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E3-instantons that generate non-perturbative superpotentials in IIB N = 1 compactifications have a much
more frequent occurrence than currently believed. Worldvolume fluxes will typically lift the E3-brane ge-
ometric moduli and their fermionic superpartners, leaving only the two required universal fermionic zero-
modes. We consistently incorporate SL(2, Z) monodromies and world-volume fluxes in the effective theory
of the E3-brane fermions and study the resulting zero modes spectrum, highlighting the relation between
F-theory and perturbative IIB results. This leads us to a IIB derivation of the index for generation of super-
potential terms, which reproduces and generalizes available results. Furthermore, we show how E3 world-
volume fluxes can be explicitly constructed in a one-modulus compactification, such that the instanton has
exactly two fermonic zero-modes. This construction is readily applicable to numerous scenarios.

© 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

1 Introduction

The appearance of the KKLT scenario [1], which requires a superpotential generated by non-perturbative
effects such as E3-brane instantons or gaugino condensates, has sparked a massive search for compact-
ifications that geometrically allow for such effects. In F/M-theory language, a popular approach is to
build Calabi-Yau fourfolds that accommodate divisors with holomorphic Euler characteristic equal to one,
∑3

k=0(−)kh0,k = 1, in order to satisfy Witten’s weak criterion [2]. One may also try to satisfy the strong
criterion, seeking for rigid divisors, i.e. with h0,3 = 0, and in addition h0,1 = h0,2 = 0. Such divisors
would support an M5-brane instanton. Examples of systematic searches for such manifolds are [3].

The problem can be translated into IIB language, where the sought-for object is a Calabi-Yau threefold
orientifold setup containing a rigid four-cycle (h0,2 = 0) with h0,1 = 0 and such that the cycle is orientifold
invariant but transverse to the O7-plane. Such a divisor would support an E3-brane instanton with exactly
two fermionic zero-modes.

It is known that turning on 3-form fluxes can lift some of the unwanted zero-modes of E3-brane in-
stantons [4]. However, constructing such fluxes explicitly in concrete CY threefolds is not practical. On
the other hand, the E3-instanton itself supports a gauge-field whose non-trivial flux can lift the geometric
moduli of an otherwise non-rigid E3-brane, such that it effectively becomes rigid. This mechanism can be
encoded in a brane superpotential [5]. In fact, that such fluxes can freeze D-branes wrapped on divisors
has been exploited in papers that study black hole microstate counting [6]. However, the technology has
not made its way into the instanton literature. Part of the reason might be that one expects such fluxes to
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be intractable or very difficult to construct. In this paper, we will show that this not necessarily the case,
discussing a case in which it is very simple and intuitive to find fluxes that can entirely freeze an E3-brane.

2 The fluxless case

F-theory vacua are type IIB backgrounds that include fully back-reacting 7-branes, whose presence is
signaled by a non-trivial axion-dilaton τ , required by supersymmetry to depend holomorphically on the
internal coordinates of the compactification manifold X :

∂̄τ = 0 . (1)

There can be either D7-branes or more general (p, q) 7-branes, obtained by acting on a D7-brane – i.e. a
(1,0) 7-brane – by an SL(2,Z) duality transformation. A D7-brane sources one unit of Ramond-Ramond
(RR) flux F1 = dC0 and is then characterized by a monodromy τ → τ + 1 of the axion-dilaton τ :=
C0 + ie−φ on a closed loop linking the D7-brane. Analogously, a (p, q) 7-brane is characterized by a more
general SL(2,Z) monodromy of τ :

τ → τ ′ =
aτ + b

cτ + d
, with a, b, c, d ∈ Z and ad− bc = 1. (2)

The idea behind F-theory is to encode the data of the space X and the axio-dilaton τ together into a
single torus-fibered manifold Y . The latter is defined by a projection π : Y → X , such that above each
point in X , the complex structure of the torus fiber is literally equal to the value of the axio-dilaton τ at
that point. We are interested in backgrounds leading to N = 1 supersymmetry in d = 4. This requires X
to be a Kähler threefold, and Y to be a Calabi-Yau fourfold.

Although the torus directions of Y are per se unphysical, one can still make sense of them through the
dual M-theory picture: Compactify M-theory on Y , whereby one fiber circle is the M-theory circle. Then,
by a fiber-wise T-duality on the other circle S1

T , one obtains IIB on X × R
3

� S̃1
T , with S̃1

T is fibered over
X . By shrinking the torus fiber, one recovers a Poincaré invariant 4d IIB vacuum with non-constant τ .

This last chain of dualities relates a Euclidean D3-brane (E3-brane) on an internal four-cycle, or divisor
D of X , to a Euclidean M5-brane on a six-cycle D̂ ⊂ Y . D̂ is a torus-fibration over D, i.e. D̂ = π−1(D).

