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QUANTUM CENTRAL LIMIT THEOREMS
FOR WEAKLY DEPENDENT MAPS. II

L. ACCARDI and Y. G. LU* (Roma)

Introduction

In Part I ([21]), three central limit theorems have been stated: the
first one (Theorem (1.3)) includes a law of large numbers and is a vanish-
ing result; the second one {Theorem (1.4)) is a central limit theorem for
processes with discrete parameter and the third result (Theorem (1.5)) is
the extension of the second one to the case of continuous parameter. Qur
central limit theorems are deformations of the usual quantum central limit
theorems, considered up to now, in three different ways:

i) The factor o(b,4’) in the commutation relations

(%) 7e(0)1s(¥') = o(t,8,b,0")75(b")7(b) + €(t, 5,0, V')

(0,0 € B C B; B is the set of algebraic generators of B) are not restricted
to the values +1.

ii) The factor &(t,s,b,b') in (%) is not required to vanish identically.

iii) Independence is replaced by weak dependence.

First of all the states that we obtain in the limit are of Gaussian type,
in the sense that their odd momenta vanish and the even ones are given by
weighted sums of products of pair correlations. However, while the e-factor
simply produces a shift in the correlation function of the limiting state (cf.
(1.17) of Part I); the o-factor can give rise to more interesting phenomena.
In fact, if all the o(b,b") are present, then the final expressions (1.18) or
(1.24) in Part I differ from the usual expressions for the even momenta of a
Gaussian state only for the presence of a combinatorial factor. However, if
some of the o(b,b') are allowed to vanish, then the sums (1.18) and (1.24) will
no longer be over all pair partitions, but only over a subset of them. Now it
is well known that the notion of free independence, recently introduced by
Voiculescu [16], leads naturally, by means of free central limit theorems to
a notion of free Gaussianity characterized, in terms of momenta, precisely
by the property that the summation in the expression of even momenta is
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250 L. ACCARDI and Y. G. LU

taken not over all the pair partitions, but on a special sub-class of them (cf.
[15]).

The following conjectures are therefore natural:

I. By imposing that some of the factors o(b,b) vanish on some ordered

pairs of generators, the expressions (1.18), (1.24) define free Gaussian states.

II. All the states with vanishing odd moments and with even moments
given by weighted sums of products of pair correlations (the sum not nec-
essarily ranging over all the pair partitions, but only over a subset of them)
can be obtained by the present central limit theorems, by appropriately
choosing the algebra B and the factors o, ¢.

The replacement of independence by weak dependence causes a new
qualitative phenomenon: now the singletons give non-trivial contributions
to the final state.

§6. Proof of the main theorems

After the preliminaries in §2, §3, §4 and §5 (cf. [21]), we can prove our
main theorems.

Proor oF THEOREM (1.3). First we prove Theorem (1.3) for the
counting measure, in this case by Lemma (3.7),

1

GV O Jon

x E(jfl (bl) v Tty (bk)) V(dtl) R V(dtk) =

- ﬁE(SN(bl)-“SN(bk)) =

1< S ,
= mz > Yo E(Gub)dulby) =
=1 {51,...,5p) € P, p tE[S1,00,5p]

k [k/2]

“LyyY Y ¥ %

p=1 m=0 lépl <<pm§k (!h--H,Qm) (Sll"'}Sp)Epk,p

m
Z Z H 8(?:“_1(1%) ’tfr_l(fm)’ bpy bqn)

res{IP tEIN (St Sp {phign ey m) A1

O'(tfl, R TR TR !bk) . E(jgrl (b‘rr(ﬁ)) .o 'jtrn_zm{bw{rn—ﬂi'n}))

where f takes discrete values and In(S1,..., 55, {Pr. qi} 1=, 7) is defined by
(3.19). Clearly the asymptotic behaviour of (6.1) is determined by the sum
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in t. By the boundedness of ¢, ¢ and formula (1.3b), we know that the right
hand side of (6.1) is majorized by

(6.2)

Since a > % ora = % and k odd, p £ k£/2 implies that

1 : . —a
(63 w2 Elia(b)- (b)) SC N0
t€[S1,.-,Sp] v

we need ouly to cousider the case p > k/2. For clarity we write the sum

(6.4) >

lEIN(S] ,---,Spy{?.'n‘lh}}?:] ,7T)

in the notation of Section (.3), i.e.

