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Abstract. This paper illustrates the application of the Lie transform normal-form theory to the construc-
tion of the 1:2 resonant normal form corresponding to a wide class of natural Hamiltonian systems. We
show how to compute the bifurcations of the main periodic orbits in a potential with double-reflection sym-
metries. The stability analysis of the normal modes and of the periodic orbits in general position allows us
to get overall information on the phase-space structure of systems in which this resonance is dominating.
As an example we apply these results to a class of models useful as galactic potentials.

1 Introduction

The 1:2 resonance or “Fermi resonance” plays a prominent role in non-linear Hamiltonian dynamics. In galactic
dynamics it appears in several fashions [1]: to mention a few, in axisymmetric prolate systems it determines the
bifurcation of the inner thin tube orbits [2,3]; in triaxial systems with ellipsoidal non-singular equipotentials it gives the
bifurcation of banana and anti-banana orbits in the symmetry planes [4–6]. Its importance is clearly not limited to this
field and its investigation in theoretical and applied non-linear dynamics has been very active [7,8]: an example is the
so-called spring pendulum [9] and an application in satellite attitude dynamics is the tethered system [10]; in chemistry
it is quite relevant in molecular vibrations [11, 12] and in quantum physics for the semi-classical approximation of
atomic nuclei [13].

In [14] we have investigated the relevance of the 1:1 resonance in galactic dynamics in the cases of one- and
two-reflection symmetries. Here we want to show how Hamiltonian normal forms can be used to get qualitative and
quantitative information on the bifurcations connected with the 1:2 resonance. We limit the analysis to systems with
reflection symmetry with respect to both degrees of freedom (DOF): in this case we should more correctly speak of
2:4 resonance, in view of the structure of the resonant Hamiltonian [15]; however we keep the more standard notion of
symmetric 1:2 resonance. On this ground, although this case retains all the characteristics of a low-order resonance,
it also presents some aspects of higher-order resonance systems [16, 17] and again it makes the results of particular
relevance for galactic motions. In low-order resonances the bifurcation of new families of periodic orbits is related
with loss of stability of one of the normal modes, whereas in higher-order resonances the new families appear in a
resonance manifold from the breakdown of a resonant torus. The peculiarities of the bifurcation sequences from the
normal modes are worthy of note by themselves, since the approach followed to study systems with a single symmetry,
like the spring pendulum, is not able in the case of double symmetry to unveil the generic behavior of the system [7].

In this work we go a little bit in this direction by considering a generic perturbation up to the degree necessary to
include resonant terms. Even if this is still not enough to deduce the general behavior for arbitrary perturbations, it
allows us to gather complete information on the bifurcation structure near the resonance of the truncated system. In
fact, we will see that a truncation of the normal form at the first term incorporating the resonance is able to capture the
essential features of the bifurcation showing how the inclusion of higher-order terms in the perturbation is necessary
to remove some degeneracies. We apply the procedure of the Lie transform normalization, whose algorithmic structure
helps in the application of higher-order perturbation approaches. Referring to applications in galactic dynamics, where
several numerical and analytical investigations are available [6, 18, 19], we briefly present results concerning a class of
systems with elliptical equipotentials including the well-known cored logarithmic potential [4, 20].
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The plane of the paper is as follows: in sect. 2 we introduce the procedure to construct the approximating integrable
system by recalling the method of the Lie transform [21]; in sect. 3 we apply this approach to investigate general aspects
of the dynamics obtaining second-order estimates of the bifurcation thresholds of the 1:2 periodic orbits; in sect. 4 we
analyze the stability of normal modes and periodic orbits in generic position; in sect. 5 we apply these general result
to the case of systems with elliptical equipotentials and finally in sect. 6 we discuss open problems and possible further
developments.

2 The model and its normal form

Suppose the system under investigation is given by a natural Hamiltonian,

H(x, y, px, py) =
1

2
(p2

x + p2
y) + V(x, y), (1)

where V is a smooth potential with an absolute minimum in the origin and symmetric under reflection with respect
to both coordinate axes. We assume the potential to be expanded as a truncated power series,

V(x, y) ≡
N∑

n=0

Vn(x, y), (2)

where Vn is a homogeneous polynomial of degree n + 2. The truncation order N is determined by the problem under
study. In force of the reflection symmetries, the “zeroth”-order term can be written as

V0 =
1

2
(ω2

1x2 + ω2
2y2) (3)

and the odd-order terms are all zero. The two coefficients of the quadratic term are written so to represent the
linearised harmonic frequencies. A system with a potential of type (2) can be treated in a perturbative way as a
non-linear oscillator system and the two frequencies of the unperturbed system are precisely given by ω1 and ω2. In
order to put the system in a form suitable for a perturbative approach, we perform the scaling [7],

(x, y, px, py) → ε−1(x, y, px, py), ε > 0, (4)

and also rescale the Hamiltonian (1) according to

H = ε2H̃. (5)

Thus, we obtain

H̃(x, y, px, py) =
1

2
(p2

x + p2
y) +

1

2
(ω2

1x2 + ω2
2y2) +

N/2∑

j=1

ε2jV2j(x, y). (6)

In this way the terms of the expansions are ordered in powers of the small perturbation parameter.
In general, neither the original system (1) nor its expansion (6) are integrable. However, in several cases the

dynamics around the equilibrium are regular, namely the measure of chaotic orbits is exponentially small in the
perturbation and the features are similar to those of an integrable system in a large fraction of phase-space. Therefore
we proceed to construct a “normal form” [22] for the system, namely a new Hamiltonian series which, in the case of
2 degrees of freedom, is an integrable approximation of the original one. Its structure is suitable to capture the most
relevant orbital features of the system.

