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Abstract

An existence and uniqueness theorem for the the heat equation associated
to the Levy-Laplacian is proved and a simple explicit formula is derived. The
associated Levy heat semigroup is used to construct a classical Markov process
called the Levy Brownian motion.

1 Introduction

Let H be a real Hilbert space, D a dense sub-space of H and let L(D) be a
vector space of linear, not necessarily continuous operators from D to H .

To every linear functional ψ on L(D) one can associate ([8], [2] ) a (linear,
constant coefficients) second order differential operator Lψ, defined by:

(Lψf)(x) = ψ(f ′′(x)) x ∈ H

Lψ is a linear map from the space of real valued, twice differentiable functions
on H (for some notion of derivative) whose second derivative at any point
belongs to L(D) , to the space of all real valued functions onH . In particular,
if L(D) = L1(H) is the space of all nuclear operators on H and ψ is the
trace on L1(H), then Lψ is the usual (classical) Volterra Laplacian ∆V . If
H = L2([0, 1]) and L(D) is the sub-algebra of B(H) (= all the bounded
operators on H), generated by the compact operators and L∞([0, 1]) (acting
on H by pointwise multiplication), then every element of L(D) has the form

a = f +K

with f ∈ L∞([0, 1]), K is a compact operator, and the linear functional which
to a = f + K ∈ L(D) associates the integral of f in [0, 1], defines a second
order operator ∆L called the Levy Laplacian .

Analogously one introduces differental operators on spaces of vector val-
ued functions and on spaces of functions defined on spaces which are not
Hilbert spaces (the precise definitions of the notions used in the present
note, shall be given below). In the paper [2] it was also described a mul-
titude of functionals, on spaces of unbounded operators, corresponding to
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the series of the so-called exotic Laplacians, whose definition was proposed
in [1] (the just defined Levy Laplacian, is the first element of this series).
The interest to the study of the Levy Laplacian significantly grew after that,
in the paper [1], it was proved that the Euclidean Yang–Mills equations on
the n–dimensional Euclidean space, are equivalent to the Laplace equations,
corresponding to the Levy Laplacian (in a space of matrix valued functions).
In the paper [2] we also described the basic ideas for the use of the Fourier
transform (FT) method for obtaining an explicit formula giving the solution
of the heat equation, corresponding to the Levy Laplacian. In the present
note we formulate a theorem of existence and uniqueness for this equation.
The semi-group, which arises from this theorem, is called the Levy semigroup
and is used to construct a Markov process, called the Levy Brownian motion.

2 Notations and terminology

Everywhere in the following we shall denote

H = L2(0, 1) ; E ⊆ W 1
2 [0, 1] ⊆ L2(0, 1)

where W 1
2 [0, 1] denotes the Sobolev space of absolutely continous functions

with square integrable derivative and we shall suppose that on E it is given a
topology making it a Frechet space [5] and for which the canonical embedding
E → H is continuous; E∗ shall denote the dual space of E for this topology.
Consequently we can, and we shall consider H as a vector subspace of E∗.
Furthermore we shall suppose that the duality 〈E∗, E〉 agrees with the scalar
product ( · , · ) in H, i.e. that if ϕ ∈ H, ψ ∈ E, then

< ϕ,ψ >E∗,E= (ϕ, ψ)H (1)

For every element ϕ in the space E, the symbol Fϕ shall denote the linear
functional on E, defined by the identity:

Fϕ(g) =< g, ϕ > ; g ∈ E∗ (2)

B(E∗) shall denote the σ–algebra generated by all the functionals Fϕ (ϕ ∈
E);M(E∗) the space of all countably additive signed measures on B(E∗). If
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µ ∈ M(E∗), then its Fourier transform µ̂ is a function on E, defined by the
identity:

µ̂(x) =

∫
E∗
ei<y,x>µ(dy) ; x ∈ E (3)

An orthonormal basis e = (ej) of H is called uniformly (or equally ) dense,
if for every f ∈ L∞(0, 1) the following identity holds [4]:

lim
n→∞

1

n

n∑
j=1

∫ 1

0

f(t)(ej(t))
2dt =

∫ 1

0

f(t)dt (4)

Such a basis is called bounded [4] if every function ej is bounded and

lim
n→∞

1

n

n∑
j=1

|| ej ||2∞<∞ (5)

In the following e = (ej) shall denote a fixed uniformly dense, bounded basis
of H . Let, for each natural integer n , P[1,n], denote the orthogonal projector
on the subspace of H generated by e1, ..., en.

Definition 1 Let D denote the subspace of the space C2(E), of all real valued
twice Frechet differentiable functions f on E [5], [6], such that the limit

lim
n→∞

1

n
Tr(P[1,n]f

′′(x)) =: ∆Lf(x) (6)

exists for all x ∈ E. The map ∆L, from D ⊆ C2(E) to the space of all
functions on E, which to every function f ∈ D associates the function defined
by (6), is called the Levy Laplacian on E.