(S.p)
(6.5) > = Y
tEIN(SI!'"!Sp) 1§t1§‘"§tk§N

b1 (p ) b=l g, ) h=1,..m >ta—1(gyr h=1,...,m

tr=1(py)

where we use the superscript (5,p) to mean that the sum in ¢ runs over

[Sln AR SP]N
In the following by the boundedness of the o-factors we can neglect the
factor o(ty,...,1k, b1,...,br). Now we introduce a procedure to eliminate,

step by step the ¢- factors, by repeated use of inequality (4.2).
i) Suppose that there exists a ' € {1,...,m} such that

(6’6) {tﬂ‘l(ph:) ’ tﬂ"l(qh:)} - {tfla AR trk—2m}

i.e., to the same pair of times there corresponds an ¢-factor and also a
product of two operators. For example, in the product

(6.7) Jt (01) 72, (b2) 7ty (b3) e, (bs) =

= o(t1,tq,ba, b3)ds, (b1 - b3)jr, (b2 - ba) + (L2, 1, b2, b3) 1, (b1)71, (ba)

the factor with ¢ is of type i).
In this case by the uniform boundedness of ¢-factors, we can neglect
e(t,—1 (ppr) Er=1(gp ) by,s:bq,,)- Therefore without loss of generality we can
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suppose that there is no A’ € {1,...,m} such that (6.6) is valid.
ii) Suppose that there exists a b’ € {1,...,m} such that

(6'8) {tﬂ_l {pnr)? t'”_l(th]'} n {t"'l 1rrty t"k—?m} = @

i.e., there is a pair of times which has produced an e-factor and which is
not in correspondence with any operator factor; e.g.

E(tl ) t2, bl: b?)jtg (b3)

Wlth ta > 11 > 1o
In this case, since €(+,-,b,b') is s — LY(C,dn) we know that the quantity

(S.p)

1 m
6.9) > ‘ [T Ctamt puysta=i(anys bons ban)
ISuSZngN A=)

t,‘-—l {Ph)>t"'-] (an)’ h=1,...,m

[ e, (o)) g brtrszn))) |

is dominated by

(6.10)
1 (59" 1 N N
Nak'—l Z ]_V: Z Z 5(12’ llvbphrabth)l
1§t1g...g{ag...gag...gtkg\r li=1lk=l+1

t’rul(Ph)>tﬂ_](9h)' h=1,....m

l H E(tw—1(ph),tﬂ-.1(qh],bph,bqh) .

1 ghg'm
h#h!

"E(jtrl (b’rr(’-'j)) T jfrk_.gm (b’”(""k—%n.))) { é

{(8"p")

1
SM-Som >

1S STy S S SN

Le=1(py) > =1 (gp)r F=liem

H E(tﬂ‘l(m)’tr“i(%)’ bons ban)| - ‘E(j‘v‘rl (bﬂ(n)) o 'j‘frk_zm(bﬁ(%—zm))) ‘

1£hEm
hER!
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where M is a constant and (S5, p") is defined as in (6.5) for the partition
(81,--.,5) obtained by taking away from the partition (51,...,5,) all the
Lr=1(pp)s tr=1(q,) Which satisfy (6.8). Suppose that there exist r elements
of {1,...,m} such that {6.8) is valid, then by relabeling the indices we find
that (6.9) is dominated by

(6.11)
1 (Slvp‘)
Nak—r Z MT-

1841 S-S0 SN
tﬂr_l(ph] >t“—1(‘?h)’ h=1,..,m—7

H E(tr- {pn)? "r=1(gn)> bon» by )
h=1

‘E(jtrl (b”JT(Tl)) e jt"k-2m (b”r("k—Z’m))) ‘

iii} By step ii) the estimate of (6.9) is reduced to an estimate of expres-
sions of the form (6.11), where for each h = 1,...,m — r, one and only one
of {tr-1(pn)str=1(gn)} 1800 {try,. .. tr, ;.. }. Let us deal separately with the
possible cases. %

(6.12&) tw—l {r1) Q {t'm LI 7t?'k_2m}
and
(6.12b) ta1(q) € {tryse- s thnsm )

then (6.11) is majorized by

(6.13)
1 (5#) m=—r
W Z MT . ‘ H E(tqr—l(ph),tﬂ.—](qh)’bph’bqh)
lgtlg"‘gtﬂ:‘_l(;l)gu'ét’c—2r§N h=2
t"'r_l(l"h)>t1'r—1(q-h)i h=2,...,m-1—
IE(jtrl (bﬁ(’fl)) I -jtr-k_zm (b'n’(Tk—2m))) l . Z Is(l’t'"'l(ql}vbpanl)l g
=1 gyt
1 (8%p")
T+1
g Nak—r Z M .