In particular, the normal form is “non-resonant” when the two harmonic frequencies, ω1 and ω2, are two real
numbers so that their ratio is not rational: in this case the normalization produces a “Birkhoff” Hamiltonian depending
only on actions. Therefore, since the new Hamiltonian do not depend on angle variables, we get explicit formulas for
actions and frequencies of the box orbits parented by the x- and y-axis periodic orbits (the “normal modes”).

We can instead assemble a “resonant” normal form by assuming from the start a rational value for the ratio of
the harmonic frequencies: this assumption produces the presence in the new Hamiltonian of resonant terms, namely
terms depending on a linear combination of angles with integer coefficients. This expedient is legitimate because, even
if the unperturbed system is non-resonant for the real value of the frequency ratio,

ρ = ω1/ω2, (7)
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the non-linear interaction between the degrees of freedom, induced by the coupling terms of the perturbation, produces
a resonant value of ρ. Its commensurability ratio, say m/n with m,n ∈ N, is determined by the local ratio of oscillations
in the two degrees of freedom. This in turn is responsible for the birth of new orbit families bifurcating from the normal
modes or from short-periodic orbits generated by the lower-order resonances. The trick is then to assume that our
system is such that the ratio (7) is not far from a rational value and then to approximate it by introducing a small
“detuning” δ so that

ρ = m/n + δ. (8)

Afterwards we proceed as if the unperturbed harmonic part were in exact m:n resonance by treating the remaining
part as a higher-order perturbation. We speak of a detuned m:n resonance.

Let us proceed with the case of the m = 1, n = 2 resonance, so that (8) translates into

δ
.
=

ω1

ω2
−

1

2
, (9)

keeping in mind we are in the presence of reflection symmetries about both axes: we will shortly see that, in this case,
the normalization procedure must be pushed at least to the fourth degree in ε [23]. To give the system a structure
suitable to apply the normalization procedure, we perform the transformation

x1 =
√
ω1x, p1 =

px√
ω1

, x2 =
√
ω2y, p2 =

py√
ω2

, (10)

and introduce the complex variables

{
z1 = p1 + ix1, w1 = p1 − ix1,
z2 = p2 + ix2, w2 = p2 − ix2.

(11)

Since we include the detuning term in the perturbation, we introduce a rescaled detuning parameter δ̃ such that
δ = δ̃ε2. Thus, by redefining the Hamiltonian according to the scaling

H
.
= 2ρH̃ = (1 + 2δ) H̃, (12)

and collecting terms in ε, we put the rescaled Hamiltonian into the form

H(z,w; δ̃) =

N/2∑

j=0

ε2jH2j(z,w; δ̃), (13)

where the unperturbed term is given by

H0(z,w) =
1

2
w1z1 + w2z2 (14)

and the detuning term,
ε2δ̃(x2

1 + p2
1) = ε2δ̃w1z1, (15)

rather than being treated as a term of order zero, is considered as a term of order 2.
The system is now ready for a standard resonant normalization (see [22, 24]). Here we are going to apply the

method based on the Lie transform [22]. An account of the procedure has been given in [14]; we briefly recall here
the main ideas to adapt it to the symmetric case. The starting point is to treat the canonical transformation as a
“flow” along the Hamiltonian vector field associated to a generating function. Let us consider a phase-space function
expanded as a power series in the canonical variables,

G =

N/2∑

l=1

ε2lG2l, (16)

where the odd-order terms are zero in force of the reflection symmetries. Since we want the method to work with the
series expansion given in (13), we assume that the non-vanishing terms are polynomials of the form

G2l(z,w; δ̃) =
l∑

j=0

δ̃jg2(l−j+1)(z,w), gm ∈ Pm, m = 0, . . . l. (17)
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where Pm denotes the space of homogenous polynomials of degree m+2 in the (z,w) coordinates which are invariant
with respect to the reflections

(z1, z2, w1, w2) → (−z1, z2,−w1, w2), (18)

(z1, z2, w1, w2) → (z1,−z2, w1,−w2), (19)

and their combinations. To the series (16), the linear differential operator,

eLG =
∑

k

1

k!
Lk

G, (20)

whose action on a generic function F is given by the Poisson bracket,

LGF
.
= {F,G}, (21)

is naturally associated.
The original Hamiltonian system (13) undergoes a canonical transformation to new variables (Z,W ), such that

the new Hamiltonian is
K(Z,W ) = eLGH(z,w), (22)

where K is assumed in the form of a series expansion similar to (13), namely

K(Z,W ) =

N/2∑

j=0

ε2jK2j(Z,W ). (23)

To construct K starting from (13) is a recursive procedure exploiting an algorithm based on the Lie transform [21,22].
To understand how it works, let us consider the first step of the procedure, namely, let us perform a transformation
given by a function G2 considered as the first term in the generating function (16). The general relation (22) takes
the form

K0 + ε2K2 + . . . = (1 + LG2
+ . . .)(H0 + ε2H2 + . . .). (24)

By equating polynomials of the same order in ε, we get the system

K0 = H0, (25)

K2 = H2 − LG2
H0, (26)

K4 = H4 − LG2
H2 −

1

2
L2

G2
H0, (27)

. . . . . .