In [2], Witten found that the fermionic zero-modes of an M5-instanton on a six-cycle D̂ of a CY fourfold
Y are counted by the Hodge numbers h0,k(D̂). A necessary criterion for generation of a superpotential
is that the holomorphic Euler characteristic equal one, i.e.

∑
k(−1)k h0,k(D̂) = 1, whereas the strong

criterion requires that all such numbers vanish except for h0,0(D̂) = 1.
While this statement has become the gold standard of instantons, it is often impractical from the IIB

perspective, especially if worldvolume fluxes are to be included. In [9], we recast the zero-modes of the M5-
brane in terms of E3-brane data. Given a IIB background with varying axio-dilaton τ , define the following
one-form:

Q1 =
i
2

d(τ + τ̄)
τ − τ̄

=
1
2
eφ F1 =

i
2
(∂̄φ− ∂φ) . (3)

This object can be regarded as the connection of a U(1) bundle, henceforth referred to asU(1)Q, defined so
that the transition function acting on a typical section is a phase ei arg(c τ+d), whenever the background of
τ undergoes an S-duality of the form (2). From this U(1)Q bundle, one can construct a covariant derivative
dQ ≡ d − iq Q1 , and an associated holomorphic line bundle LQ. By supersymmetry, this line bundle is
directly related to the canonical bundle of the compactification threefold as LQ ≡ K−1

X .
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Our analysis shows that an E3-instanton in a generic τ -background has left-handed and right-handed
fermionic zero-modes given by the following (twisted) cohomologies:

l.h. zero modes cohomology group

λα
z.m. H0,0

∂ (D)
ψα

z.m. H0,1

∂̄
(D)

ρα
z.m. H2,0

∂ (D)

r.h. zero modes cohomology group

λ̃α̇
z.m. H0(D,L−1

Q )
ψ̃α̇

z.m. H1(D, L̄−1
Q )

ρ̃α̇
z.m. H2(D,L−1

Q )

Here, we are displaying the zero modes of the appropriately topologically twisted worldvolume fermions
λα, ψα, ρα, λ̃α̇, ψ̃α̇, ρ̃α̇, which are (0, k) or (k, 0) forms on D carrying also (anti)chiral spinorial indices
associated to the four non-compact flat directions. It can be shown that these E3-instanton modes are re-
lated to the M5-instanton fermionic zero-modes found in [2] as described by Fig. 1. One can also repeat the
anomaly argument of [2] to obtain the following sufficient condition for the generation of a superpotential:
χE3 = 1, with χE3 := χ(D,OD)−χ(D,L−1

Q ) ≡ ∑
k(−)n[h0,k(E3)− h0,k

Q (E3)]. By looking at Fig. 1 it

is easy to see that χE3 ≡ χ(D̂,OD̂). Hence χE3 = 1 reproduces Witten’s M-theory weak criterion [2].

h2
Q(E3)

h2(E3)

h1
Q(E3)

h1(E3)

h0
Q(E3)

h0(E3)

geom. mod.

tw. geom. mod.

tw. Wilson lines

Wilson lines

λ̃α̇
z.m.

λα
z.m.

h3(M5)

h2(M5)

h1(M5)

h0(M5)

Fig. 1 (online colour at: www.fp-journal.org) Schematic description of the relation between E3 and M5
fermionic zero modes. Here hk(E3) ≡ h0,k

∂̄
(D), hk

Q(E3) ≡ hk
Q(D) = dim Hk(D,L−1

Q ) and hk(M5) ≡
dim H0,k

∂̄
(D̂). The zero modes λα

z.m. and λ̃α̇
z.m. correspond to the universal zero modes crucially studied

in [8], often denoted by θα and τ̄ α̇ respectively, of D-brane instantons in orientifold vacua.

In order to make contact with perturbative IIB string theory, one must define the double cover X̃
branched over a divisor locus of class L2

Q � K−2
X . This space is a Calabi-Yau threefold, with an in-

volution of O7/O3 type. In this language, the cohomologies of the E3-brane split up into even and odd
eigenspaces under the involution. Defining the double cover D̃ of the E3-brane onD, one can then see that
our zero-modes map to perturbative IIB as follows:

h0,k(D) → h0,k
+ (D̃) , hk

Q(D) → h0,k
− (D̃) . (4)

Hence, in the orientifold limit we recover the equivariant cohomologies of E3-divisors seen in [7].

3 Magnetized instantons

Our classification of the zero-modes in terms of LQ-valued forms clarifies how to think of these objects
in a very general way: On the one hand, it allows one to count them directly in IIB away from the weak
coupling limit, on the other hand, it relate the zero-modes found in orientifold setups directly to Witten’s
zero-modes in M-theory.