1S S-S, T S Stear SN
t.—1 [sz):)iﬂ'_l ()" h=2,..,m-~r
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m=r
.y H g(tﬂ_l (Ph)’ tﬁ_l(Qh)’ bph’bqh) Eg(‘?‘t"'l (b'n{rl)) o jtrn—?ru(bﬂtrﬂ)gm))) ‘.
h=2

Moreover since t;-1(,,) is equal to some i, , if we omit the index {,-: ()

form the right hand side of (6.13), nothing w111 change (since ¢, remains),
i.e. (6.11) is majorized by

) (8'9)
+1
(6.14) NaioT 2 M
1SSt D) S "<’wflh(-q]>§ Ste—2r SN
oI —

b1y 2 b= (ap)’ h=2,. T

) H a(t'!f'l(ph)"tfr‘l(qrz)? P Van) (ji-rl (bw{n)) i ’jfrk_z,n(bﬂ(?k-zm})) ‘
h=2

Similarly, if

(6.15a) be-1(py) € {trys- - ?t"'k-iZm}
and
(615]3) t ~Yq) e {tm? . Tk zm}

then by the same argument, (6.11) is majorized by
(6.16)

i (SJ,PJ) m—r
Nak—r z
18t SSt, D1y S Stanan N
tn—l(p;,)>t’:r—1(q;,)’ h=2,...m—r

=1 (pn)> bra (qn)° bpy s th)

tr1(gy)t1

‘E(jtrl (bw(rl)) v jtru_Qm (bW(TH—Zm))) { ) Z |5<tfr‘3(p1)='l? bpl ’ bm)l s
=1

é Nak—r E MH-] ’

=M= w_l(pl):'": ét —l{ql)g"'g‘tk42rSN

t"—l(Ph)>tﬂ'_1(qh)’ h=2,....m—7r

mer
’ H s(tfr-l(ph)’tﬂ‘l(qhﬁ bpus bgs) E(jfn (Brr)) - 'j‘rk_zm(b"’(""kdm))) ‘
=2
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Iterating the procedure we can eliminate the remaining pairs ({t'rr_](ph)?
tr-1(gy)}) for h =2,...,m —r. Then, relabeling the remaining indices, we
find the following majorization of (6.11):

(6.17})
1 (s'.p")
Nak—r Z M™ - IE(jil(bW(ﬁ)) . 'jtk—2m{bﬂ(7"k—2m))) I =
154 g"'gtk-ww(zmww)gf\r
1 (5"p")
Y T TR

1SS Stm SN

where ry,...,74-9, are defined by (3.9a). By the definition of r, after
(6.10), one has » < m and in any case ¢k — r 2 ak —m = §(n — 2m), where

6 .= Z—k_‘é—;%, so that:

(1)if a > § then § > ;

(2} if a = £ and k is odd, then k — 2m is odd and § = 1.

In case (1), the right hand side of (6.17) tends to zero because of
Corollary (2.2), with é replacing a and k — 2m replacing k. In case (2),
since the time indices in the sum are in increasing order, we can apply
Lemma (2.1). Moreover, since k — 2m is odd and the different times ¢; are
only p/, one can only have:

The former case corresponds to ak > p in Lemma (2.1); in the latter case,
there must be at least a singleton (i.e. some #; not equal to any ¢, for j #
# h). Therefore we can apply condition (ii) of Lemma (2.1). Thus, in case
(2) effectively (6.17) tends to zero. Therefore in both cases we conclude
that (6.17) tends to zero as N — oc and this ends the proof for the discrete
case.

If v is the Lebesgue measure, the situation is simpler because one needs
only to consider the case p = k (i.e. all singletons) since the Lebesgue
measure on R* is equal to zero on the subsets of those (t1,...,tk) such
that for some indices 1 £ j # h £ &, {; = t. This implies that both cases i)
and iii) in the proof of Theorem (1.3) correspond to sets of measure zero, and
therefore we need only to consider the situation ii) in the proof of Theorem
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(1.3) and replace the sum

(5,;0)

(6.18a) Z

1$_‘tl§---§tk§f\f
tF—l(Ph):)tﬂ'_l(qh)’ h=1,...,m

by the integral

(6.18b) / diy - diy.
1St S-SteEN

be=(pp) >3 gy AL

The arguments of the discrete case are easily adapted to this case.