Kn = LG2
H0 + Rn, (28)

where the “rest” Rn contains terms which are known if the preceding n − 1 equations have been solved.
Equation (25) simply states that the zeroth-order new Hamiltonian coincides with the zeroth-order (unperturbed)

one. To proceed, we have to solve the second equation to find K2, a differential equation involving two unknown func-
tions, K2 and G2. To overcome this problem we have to make some decision about the structure the new Hamiltonian
K must have, that is, we have to choose a normal form for it. We make the choice that K has to satisfy

{K,H0} = 0, (29)

or, equivalently,
LH0

K = 0. (30)

In this way the system with the Hamiltonian K admits H0 as a new integral of motion. To satisfy condition (30),
let us consider for greater generality, the n-th step in the normalization procedure and impose that Kn and Gn be
solutions of the system {

LGn
H0 + Rn = Kn,

LH0
Kn = 0.

(31)

We rewrite the first equation as
LH0

Gn + Kn = Rn. (32)
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This is the so-called homological equation. By the way, in force of the reflection symmetry, for odd-order terms, eq. (32)
gives the trivial solution Kn = Gn = 0, proving the consistency of the assumptions concerning the expansions (16)
and (23). For n = 2l, if we recall that the detuning parameter is assumed of order two, eq. (32) becomes

l∑

j=0

δ̃jLH0
g2(l−j+1) +

l∑

j=0

δ̃jk2(l−j+1) =
l∑

j=0

δ̃jr2(l−j+1), (33)

with gm, km and rm ∈ Pm, m = 0, . . . l. Since LH0
: Pm → Pm, to solve eq. (33) is equivalent to solving l = n/2

equations of the type

LH0
g2(l−j+1) + k2(l−j+1) = r2(l−j+1), j = 0, . . . ,

n

2
. (34)

Now, thanks to the semisimple character of the linear operator LH0
, its kernel and its range are in direct sum over the

space Pm. This implies that the system of eqs. (34) and hence the n-th homological equation, can always be solved if
Kn satisfies (30).

We have so far constructed the normal form K0 + . . . + Kn and the generating function G2 + . . . + Gn: we use
them to compute Kn+2 and Gn+2 and so on. However, as we have observed above, the series are divergent, thus we
must truncate the procedure at some finite order, say M . In the case of a m = 1, n = 2 resonance in the presence
of reflection symmetries about both axes, the normalization procedure must be pushed at least to order M = 4.
Therefore, generalizing the assumptions made in [17], we assume that the non-vanishing terms in the series expansion
of the original Hamiltonian are given by

H0 =
1

2
(x2

1 + p2
1) + (x2

2 + p2
2), (35)

H2 = δ̃(x2
1 + p2

1) −
1

4
(ax4

1 + bx4
2 + cx2

1x
2
2), (36)

H4 =
1

6

(
a1x

6
1 + b1x

4
1x

2
2 + c1x

2
1x

4
2 + d1x

6
2

)
, (37)

where the arbitrary coefficients appearing in the higher-order terms represent the most general potential truncated to
degree six in the coordinates and complying with the enforced double reflection symmetry. The choice of coefficients and
signs is suggested by the values the coefficients take in the commoner physical cases: we remark that, in applying the
results obtained in the following to specific model problems, we have to take into account that the Hamiltonian (35)–
(37) is in the form “prepared” for normalization. Therefore the canonical variables are rescaled according to (10) and
the frequency ratio is expanded in series of the detuning as in (9). These transformations affect the numerical values
of the coefficients of the various terms.

The outcome of the normalization procedure described above is a series of the form (23) that, by introducing
action-angle–like variables by means of

{
Z = i

√
2J e−iθ,

W = −i
√

2J eiθ,
(38)

can be written as

K(J ,θ) =
2∑

j=0

ε2jK2j(J ,θ), (39)

which, coherently with the truncation order M = 4, implies that a reminder of order six in ε is neglected. In these
canonical variables it is possible to express the series in a manageable form whereas the use of Cartesian variables
(both in real or complex form) gives quite cumbersome formulas. The non-vanishing terms in the normal form turn
out to be the following:

K0 = J1 + 2J2, (40)

K2 = 2δ̃J1 −
3

8
aJ2

1 −
1

4
cJ1J2 −

3

8
bJ2

2 , (41)

K4 =

(
−

17

64
a2 +

5

12
a1

)
J3

1 +

(
−

17

128
b2 +

5

12
d1

)
J3

2 +
1

192

(
−18bc − 5c2 + 48c1

)
J1J

2
2

+
1

192
J2

1J2 [− (36a + 5c) c + 48b1 + (3(a − c)c + 8b1) cos(4θ1 − 2θ2)] . (42)
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The resulting Hamiltonian (39) is the basis for all subsequent work. We observe that up to order 2, the dependence is
only on action-like variables: therefore, up to this order they are true conserved actions with angles evolving linearly
on the invariant tori. The resonant combination of the angles with zero phase difference appears only in the term of
order 4 (and higher) and this is the reason why this is the minimum order required in this study. In ref. [17] it is
proven that this phase value always occur in potential problems and that in more general Hamiltonian systems the
phase can be different from 0,±π.