© 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.fp-journal.org
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However, the most interesting application of this new language is the possibility to include E3-world-
volume flux. This is particularly difficult to understand in the M-theory picture because it uplifts to the
problematic self-dual three-form on the M5-brane. In IIB, however the world-volume flux can be under-
stood as a (1, 1)-form Poincaré dual to a sum of holomorphic curves on the E3-divisor. This allows for a
more viable approach. In this section, we display the upshot of our general analysis in [9], which gives the
fermionic action and zero-modes for a magnetized E3-brane in the presence of a generic τ background.

The worldvolume DBI flux on the E3-brane transforms as a doublet under S-duality:
(

FD

F

)

→
(
a b

c d

)(
FD

F

)

, (5)

where F = 2πα′FE3 − i∗B2 is the ‘electric’ flux, and FD is the ‘magnetic’ dual flux. The BPS equations
of holomorphy and anti-self-duality impose that:

F0,2 = F2,0 = 0 , τ F = FD . (6)

From this one can deduce that F is a 2-form transforming as a section of LQ under S-duality:

∂̄Q(e−φ F) = 0 ∼ ∂̄(F) = 0 ⇐⇒ F ∈ H1(D,T ∗
D ⊗ LQ) . (7)

In IIB orientifold language, this corresponds to saying that F ∈ H1,1
− .

In order to arrive at our final result, we will introduce two more objects rather briefly, referring to [9]
for details. The first is Ω, a holomorphic (3, 0)-form that takes values in LQ, i.e. Ω ∈ KX ⊗ LQ. In the
case of constant τ and trivial LQ � K−1

X , it reduces to the usual CY threeform. The second set of objects
are composite tensors built with the extrinsic curvature Km

ab of the E3-divisor in X :

(SF )ı̄j̄
uv = −e−φKm

t̄[ı̄Fj̄]
t̄Ω̄m

uv

(8)

(S̃F )ij
ūv̄ = −e−φKm

t[iFj]
tΩm

ūv̄ .

Starting from the general action of [10], we obtain the following one for the topologically-twisted fermions:

SF =
∫

D

(
ψ ∧ ∗∂λ− ψ̃ ∧ ∗∂̄Qλ̃− ρ ∧ ∗∂̄ψ + ρ̃ ∧ ∗∂Qψ̃

)

+
∫

D

√
deth

(
ρ · SF · ρ− ρ̃ · S̃F · ρ̃) (9)

The first line reproduces the expected equations for the zero-modes in the fluxless case. The second line,
on the other hand, shows that ρ and ρ̃ acquire masses through the presence of background DBI fluxes and
can then be lifted by them. The S operators can be regarded as cohomology maps:

SF : H2,0
∂ (D) → H0,2

∂̄
(D)

S̃F : H0,2

∂̄
(D,L−1

Q ) → H2,0
∂ (D,LQ) . (10)

In this language, the fermionic zero-modes for an E3-instanton can be recast into the following final form:

l.h. zero modes vector space

λα
z.m. H0(D, ŌD)
ψα

z.m. H1(D,OD)
ρα
z.m. kerSF ⊂ H2(D, ŌD)

r.h. zero modes vector space

λ̃α̇
z.m. H0(D,L−1

Q )
ψ̃α̇

z.m. H1(D, L̄−1
Q )

ρ̃α̇
z.m. ker S̃F ⊂ H2(D,L−1

Q )

(11)

Importantly, one can show [9] that this flux-induced lifting of the ρ and ρ̃ zero modes is in precise corre-
spondence with the flux-induced lifting of the geometric zero-modes superpartners, which was discussed
above. In the following section we will exploit this geometric characterization in order to look for E3-
branes wrapping non-rigid divisors but nevertheless contributing to the superpotential.

www.fp-journal.org © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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4 Example

In this section, we show that all of our results can have a fairly simple hands on incarnation in algebraic
geometry. In order to freeze an instanton via worldvolume fluxes one has to find rigid holomorphic curves
in the threefold and impose that the E3-divisor entirely contain them.

The setting is a simple one-modulus Kähler threefold: X = P
3. We will treat it in the perturbative

IIB limit, where we will use its CY double-cover X̃ . It is defined as the degree eight hypersurface in the
weighted projective fourfold P

4
11114, with homogeneous coordinates [z1 : . . . : z4 : ξ]. Our hypersurface

equation will be:

ξ2 + z8
1 + . . .+ z8

4 + ψ2 P4(zi)2 = 0 , with ψ ∈ C , (12)

and P4 is some generic polynomial of homogeneous degree four. The orientifold involution σ acts on X̃ as
a reflection, σ : ξ → −ξ. This CY threefold has one Kähler modulus and contains no rigid divisors, hence
it is traditionally ruled out for generating non-perturbative superpotentials [11].

