olfactory sensory neuron

axonal projections [16]. The present results suggest that caspase-9

activation modulates neuronal differentiation/maturation also

through the cleavage of Sirt1. In fact, caspase-9 silencing reduces

the intensity of the anti-Sirt1 immunoreactive 100 kDa fragment

between the beginning and day 14 of RA treatment. Thus, the

present results extend the relevance of caspase-mediated Sirt1

cleavage, previously shown to occur under apoptotic conditions

[20], and suggest its implication also in neuronal differentiation. As

caspase-9 silencing does not alter caspase-3/7 activation in our

cultures during differentiation (Figure 6A), the residual Sirt1

cleavage observed in si-Casp-9 cells may be due to the proteolitic

action of caspase-3 [20]. The anti-Sirt1 antibody utilized in these

experiments was generated against an epitope residing in the Sirt1

C-terminus, suggesting that the anti-Sirt1 immunoreactive frag-

ment reasonably represents Sirt1 lacking the N-terminal region.

The latter includes several putative caspase cleavage sites, i.e.
121DEDD125, 163DEED166 and 214ELDD217, that, however, need

to be validated as physiological cleavage sites. Recently, Calvanese

et al [18] showed that Sirt1 expression, measured by immunocy-

tochemistry, is high in stem cells, where it correlates with the

expression of pluripotency markers, and decreases upon differen-

tiation. The fact that in our cultures full length Sirt1 and its

fragment, assessed by western blot, failed to show reciprocal

changes in their expression, though at first surprising, may reside

in the fact that only a percentage of NT2 cells differentiate and not

all of them are in the same differentiation stage at any given time

point. Such an event would easily mask the actual protein changes

occurring in distinct cell populations. Modeling by specific

structural tests predicts long stretches of unordered regions at

the N- and C-terminal portions of Sirt1, a feature that would

confer flexibility and facilitate protein-protein interactions [36].

Indeed, a Sirt1 mutant lacking its N-terminal region fails to bind

and deacetylate histone H1, with consequences on chromatin

remodeling [37]. Alternatively, the N-terminus-lacking Sirt1

fragment detected in differentiating NT2 cells may represent

a molecule unable to optimally interact with other proteins, either

acting as Sirt1 regulators [17,36] or endowed with DNA binding

properties such as the bHLH transcription factor HES1 [38]. The

lack of a stringent temporal correlation between Sirt1 cleavage and

MASH1 expression and the rebound of the latter at day 10 and 14

of RA induction in si-Casp9 cells, cannot be easily explained at this

moment. However, as the HES1/Sirt1 complex inhibits gene

transcription of the neurogenic activator-type bHLH factor

MASH1 [19,38], the downregulation of MASH1 mRNA expres-

sion, observed in si-Casp9 cells at early times of differentiation,

may be the consequence of a greater availability of full length Sirt1

for HES1 binding. Such an inference agrees with the recent

demonstration that Sirt1 expression not only decreases upon

differentiation of human and mouse embryonic stem cells, but also

that the greatest changes were observed in neuroectodermal

markers, that were overexpressed in Sirt1-knock-out cells and

down-regulated in Sirt1 overexpressing cells [18]. The same

authors, by showing a different time-course for the downregulation

of Sirt1 mRNA, that decreases slowly, and Sirt1 protein, that

drops markedly 7 days after differentiation induction, hypothesize

that Sirt1 is regulated at various levels during human embryonic

stem cell differentiation [18]. The present results suggest that non-

apoptotic caspase-9-mediated cleavage is part of the regulatory

network of Sirt1 functions. The fact that Sirt1 cleavage is present

also in undifferentiated NT2 cells (Figure 5) may relate to the

commitment of these cells towards the neuronal lineage [1–3].

Though previous evidence show that Sirt1 inhibition appears to

regulate both positively [39] and negatively [40] neuronal

differentiation, these discrepancies may be due to the different

cell types examined or, alternatively, to the Sirt1 pleiotropic

Figure 6. Effects of si-RNA-mediated silencing of caspase-9 and caspase-2 on Caspase-3/7 activity and MASH1 expression. A:
caspase-3/7 activity assay showing that caspase-3/7 activation is similar in si-Casp9 and in control cells, while is markedly reduced in si-Casp2 cells.
*P,0.05, versus the value in the respective undifferentiated cells (day 0); aP,0.05, versus the respective value in control cells. B: relative expression of
MASH1 analyzed by real-time PCR in control and si-Casp9 cells. Results were normalized to GAPDH mRNA levels. The MASH1 expression in control
undifferentiated NT2 cells (day 0) was set at a value of 1. Each point represents the mean 6 SD of three experiments. The insert shows on a smaller
scale the results at day 0 and 3 of RA-induction. C: relative expression of MASH1 analyzed by real-time PCR in control and si-Casp2 cells. *P,0.05,
versus the respective value in control NT2 cells.
doi:10.1371/journal.pone.0036002.g006
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cellular functions, each likely requiring an appropriate dosage of

its activity [17].