The resonant terms determine a non-linear coupling of the two degrees of freedom. Although the system is integrable
by construction, the solution of the canonical equations is in general not expressible in terms of elementary functions.
We can however exploit the second conserved quantity to reduce the system and we show in the subsequent sections
how to use this technique to gain understanding of the structure of the phase-space.

3 Bifurcation analysis of the 1:2 symmetric resonance

The essential information we need concerns the existence and stability of the periodic orbits associated to the reso-
nance [14, 23]. We can compute the thresholds for the bifurcations sequences in terms of the parameters relying on
the regular nature of the dynamics given by the normal form. In two degrees of freedom, if a Hamiltonian possesses
a second independent integral of motion, the system is Liouville integrable. Due to the normalization procedure, we
have obtained the Hamiltonian (39) with the second independent integral of motion,

K0 = J1 + 2J2. (43)

We can use this integral to reduce the dimension of the problem by performing the canonical transformation to
“adapted resonance coordinates” [24],






J1 = E + 2R
J2 = 2E −R
ψ = 4θ1 − 2θ2
χ = 2θ1 + 4θ2

. (44)

It can be easily seen that χ is cyclic and its conjugate momentum is proportional to the additional integral of motion,
namely

E = (J1 + 2J2)/5. (45)

The value of E plays a special role in the discussion of the orbit structure and we will refer to it as the distinguished
parameter [9]. Thus we introduce the “reduced Hamiltonian”,

K(R,ψ; E) = 5E + ε2K1(R) + ε4K2(R,ψ). (46)

In the computation of (46) and through the rest of the paper the use of algebraic manipulators is almost indispensable.
By using mathematica

R© we obtain the following expressions for K1 and K2:

K1(R) = −
1

8

[
3b(−2E + R)2 + 3a(E + 2R)2 + 2(E + 2R)(2cE − cR− 8δ̃)

]
, (47)

K2(R,ψ) =

(
−

17

64
(a2 + 4b2) −

3

8
c(a + b) −

5

32
c2 +

5

12
a1 +

1

2
b1 + c1 +

10

3
d1

)
E3 + A(R) + B(R) cosψ, (48)

with

A(R) =
R3

384

(
−816a2 + 51b2 + 288ac − 72bc + 20c2 + 1280a1 − 384b1 + 192c1

− 160d1) +
ER2

64

(
−204a2 − 51b2 − 48ac + 42bc + 5c2 + 320a1 + 64b1

− 112c1 + 160d1) −
E2R
192

(
306a2 − 306b2 + 252ac + 72bc + 55c2

− 480a1 −336b1 − 192c1 + 960d1) , (49)

B(R) =
1

192
(2E −R)(E + 2R)2

(
3ac − 3c2 + 8b1

)
. (50)
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Considering the dynamics at a fixed values of E , we have that K defines a one-degree-of-freedom system with the
following equations of motion:

ψ̇ =
1

4

(
6bE − 3cE − 3bR + 4cR− 6a(E + 2R) + 16δ̃

)
ε2 +

(
∂A
∂R

+
∂B
∂R

cosψ

)
ε4, (51)

Ṙ =
µ

192

(
(2E −R)(E + 2R)2 sinψ

)
ε4, (52)

where
µ

.
= 3ac − 3c2 + 8b1. (53)

The fixed points of this system give the periodic orbits of the original system.
The pair of fixed points with R = 2E , R = −E/2 correspond to the normal modes, that is to the periodic orbit along

the x-axis (J2 = 0) and to the periodic orbit along the y-axis (J1 = 0), respectively. Additional periodic orbits may
appear when the system passes through the resonance. These periodic orbits “in general position” exist only above
a given threshold in the distinguished parameter E when the axial orbits change their stability. This phenomenon
can be seen as a bifurcation of the new family from the normal mode when it enters in 1:2 resonance with a normal
perturbation. The phase between the two oscillations determines the nature of the families: they are, respectively, given
by the conditions ψ = 0 (banana orbits) and ψ = ±π (anti-banana orbits), where we use the nicknames introduced in
ref. [6]. These phase conditions are solutions of Ṙ = 0 (when R &= 2E and R &= −E/2) and determine the corresponding
solutions of ψ̇ = 0.