The simplest divisorD (here, for simplicity, we use the same symbol forD and D̃) on which an E3 can
be wrapped is a divisor given by the vanishing locus of a degree one polynomial PD:

PD : a1z1 + . . .+ a4z4 = 0 , (13)

where the ai are arbitrary complex numbers. Since an overall rescaling of PD doesn’t change the actual
divisor, the number of geometric deformations of D is h0,2

− = 3. On the other hand, the divisor is auto-
matically invariant under σ and then it has h0,2

+ = 0.1 In our language, this instanton has, beside the two
omnipresent λα

z.m. zero-modes, 3 zero-modes ρ̃α
z.m. that spoil superpotential generation.

Our claim is that all three zero-modes can be lifted by an appropriate flux. A holomorphic flux on a
divisor is Poincaré dual to a linear combination of Riemann surfaces. CY threefolds are known to contain
huge amounts of rigid spheres that are usually counted by topological invariants. In this particular case,
there are 29504 isolated degree one P

1’s. We can fix the ai’s in such a way that D contains some of these
curves and choosing the flux on D to be dual to such two-cycles. These P

1’s being isolated in X̃ , if the
divisor moves the two-cycle dual to the flux will continue to exist, but will no longer be holomorphic.
Dually, F0,2 will cease to be vanishing, hence realizing our zero modes lifting mechanism.

Define the curve C1 as the complete intersection of three equations in P
4
11114:

C1 : z1 = η z2 ∩ z3 = η̃ z4 ∩ ξ = ψ P4 ⊂ P
4
11114 , (14)

where η8 = η̃8 = −1. Its orientifold image C ′
1 is defined in the same way up to the sign change ξ → −ξ.

Satisfying these three equations automatically implies that (12) is zero. Hence, both C1 and C′
1 lie

in X̃ . It can be easily shown that they are P
1’s, and with more work, that they are rigid. If we define

F via Poincaré duality as F � PDD(C1 − C′
1), this flux will be odd under σ, as required.2 In order

for the curves to be holomorphic contained in D, the ai’s in PD (13) must satisfy a1 η + a2 = 0 and
a3 η̃ + a4 = 0. This kills off two out of three ρ̃ zero-modes. The E3-brane now has the following shape:
PD(C1) = a1 (z1−η z2)+a3 (z3− η̃ z4) = 0, hence with one geometric modulus. The latter can be easily
fixed by adding another curve/image-curve pair to the flux:

C2, C
′
2 : z1 = η z4 ∩ z3 = η̃ z2 ∩ ξ = ±ψ P4 ⊂ P

4
11114 (15)

which imposes the further restrictions a1 η + a4 = 0 and a3 η̃ + a2 = 0.
Hence, a flux F � PDD (C1 + C2 − C′

1 − C′
2) completely freezes the E3-brane to be given by:

PD = a(z1 − η z2 + η
η̃ z3 − η z4) = 0 . (16)

1 Note that h0,2
− corresponds to invariant geometric deformations. Since the Ω 3-form is itself odd, it maps even deformations

to odd (0, 2)-forms.
2 This flux also needs a half-integrally quantized component [12]. This issue is addressed in detail in [9].
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The results of our previous sections then imply that this magnetized E3-brane has exactly the two fermionic
zero-modes and can generate a non-perturbative superpotential.3

5 Conclusion

We have recast Witten’s analysis of M5-instanton zero-modes in IIB language, in order to treat E3-
instantons in non-trivial backgrounds for τ . This entails viewing the fermionic zero-modes as forms on
the E3-brane taking values in a line bundle LQ, that is dual to the canonical bundle of the threefold by
supersymmetry. The analysis confirms the results of [7] in the orientifold limit.

We generalized the analysis to include DBI fluxes on the worldvolume of the E3-brane. We were able
to write an SL(2,Z)-covariant action for the fermions, and found that the fluxes indeed create masses for
the zero-modes corresponding to geometric deformations of the E3-divisor.

All of this machinery was put to use to illustrate that even a simple one-modulus, non-toroidal CY three-
fold with an O7 plane, the P

4
11114[8], contains a divisor that generates a non-perturbative superpotential,

after being rigidified by a flux dual to a rigid curve.
The fact that we used a very simple form of the hypersurface equation is irrelevant. CY threefolds

typically contain thousands of rigid holomorphically embedded P
1’s, counted by the Gromov-Witten in-

variants. Hence, we expect such rigidifying fluxes to be a generic feature in the landscape.
One should also note that instantons are not objects that can be ‘put in’ at will, but must be summed

over, and so must their worldvolume fluxes. Hence, any IIB compactification of this type is bound to receive
many more corrections to the superpotential due to instanton effects than previously believed. We hope that
this work has shed some new light on the landscape problem, and will inspire new explorations for models
of moduli stabilization.
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