One can prove [4], [7] that the right hand side of (6) does not depend on
the choice of the uniformly dense, bounded, basis of H. Let now S denote
the shift with respect to the (ej)–basis, i.e. the unique linear continuous (in
fact isometric) map from H to H such that

Sej = ej+1

Consequently the adjoint map S∗ : E∗ → E∗ is well defined. Finally we shall
denoteM(e) the vector space of all S- invariant measures on B(E∗). Clearly

M(e) ⊆M(E∗) (7)
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We shall denote, moreover

M2(e) := {µ ∈M(e) :

∫
E∗
| < ej, y >|2 µ(dy) <∞ ; ∀j ∈ N} (8)

Notice that, if µ ∈M2(e) is a probability measure, then using the notation

Fej(x) =< x, ej >

according to the ergodic theorem the limit

lim
n→∞

1

n

n∑
j=1

| Fej(y) |2= lim
n→∞

1

n

n∑
j=1

|< y, ej >|2= Eµ
∞

(
| < y,· >|2

)
(9)

exists for µ–almost all y ∈ E∗ and Eµ
∞, on the right hand side of (9), denotes

the conditional expectation on the fixed σ–algebra of the adjoint shift S∗. In
the following we shall use the shorthand notation

Eµ
∞

(
| < y, · > |2

)
=:|| y ||2µ= lim

n→∞

1

n

n∑
j=1

|< y, · >|2 (10)

3 The heat semigroup

Theorem 1 For any positive measure µo ∈ M2(e) and any t ∈ R+, define
the measure µ(t) on E∗ by

∂µ(t)

∂µo
(y) := e−t||y||

2
µo ; y ∈ E∗ (11)

Then µ(t) ∈ M2(e) for all t and the map t 7→ µ(t) is the solution of the
Cauchy problem for the Laplace equation

∂

∂t
µ̂(t) = ∆Lµ̂(t) ; µ̂(0) = µ̂o (12)

For the proof it is sufficient to make explicit Fourier transform in both sides
of (2) and to apply (6). The possibility to exchange ∆L with the integral of
the Fourier Transform is proved in [Ro].
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Remark (2.1) For each positive µ ∈ M2(e), let the symbol M2(e, µ), de-
note the space of measures in M2(e), absolutely continuous with respect
to µ. Then the semigroup (11) leaves M2(e, µ) invariant, i.e. for each
ν ∈M2(e, µ), one has

e−t||y||
2
µν ∈M2(e, µ) (13)

Theorem 2 There exists a unique 1-parameter semigroup P̂ t : M(e) →
M(e) such that for any µ, ρ ∈M(e) with µ ≡ ρ one has:

P̂ tµ = e−t|| · ||
2
ρµ (14)

This is a corollary of Theorem 11 and Remark (2.1).

Proposition 1 The subspace M2(e) is a sub-algebra of the convolution al-
gebra M(E∗).

Proposition 1 implies that the image of the space M2(e) under the Fourier
transform is an (abelian ) algebra under pointwise multiplication. In the
following it shall be denoted with the symbol B. Notice moreover that the
Fourier transform F maps P̂ t in a semigroup of operators acting on B:

F−1P̂ tF =: P t : B → B

4 Construction of the Levy Brownian Motion

In this Section we shall restrict to bounded measures on E.
Bochner Theorem implies that the Fourier transform maps, in a one-to-

one way, the conus of positive measures inM2(e) onto the conus of bounded
positive definite functions in the algebra B, which we shall denote with the
symbol B+.

Since the semigroup P̂ t maps positive measures into positive, it follows
that

P̂ t(B+) ⊆ B+

The involution, given by the complex conjugation of a function, defines on B a
structure of ∗-algebra. Moreover, the constant functions (on E) are contained
in B since they are the Fourier transform of atomic measures concentrated
in the origin ( of E) , which surely belong toM2(e). A Linear functional ϕo
on B, shall be called a state if it is positive on B+ and normalized, i.e.

ϕo(B+) = R+ = [0,∞) ; ϕo(1) = 1
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is a C∗-algebra with the sup-norm. Let Ẽ denote its spectrum, so that C(Ẽ)
is a realization of B as the algebra of continuous functions on Ẽ.

Theorem 3 For any state ϕo on B, there exists a unique Markov process
(Lt), with state space Ẽ , characterized by the property that, for each t1 <
t2 < . . . < tn ∈ R+ ; f1, . . . , fn ∈ B the following identity holds:

E
(
f̃1(L(t1)) . . . f̃n(L(tn))

)
= ϕo

(
P t1(f1·P t2−t1(f2·. . .·(fn−1·P tn−tn−1(fn) . . .)

)
where E(·) denotes the expectation of the Markov process.

Definition 2 The Markov process, defined by Theorem 3 is called the Levy
Brownian motion with initial distirbution ϕo.

Remark (3.3). One can clearly assume that Ẽ ⊇ E. It would be interesting
to find a space containing E and as small as possible which could be taken
as state space of the Levy Brownian motion. Choose now

E = W 1
2 [0, 1] ; en(t) = sin2πnt ; n ∈ N

Let (Xn) be a real stationary random process for which

P{(Xn) :
∞∑
n=1

x2
n

n2
< +∞} = 1

and let (Ω,BΩ, P ) denote its sample space (unique up to isomorphism). The
the map

ψ : ω = (xn) ∈ Ω→
∞∑
n=1

xnen ∈ E∗

is defined P -almost everywhere and

µ := P ◦ ψ−1 ∈M(e)

It is clear that each probability measure inM(e), can be choosen in this way.
Notice that, if the process (Xn) is ergodic, then the function y ∈ E∗ 7→|| y ||2µ,
defined by (10) is constant µ–a.e. . To construct an example of a probability
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measure in M2(e) which corresponds to a non ergodic process, consider the
vector

a :=
∞∑
j=1

ej ∈ E∗

And let µ denote the measure on B(e∗) obtained as image of the stadard
Gaussian measure on R under the map

t ∈ R 7→ ta ∈ E∗

Then µ ∈M(e) since S∗a = a. Moreover for each n ∈ N one has

1

n

n∑
j=1

| Fej(y) |2=| Fe1(y) |2 ; µ− ∀y ∈ E∗

because the Fej (j ∈ N coincide µ–a.e., since µ is concentrated on the muli-
ples of the vector a ∈ E∗. Consequently

| Fe1(y) |2=|| y ||2µ ; µ− ∀y ∈ E∗

and since the function Fe1 is non constant on the line R · a ,which has µ −
measure one, it follows that µ is not ergodic.
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