Let us start looking for banana orbits. Following a standard approach [25], we set ψ = 0 in the equation ψ̇ = 0
and look for a solution in the form

R = R0 + R1ε
2 + O(ε4), (54)

so that the right-hand side of (51) vanishes up to fourth order in ε. For ψ = 0, we substitute (54) in (51) and collect
terms of the same order in ε. Equating to zero the coefficient of the second-order term in ε, we find that R0 has to
satisfy

3(2b − 2a − c)E + (4c − 3b − 12a)R0 + 16δ̃ = 0. (55)

This equation admits solution only if
ν

.
= 12a + 3b − 4c &= 0 (56)

and, if this condition is satisfied, we find

R0 = RB0
.
=

−3(2a − 2b + c)E + 16δ̃

12a + 3b − 4c
. (57)

Once R0 is computed, we look for R1 such that the fourth-order term of the right-hand side of (51) vanishes. Since (56)
is satisfied, we find a solution

R1 = RB1(E ; δ). (58)

The corresponding fixed point is given by

R = RB = RB0 + RB1ε
2, ψ = 0 (59)

and determines the banana orbits (there are two of them),

J1 = J1B = E + 2RB , (60)

J2 = J2B = 2E −RB . (61)

Similarly, if (56) is satisfied, for 4θ1 − 2θ2 = ±π, we find

J1 = J1A = E + 2RA, (62)

J2 = J2A = 2E −RA, (63)

which correspond to the anti-banana orbits. In view of (44), the constraints,

0 ≤ J1 ≤ 5E , 0 ≤ J2 ≤
5E
2

, (64)
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applied to these solutions give the condition of existence for these periodic orbits in general position. Whether these
conditions are satisfied or not, it depends on the parameters of the system. For the banana orbits we find that at the
zeroth perturbative order,

J1B =
5(3b − 2c)E + 32δ̃

12a + 3b − 4c
,

J2B =
5(6a − c)E − 16δ̃

12a + 3b − 4c
. (65)

Thus, we get different existence conditions according to the sign of the constant ν defined in (56). Namely, taking ε
small enough such that the constraints (64) remains satisfied up to the first perturbative order, banana orbits bifurcate
in the following cases:

if δ̃ν > 0 and δ̃(6a − c) > 0,

{
if δ̃(3b − 2c) > 0 : E > EB1

if δ̃(3b − 2c) < 0 : EB1 < E < EB2

, (66)

if δ̃ν < 0 and δ̃(3b − 2c) < 0,

{
if δ̃(6a − c) < 0 : E > EB2

if δ̃(6a − c) > 0 : EB2 < E < EB1

, (67)

where the critical values,

EB1
.
=

16

5(6a − c)
δ̃ −

16
(
306a2 − 33ac − 8c2 − 480a1 + 56b1

)

15(6a − c)3
δ̃2ε2 + O(ε4), (68)

EB2
.
=

32

5(2c − 3b)
δ̃ −

16
(
153b2 − 72bc − 20c2 + 192c1 − 480d1

)

15(3b − 2c)3
δ̃2ε2 + O(ε4), (69)

correspond to the solutions of J2B = 0 and J1B = 0 and, respectively, determine the bifurcation of the banana orbits
from the x-normal mode and the y-normal mode in the first sub-cases of (66) and (67). In the other two sub-cases the
periodic orbit bifurcating from one of the normal modes disappears on the other.

A similar argument provides the existence condition of anti-banana orbits. Since to the first perturbative order
J1A = J1B and J2A = J2B , the birth of anti-bananas is given by the same conditions on the coefficients given above.
However the higher-order terms in JkA, JkB , k = 1, 2 are in general different: the discrimination between the thresholds
for the bifurcation of the two families is possible only by going at least to second order [23]. This result was expected
on the basis of the structure of the new Hamiltonian (39).

Nevertheless, up to the second order in ε we find that the threshold value corresponding to the bifurcation of
anti-banana orbits from the y-axis, EA2, coincides with the critical value EB2 of (69). Hence, if banana and anti-banana
orbits bifurcate from the y-normal mode, they do it concurrently. On the other hand the bifurcation from the x-axis
orbit occurs at

E = EA1, δ̃(6a − c) > 0, (70)

where

EA1
.
=

16

5(6a − c)
δ̃ −

16
(
306a2 − 39ac − 2c2 − 480a1 + 40b1

)

15(6a − c)3
δ̃2ε2 + O(ε4), (71)

which, at second order, is different from (68). Thus, we obtain the following existence conditions for anti-banana orbits:

if δ̃ν > 0 and δ̃(6a − c) > 0,

{
if δ̃(3b − 2c) > 0 : E > EA1

if δ̃(3b − 2c) < 0 : EA1 < E < EA2 ≡ EB2

, (72)

if δ̃ν < 0 and δ̃(3b − 2c) < 0,

{
if δ̃(6a − c) < 0 : E > EB2

if δ̃(6a − c) > 0 : EB2 < E < EA1

, (73)

with

{
EA1 ≥ EB1, if δ̃µ > 0

EA1 < EB1, if δ̃µ < 0
. (74)

We can write explicitly the relative magnitude of the two thresholds for bifurcation from the normal modes because
we find

EA1 − EB1 =
32

15

µ

(6a − c)3
δ̃2ε2 + O(ε4), (75)

EA2 − EB2 = 0 + O(ε4). (76)
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Fig. 1. Dynamics of the 2:4 doubly symmetric resonant Hamiltonian, see text for explanation.

The first of these expressions points out that the hierarchy of bifurcations from the x-normal mode is determined by
the sign of the constant µ defined in (53). The second confirms that, at the order of our perturbative treatment, the
bifurcations from the y-normal mode occur simultaneously. Which of the two scenarios is actually happening depend
on the value of the parameters according to the conditions listed above.