Notably, si-Casp-9 and si-Casp-2 cells show opposite changes in

NCAM-180 protein expression which are paralleled by changes in

the same direction in the expression of TH, a marker of the

dopaminergic neuronal phenotype, and MAP2, a family of

microtubule associated proteins (including MAP2 a and b)

typically localized in the somato-dendritic compartment and

important for conferring morphology and polarity to differentiated

neurons [41]. A single NCAM gene is translated into three

membrane-bound protein isoforms, NCAM-120, NCAM-140 and

NCAM-180 kDa, by mRNA alternative splicing [31]. NCAM-120

is predominantly expressed in glia and, accordingly, was not

observed in our cultures. As confirmed by the present results,

NCAM-140 is most abundant during early neuronal differentia-

tion, while NCAM-180 increases gradually during neuronal

differentiation and is present in more differentiated/mature

neurons [32], where its expression correlates with the establish-

ment of stable synapses [42]. Accordingly, the expression of

NCAM-180 was dramatically reduced in si-Casp9 cells, consistent

with the reduced MAP2 and TH mRNA and protein expression,

suggesting that caspase-9 silencing slowed down/decreased

neuronal differentiation. In contrast, si-Casp2 cells exhibited both

an early and enhanced expression of NCAM-180, in parallel with

an increased expression of MAP2 and TH. Albeit through

homophilic and heterophilic interactions NCAMs may promote

neuronal differentiation and plasticity [31], a relationship between

the changes of NCAM protein isoform expression and the caspase

activation shown here does not appear straightforward as, to our

knowledge, there is no indication that NCAMs are caspase

substrates nor NCAM fragments were visualized in the western

blots. However, histone acetylation-induced chromatin remodel-

ing appears to cooperate with depolarization in the developmen-

tally-regulated alternative splicing of NCAM mRNA [43]. It is

therefore intriguing to speculate that the latter may be responsive

to changes in Sirt1 deacetylase activity in si-Casp9 cells.

A puzzling aspect concerns the positive regulation exerted by si-

RNA silencing of caspase-2 on NT2 neuronal differentiation, that

hints to a detrimental physiological action of this caspase. Caspase-

2 is the most evolutionarily conserved member of the family. Its

high expression in neurons in the embryonic brain and decline

during brain maturation led to infer that caspase-2 has a major

role in neurodevelopment-associated apoptosis [44]. However, the

precise role of caspase-2 in apoptosis and pathophyiology is, as yet,

controversial due to the lack of identified specific substrates, the

ambiguity of its function in the apoptotic cascade (initiator or

executioner?) and the mild phenotype shown by caspase-2 null

mice [45,46]. The latter, in contrast to caspase-3 and -9 null mice

characterized by embryonic or early post-natal death and brain

abnormalities [47], develop normally and show limited and cell-

type specific changes in sensitivity to apoptotic stimuli [48].

Remarkably, however, recent evidence shows that selective

silencing/inhibition of caspase-2 exerts neuroprotective effects in

adult and neonatal rodents exposed to ischemic insults [22–24].

Hence, as suggested [44], caspase-2 may perform cell-specific and

context-dependent functions. For instance, caspase-2 is known to

be activated in response to an increased production of reactive

oxygen species/ROS [45,46], a condition that also characterizes

differentiating neurons from their progenitors [49]. Although the

nature of caspase-2 putative substrate(s)/interacting partners in

differentiating neurons is not known at the moment, the fact that

caspase-2 is activated in non-apoptotic NT2 cells and that its

silencing elicits an earlier and increased expression of neuronal

differentiation markers suggests that caspase-2 activation is part of

a homeostatic mechanism that regulate neuronal differentiation.

In conclusion, caspase-2 and -9 activation modulates in an

opposite manner neuronal terminal differentiation/maturation,

likely according to a complex and tightly-regulated program that

appears to include, at least in part, Sirt1 functions. Although also

caspase-3/7 activity was increased during RA-induced NT2

differentiation, such an activity was either unchanged, in si-

Casp-9, or decreased, in si-Casp-2 cells. These results, while

appearing at variance with previous reports on the relevance of

caspase-3 for neuronal differentiation in murine neural precursors

[12–16], also suggest that either caspase-3 has a minor role on the

relatively ‘‘late’’ parameters of neuronal differentiation examined

in our experimental model or that the activity we measured is

mostly due to caspase-7. The latter, however, even though induced

by RA at 48–72 hours in NT2 cells, would selectively degrade the

proliferation-promoting factor OCT4 when NT2 cells were

induced to differentiate by nucleoside drugs, but not by RA [50].

Altogether, although further experiments are needed to clarify

the role of the increased caspase-3/7 activity, the present results

extend the present knowledge regarding non-apoptotic functions

of caspases in neuronal differentiation and point to distinct roles

and time-frame of action for each caspase in the regulation of

terminal neuronal differentiation. Such an issue appears relevant

in the context of the potential use of caspase inhibitors [21–24] as

a pharmacological approach to reduce the neuronal damage in

neurodegenerative diseases that, on the other hand, may also

benefit from stimulating or, at least, not counteracting the

regenerative potential of resident neuronal progenitors.
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