Theorem (1.3) shows that, in the following, it will be sufficient to study
the limits

. 1
(618) }%Enoo Rr_,{E(SN(bl) Lt S]\_T(bgn))

and

. 1 ) . .
(619) lim _nE / Jh(bl} . 'jmn(bgn) dil e dtzﬂ
T—o0 T [O,T}Qﬂ

for each n € N and by,...,bs, € B. Our conclusions are stated in Theorems
(1.4), (1.5). The proof is rather long therefore we first prove some lemmata.

Applying Lemma (4.2} we find that
1

(6.20) o

E(Sn(bi)- - Sn(ban)) =

1 2n n ]
03PN VD DD Y
p=1m=0 lgpl <'“<Pm§2n (ﬂIl 5'“:9171) (Sl )“*)Sp)EP'zn,p

m

Z Z E(tﬂ"(ph)’tf“(%)v Bons bay) -
=1

reS{5P) teIN (515, Sp{Phign i1 ) B

'O'(tl, et tzﬂ: bl’ e ’b2n) ! E(jtrl (bﬁ(n)) t .jtfgn_gm (bW(T'En—‘Zm))) N
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Because of Theorem (1.3), the limit of the right hand side of {6.20) is equal
to the limit (as N — oo} of

’

) LYY Y Y Y%

p=nm=012p, < <pm 220 (g1,9m) (S0, Sp) €P2np reSLEP)

(Sp) m
Z HE(tﬂ'—l(ph))t']r—l(qh),b‘rph,bqh)
18815 St2p SN =1
b1 (o)t =1 (g y h=1,...,m

g(tla ey ton, bl: s 76271) ) E(jfrl (bﬁr('rl)) o 'jfan_gm (b‘rr(?'zn_zm))) .

In the following for each N € N and each fixed p = n,...,2n, m =
=0,1,...,n,1 é << Pm § 2n, 1 g iy .5 0m g 2n SatiSfying (38&),

(3.8b), (3.8¢), (S1,...,5p) € Papyp, T E Sé:‘p), we denote

(6.22) An(2n,(S1,...,5,),7) =
1 (S,p) m

= N7 Z H E(tw‘l(z’h)’tﬂ‘l{%Pbﬁhsb%)
184 5-S2n SN h=1

t"'—l(Ph)>tW_](Qh]’ h=l,...,m

G’(tl, ey ton, b1, 0 ,bzn) . E(ij (bﬂ(ﬁ)) o .jt"'En-Qm (b‘-'r(?"zn-zm))) .

The first step in dealing with Ax(2n,(51,...,.5,),7) is:
LEMMA (6.1). For (S1,...,5p) € Ponyp, if there exists an h' €
€ {1,...,m} satisfying (6.6) (replacing k by 2n), then

(6.23 lim An(2n,(51,...,58,),7)=0.
N—coo P

Proor. Without loss of generality, by the boundedness of the o-factors,
we can neglect the factor o(#1,...,%2,,01,...,b2,). We shall also suppose
that &' = 1.

By the same arguments of ii) and iii) in the proof of Theorem (1.3) and
in the same notations, we find that

(6.24) {AN(Zn,(sl, . sp),fr)] <
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1 (S’vpl)

-1
Nn—r Z Mm ' |E(tﬂ_l(h}’t‘ﬁ_l(m)’b}?l7bQ1)|
18618+ Stop_a(m-1) SN
Ee—1(p) > Tn=1(q)

lE(jt"'l (b'rr('m)) e jt"zn—Zm (bW{T‘Zn—‘Zm))) ‘

where r £ m — 1. Condition (6.6) implies that in the sum

1A

(S'p")

<N

1n—1)=
r=1(py) 7 x1(q)

156 §"'§t2n_2(

there are at most 2(n — m) free indices, therefore, by relabeling the indices,
the right hand side of (6.24) can be rewritten as

(Sr,pr)
(6'25) Nn~r Z M™t I E(tﬂ'_l (pl)!t'rr_l (41)7bP1 3 brh )i

18415 Shan—2mEN
tr=l(py) 2 tr=1(g)

lE(jtl(b‘”(TI)) v :jth—Em (b"r('wn—%n))) 1'

By the boundedness of the factor ¢, (6.25) is majorized by

(5,9
1 m . .
(6.26) Nn-r E M™- ‘E(Jtl (bw(n)) © HMon—gm (bfr('rzn_Qm))) ‘

létl < "'§t2n—2m gN

If m = n, then (6.26) is O(;) which tends to zero; if m < n, then since r <
< m-—1,it follows that n —r 2 n —m+1 = §(2n — 2m) with %—!—Q(Tl_?—nﬁ) =:
=:6> ]2—', therefore the statement follows.