In fig. 1 we plot the surfaces of sections relevant for the first scenario concerning the bifurcations from the x-normal
mode: the upper panels are the (x, px) sections after the bifurcation of the stable banana (left) and after the subsequent
bifurcation of the unstable anti-banana (right); the lower panels are the corresponding (y, py) sections. This occurrence
is typical of a lower order bifurcation: the normal mode losing stability at the first bifurcation is the origin in the
upper panels and is the last contour in the lower. The contour in the lower-left panel is the unstable mode that regains
stability in the right panel.

The second scenario in which the two families appear together from the y-normal mode is the typical occurrence
in higher-order resonances: pictorially it corresponds to a transition from the non-resonant invariant tori around the
normal mode directly to the appearance of the resonance manifold as it emerges in the two lower panels with stable
and unstable orbits arising in pair.

For practical purposes, e.g., to compare these findings with the outcomes of numerical simulations, it would be
more useful to have the expression of the bifurcation curves in terms of “physical” parameters. The most natural way
to represent the thresholds is that plotting curves in the (E, δ)-plane, where E is the physical energy of the system
defined by (1),

H(x, y, px, py) = E, (77)
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and δ is the “true” detuning defined in (8). According to the rescaling (12), on the x-axis orbit (J2 = 0, J1 = 5E), we
have

ε2K = 5Eε2 +

(
−

75a

8
E2 + 10E δ̃

)
ε4 + . . . = (1 + 2δ̃ε2)E. (78)

The dots are present to recall that a reminder has been neglected. The series from eq. (78) can be used to express the
physical energy E in terms of E [23, 26], namely

E = 5Eε2 −
75

8
aE2ε4 + O(ε6). (79)

Thus, up to the second order in ε, for E satisfying eqs. (68) and (71) and δ as in (9), we obtain the following threshold
values,

EB1 =
16

6a − c
δ −

16
(
414a2 − 51ac − 8c2 − 480a1 + 56b1

)

3(6a − c)3
δ2 + O(δ3), (80)

EA1 =
16

6a − c
δ −

16
(
414a2 − 57ac − 2c2 − 480a1 + 40b1

)

3(6a − c)3
δ2 + O(δ3), (81)

for the bifurcation of, respectively, banana and anti-banana orbits from the x-axis orbits.
A similar argument gives the threshold value for the bifurcations from the y-axis orbit. Since EA2 = EB2, we have

EA2 = EB2 and by using the relation between the true energy and the distinguished parameter on the normal mode
we get

EB2 =
32

2c − 3b
δ −

16
(
99b2 + 36bc − 68c2 + 192c1 − 480d1

)

3(3b − 2c)3
δ2 + O(δ3). (82)

4 Stability analysis of the 1:2 symmetric resonance

Let us now consider the question of the stability of periodic orbits: this analysis complements that of the previous section
allowing us to test the relation between change of nature of normal modes and bifurcation of a new family. For banana
and anti-banana orbits an ordinary investigation of the equations of variations of the system is enough to perform the
linear stability analysis. However, in the case of axial orbits, action angle variables have singularities on them and this
also affects the adapted resonance coordinates. However the remedy to this problem is quite straightforward: to use a
mixed combination of action angle variables on the orbit itself and Cartesian variables for the other DOF.

Let us start with the stability analysis of the periodic orbits in general position. We have to investigate the fate
of a normal perturbation of the periodic orbit under test. The system of differential equations for the perturbations
(δψ, δR) is given by

d

dt

(
δψ
δR

)
=

(
KRψ KRR

−Kψψ −KRψ

)(
δψ
δR

)
. (83)

Here we again use the reduced Hamiltonian (46) and, with a small abuse of notation, we assume without denoting it
explicitly that the entries in the Hessian matrix are evaluated on the specific orbit we are interested in. Then, the sign
of the determinant,

∆(R,ψ; E , δ̃) = K2
Rψ −KRRKψψ, (84)

computed on the periodic orbit determines the fate of the perturbation: if ∆(R,ψ; E , δ̃) is negative it gives the frequency
of bounded oscillating solutions thus determining stability; a change of sign, as a consequence of varying E , produces
a stability transition.

On the banana and anti-banana orbits we, respectively, have

∆(RB , 0) = ∆B
.
= µ

(30aE − 5cE − 16δ̃)(15bE − 10cE + 32δ̃)2

768(12a + 3b − 4c)2
ε6 + O(ε8), (85)

∆(RA,π) = ∆A
.
= −µ

(30aE − 5cE − 16δ̃)(15bE − 10cE + 32δ̃)2

768(12a + 3b − 4c)2
ε6 + O(ε8), (86)

and thus we see that the parameter µ plays an important role also for stability. Comparing with (68) and (69), for
δ̃µ > 0 banana orbits are stable in the case they bifurcate from the x-axis orbit (E > EB1, if δ̃ν > 0 and δ̃N > 0)
and unstable in case their bifurcation occurs from the y-axis orbit. Otherwise, we have instability (stability) when the
bifurcation occurs from the x-normal mode (y-normal mode). Since ∆A = −∆B up to the third perturbative order,
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anti-banana orbits turn out to be unstable when banana orbits are stable and viceversa. Actually, the fourth-order
terms in (85) and (86) are different, but their difference is again a multiple of µ.