The second step is:

LeMmMa (6.2), For (51,...,5,) € Py and 7 € Séi’p}, if there exists

an h’ € {1,...,m} satisfying (6.12a) and (6.12b) or (6.15a) and (6.15b),
then

(6.27) Jvllrflw APJ(Zn, (Sl,.--,Sp),?r) - 0-

Proor. By the same arguments as in the proof of Lemma (6.3) and the
formula (6.13), one obtains (6.26) again.

Before the third step, we prove the following:
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LEMMA (6.3). Foreachk € N,p=1,...,k, by,...,b; € B, if the limit

- I
(6.28) I%lil’lol }:E u(b-8"))

exists and E(-,-,b,b") is s — LY{(C,dn) for each b,b’ € B, then the quantity

1 . C iy
(629) IVk,l = )_Vak z iE(Jtl(biJ t jtk(bk’)) ‘
t€lxn(S1,...Sp)

with a 2 } is bounded.

Proor. By Theorem (1.3) we can suppose that p 2 n. Now we prove
this lemma by induction. It is clear that one needs only to prove (6.29) in
the case of a = 3 and & 2 2.

If £ =2, (6.29) becomes

N
(6.29) E(jn ble)‘ ;f Z E(J'h(bl).fk(bz))J+
1Sh<kEN
1 <
+5 Z }E(jh(bl)jk(bE))"
1<k<hEN

Applying the commutation relation (1.1) to the third term of (6.29a) and
by the boundedness of the o and e-factors, (6.29a) is dominated by

N N
(6.30) %; Z)E(jh[blbz)) ‘ + %; > !E(jh(bl)jk(.bz)) '+
h=1 1Sh<k<N
R
v ‘E(J'h(bz)jk(bl)) r + M
T 1Sh<kEN

where M is % times the sum of N e-factors. Since the map F is FP mixing,
one finds that, for N big enough, (6.30) is majorized by

(6.31)
1 X R
v Z ‘E(J'h(bl)jk(bz)) 1 sy Z 'E(jh(bz)jk(bl)) ' +2M +1
1<h<k<N 1<h<k<N
F<htdy R<ktdy
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and the right hand side of (6.31) is bounded since E(-,,b,4) is s~ L}(C, dn)
for each b,b’ € B. Thus we obtain a bound of Wy, denoted by |W1,.
Suppose that for each £ < n, we obtain the bound jW}k on Wy and

without loss of generality, assume that |W|, £ --- £ |[W| _,. Then

1 . .
Wy é Nn_t; Z ‘E(]isl(b51)°"Jtsp(bsp))‘+
2 teIN(S1,0nSp)
tspgtsp-—l +dy

[Ty

2 lEU’fSl(bSl)' ' 'jfsp—l(bsp-l)” ' IE(iSp(bsp)) ’“L

tEIN(Sl s"-aSP)
tsp>ts,  +dn

LTSy
2

N
+én - NP .C
where C is a constant. For N large enough, one has é5 - N* - C £ 1 and so
by the induction assumption,

(6.32)

1 . . ‘
WoS—r Y |Elg(bs) s, (bs,) | + Wiy M+ 1.

N2 tery(Sisy)
ts,Sts, ;+dn

Repeating the same arguments to (6.32), we find that

(6.33)
1 ) .
Wn < Nntl Z iE(jtsl(bsl) "'J”Sp(bs”)) ‘+
tGIN(Sl, . P)
ts,Sts, o tdwate, 195 s +dN

F(Whaoy +1Wlog) - M +2 5
< ... <

it ) | (s, (bs1) e, (b5,)) |+

teln(81,...,5p)
tsy Ste,_, +dn, h=2,.p

HWlg 4+ W) Mtn-12 (W +--+[W[,_,) - M+n
Putting
(6.34) (Wi, = (Wl 4+ +Wioy) - M 40

(o,

HA
=
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we finish the proof.

Lemmata (6.1) and (6.2) show that in order to consider the limit of
Apn(2n,(Sy,...,Sp), ) we need only to consider those (51,...,5,) and 7 €
S(Salﬂ)

in which

(6.35) {trr—l(pn)vtﬂ“l(qyl)}zl:] n {t"'l NN A 0.
Moreover (third step)
LEMMA (6.4). For (51,...,5, ) € Panp and @ € Séi’p) if the car-

?

dinality of the index set {tr-1(,,), ‘1(%)};:':1 is not equal to 2m, then
AN(2n,(51,...,5p), ) tends to zero as N — oo.