We have also seen in (75) that the bifurcation order from the x-axis depends on the sign of δ̃µ. Thus, we can now
state that, if δ̃µ is positive, we have at first the bifurcation of (stable) banana orbits followed by (unstable) anti-banana
orbits. On the contrary, for negative values of δ̃µ the bifurcation order and stability nature are inverted.

Let us now study the stability of the normal modes. Considering the x-axis orbit, we use action-angle variables on
the orbit and Cartesian variables on the normal bundle to it, namely






X =
√

2J cos θ
PX =

√
2J sin θ

Y = Y
PY = V

, (87)

so that the periodic orbit is given by
Y = V = 0, J = 5E . (88)

In these coordinates, the system of differential equation for the perturbations of the normal mode is given by

d

dt

(
δY
δV

)
=

(
K̃V Y K̃V V

−K̃Y Y −K̃Y V

) (
δY

δV

)
, (89)

where K̃ = K(Y, V, θ, J). However the matrix of the second derivatives of K̃ on the periodic orbit depends on θ(t) = ωt,
where

ω =
∂K̃
∂J

= 1 −
(

15aE
4

− 2δ̃

)
ε2 −

(
1275

64
a2 +

15

4
a1

)
E2ε4 + O(ε6). (90)

To remove the dependence on time we introduce complex coordinates
{

z = Y + iV
w = Y − iV

(91)

and perform the “rotation” {
z = Ze−2iωt,

w = We2iωt.
(92)

In this way, the equations of variation (89) on the periodic orbit (88) give

d

dt

(
δZ
δW

)
= i

(
Λ11 Λ12

Λ21 Λ22

) (
δZ
δW

)
, (93)

where, up to the second perturbative order,

Λ11 = −Λ22 =
1

4
(30aE − 5cE − 16δ̃)ε2 +

25

192

(
306a2 − 36ac − 5c2 − 480a1 + 48b1

)
E2ε4, (94)

Λ12 = −Λ21 = −
25

192
µE2ε4. (95)

By solving detΛ = 0 we find, as expected, that the critical values of E which determines a change in the stability of
the x-axis orbit are precisely given by the bifurcation values,

E = EB1 and E = EA1, (96)

as defined by (68) and (71). Regardless of the the nature of the occurring bifurcations (this is given by the sign of µ),
the first one produces a transition from stability to instability of the x-normal mode and the second one a return to
stability.

Let us now consider the stability of the y-axis orbit. Since the periodic orbits in general position bifurcate con-
currently from this normal mode, we expect that the y-axis orbit remains stable after the bifurcation. To verify this
assert, we proceed as above by introducing the coordinates






Y =
√

2J cos θ

PY =
√

2J sin θ
X = X
PX = U

(97)
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so that the periodic orbit is given by

X = U = 0, J =
5

2
E . (98)

The system of differential equation for the perturbation of the normal mode is given by

d

dt

(
δX
δU

)
=

(
K̃UX K̃UU

−K̃XX −K̃XU

) (
δX
δU

)
, (99)

where now K̃ = K(X,U, θ, J). Since we are dealing with a perturbation of a 1:2 symmetric resonance, the terms
proportional to cos(4θ1−2θ2) in K4 are of second degree in J1 and, as a consequence, the matrix of the second derivative
of K̃ computed on the y-normal mode does not depend on θ. Thus, we do not need to perform the transformation (91).
The equations of variation (99) give

d

dt

(
δX
δU

)
=

(
Ω11 Ω12

Ω21 Ω22

)(
δX
δU

)
, (100)

where

Ω11 = Ω22 = 0, (101)

Ω12 = −Ω21 = 1 −
(

5c

8
E + 2δ̃

)
ε2 −

25

768
E2 (c(18b + 5c) − 48c1) ε

4. (102)

Thus,

detΩ = Ω2
12 = 1 +

(
−

5cE
4

+ 4δ̃

)
ε2 +

1

384

(
−450bcE2 + 25c2E2

− 960cE δ̃ + 1536δ̃2 + 1200E2c1

)
ε4 + O(ε6) (103)

has a positive zeroth-order term, which implies that for ε small enough the y-axis orbit is always stable.

5 Application: 1:2 resonance in systems with elliptical equipotentials

We now illustrate how to apply the above theory to some cases relevant for galactic dynamics. In particular, we are
interested in the question of the stability of axial orbits in triaxial potentials and of the possible existence of additional
stable families of periodic orbits. The present analysis of 2 DOF systems is a first step in this program because in
allows us to study the dynamics in principal planes of triaxial systems with reflection symmetries. In turn these studies
are useful to solve problems like the construction of self-consistent equilibria, the computation of isophotal shapes and
velocity ellipsoids, etc.

We consider a fairly general class of potentials with self-similar elliptical equipotential and unit “core” radius of
the form [2–4,14]

V(x, y; q,α) =






1

α

(
1 + x2 +

y2

q2

)α/2

, 0 < α < 2,

1

2
log

(
1 + x2 +

y2

q2

)
, α = 0.

(104)

The physical parameters are q, the ellipticity of the equipotentials and α, a shape parameter: on the two extremes of
its range, α = 0 corresponds to the standard logarithmic potential and α = 2 to the anisotropic harmonic oscillator.

The family of potentials (104) admits a series expansion of the form (2) with

V0 =
1

2

(
x2 +

y2

q2

)
, (105)

V2 =
α− 2

8

(
x2 +

y2

q2

)2

, (106)

V4 =
(α− 2)(α− 4)

48

(
x2 +

y2

q2

)3

. (107)
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Since the unperturbed frequencies now are ω1 = 1 and ω2 = 1/q, we introduce the detuning parameter (9),

δ
.
= q −

1

2
. (108)

Performing the scalings (10) and (12) and collecting terms of the same order in ε we obtain the Hamiltonian func-
tion (13), where the non-vanishing terms are now given by

H0 =
1

2
(x2

1 + p2
1) + (x2

2 + p2
2), (109)

H2 = δ̃(x2
1 + p2

1) −
2 − α

8
(x2

1 + 2x2
2)

2, (110)

H4 = −
δ̃

4
(2 − α)(x4

1 − 4x4
2) +

(2 − α)(4 − α)

48

(
x2

1 + 2x2
2

)3
. (111)

Hence, in this particular case

a =
1 + 2δ

2
(2 − α), (112)

b = 2(2 − α)(1 − 2δ), (113)

c = 2(2 − α), (114)

a1 =
1

8
(2 − α)(4 − α), (115)

b1 = 6a1, (116)

c1 = 12a1, (117)

d1 = 8a1. (118)

The presence of terms proportional to δ̃ in H4 is due to the dependence of the potential (104) on q. However the
existence and stability analysis of the periodic orbits of the system follows exactly the same way of the preceding
section.

Since we have 12a + 3b − 4c = 4(2 − α) > 0, the non-degeneracy condition (56) is satisfied and the system is able
to exhibit the bifurcation of periodic orbits in general position. In order to establish their existence, we look at the
sign of 6a − c and/or 3b − 2c. We find

6a − c = (1 + 6δ)(2 − α), (119)

thus for δ > 0 these systems fall in the cases (66) and (72). Hence banana and anti-banana both bifurcate from the
x-axis orbit, respectively, for E = EB1 and E = EA1, where the thresholds in terms of the physical parameters are
given in (80) and (81) and for potential (104) turn out to be

EB1 =
16

2 − α

(
q −

1

2

)
+

8(41α− 10)

3(2 − α)2

(
q −

1

2

)2

, (120)

EA1 =
16

2 − α

(
q −

1

2

)
+

8(53α+ 14)

3(2 − α)2

(
q −

1

2

)2

. (121)

Since in this case we have

µ = 3
(
4 − α2

)
> 0, (122)

in agreement with the general expression (75), the difference between the two thresholds is

EA1 − EB1 = 32
2 + α

(2 − α)2

(
q −

1

2

)2

. (123)

This relation and eqs. (85) and (86) establish the bifurcation of stable banana orbits followed by unstable anti-banana
orbits. These results generalize those already obtained in the work on the logarithmic potential [23, 26] and provide
good approximations to the numerical investigations available in literature [6, 18].
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6 Conclusions

We have presented the investigation of a fairly large class of natural reversible Hamiltonian systems close to the 1:2
resonance and endowed with reflection symmetry with respect to the configuration variables of both DOFs. By means
of a resonant detuned normal form, we have obtained a general description of the bifurcation scenario of periodic
orbits in general position (banana and anti-banana) from the normal modes.

Equations (80)–(82) provide the energy levels for these bifurcation in terms of the detuning and the other physical
parameters characterizing the system. We have found that the coefficients of the quartic term in the potential essentially
determine the distinction between the bifurcations from either normal mode: our main result is that if banana and
anti-banana orbits bifurcate from the y-normal mode, they do it at the same energy level; if instead the bifurcations
are from the x-normal mode, their sequence (and the stability of the new orbits) is determined by the parameter µ
defined in (53). We remark that for the reliability of the predictions based on these parameters it is essential that in
the computation of the normal-form terms of order four (degree six) in the potential are included. As an example, in
the case of the “α-models” (104), if we arrest the expansion of the potential at order two and normalize up to order
four, we get

µ = −9
(
4 − α2

)
< 0, (124)

obtaining a wrong prediction for the bifurcation sequence.
However, although these results are in excellent agreement with numerical simulations, we cannot deduce from them

the generic behavior of the system. For example, it is difficult to say if the concurrent bifurcation from the y-normal
mode is persistent and, if not, at which order it split. Actually, the “catastrophe germ” for a 1:2 symmetric resonance
is given by the second-order term in the perturbation, but has infinite codimension [27]. In simpler terms, this means
that truncating at order four could not be enough and a priori one has to add (infinitely) many higher-order terms
to the series expansion (13) to obtain a faithful description of the true dynamics of the system. Additional efforts are
therefore necessary for a full understanding of this problem.

Our thanks to Giuseppe Gaeta and Heinz Hanßmann for very fruitful discussions. This work is supported by INFN, Sezione
di Roma Tor Vergata and by the Scuola di Dottorato of the Dipartimento di Scienze di Base e Applicate per l’Ingegneria,
Università di Roma “la Sapienza”.
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