REMARK. Lemma (6.4) shows that one needs only to consider the
case when all the {7~(pn),7 (gs)},—, are singletons of the partition
(81,--.,5p).

Proor. By the same arguments as in ii) of the proof of Theorem (1.3)
and relabeling the indices, one has

(6.36) ’AN(Qn,(Sl,...,Sp),w)1 <
. (8')
S Nr-m z ’E(jh [bw(rl)) T Jtan—am (bw(rgn_zm})) l

1§t1 g"'thn«—Qm éf\r

1
e > Le(k1y by, b, 00) - (ks B, Bl b))
1Shy <k yonthm<km SN

Applying Lemma (6.3) we find a majorization of the right hand side of
(6.36):

(6.37) ﬁ% : 3 | (ks by, b1, 8) - (R, By bl 015
18k <ky oo hn <bm SN

where C is a constant and {b},,6} ), C {ba}i~,. Thus, if the cardinality
of the {h;,k; }m | is not 2m, the statement follows from Lemma (3.4).

REMARK. In the following, for each fixed “good” partition-permutation

pair ($1,...,5,) and * € Sz(g’p) (“good” means that {r=1(p,), = 1((17,11)},,:1__
are smgletons) we prove that one needs only to consider those terms in
which the indices ¢ x=1(pn)s br—1(gy) TE consecutive for each A =1,...,m (in
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full analogy with what happens in the weak coupling limit). This is our
fourth step. First we prove the following result:

LEMMA (6.5). For each n € N, 1 £ p < 2n, (S1,...,5p) € Pan,p and
for each by, ..., by, € B,

.1 . :
(6.38) 1&_1’{10% Z E (i (bs,) -+ Ju(bs,)) = 0.
1811 <-+<tpEN
i18dy
Proor.
1 . .
(6.39) Nn E {E(Jh (bs,) - 'Jtp(bSp)) { =
184 < <tp EN
flng

(% T ) |EGus) s,

188 < <ipEN 18t < <tpEN
t18dy,tpSdn+ty 81 Sdyte>dy+t

Applying the FP mixing property to the second term of the right hand side
of (6.39), one finds that (6.39) is majorized by

1 . .
(6.40) N > ’E(Ju (bs,) - i, (bs,)) ’+
1St <<t EN
t1 Sdy taSdy+ta

1 f o \ . . -

tm 0 |BGas) [EGubs)- g bs) |+ ox - N7
18t < <tp SN
t18dn te>dn 4+t

Now let us analyze the three terms of (6.40):

-— the third term of (6.40) tends clearly to zero;

— if 5, is a singleton, the second term of (6.40) is equal to zero;

— if Sy is not singleton then | Sy + -+ |5,] £ 2n — 2, and by Lemma
(6.3),

s X [Flus) i 0s,))|

1€to < <tpEN

is bounded, therefore the second term of (6.40) is dominated by

] &y
C-5 ZlE(jh(f’Jsl))'
T oh=1
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for some constant C'. This clearly tends to zero as ¥V — oo because of (1.5a).
Thus we have only to prove that the first term of (6.40) tends to zero as
N — oo

Iterating the above arguments, i.e. splitting the sum with respect to i3,
and then t4, etc., we find that

. 1 . .
(6.41) j&l_inoo e Z 1E(jt1(b51j - 7, (bs,)) } =
188 <-<tp SN
11 ng
. 1 . .
= Jm, 57 > [Bus)-3u05) |

1St < <tp SN
t18dy 2 Sdn+t1 - tp Sdn Hipoa

And the statement follows again from (1.5a) since the sum on the right hand
side of (6.41) is of order less than O(d},).

Now we can make our fourth step:

LEMMA (6.6). For each n € N, 1 S p £ 2n, let (51,...,5) € Pony
and © € Séi’p) be good in the sense of the remark preceding Lemma (6.5).
Then denoting

0

(6.42) 5
]_gh §'-'§t2n§N
tﬁ_l(PhJ >t”‘1(th’h:1""’m

the subsum of
(5:p)

)3

1€61 S Stan SN
tr=1(py) P tn=1(gph=1im

extended to all 1 £ty £ -+ £ toy £ N for which there exists an h =
= 1,...,m such that t—1(,,),tr-1(,,) are nol conseculive indices, and de-

noling
(6.43) AR (2n,(S1,...,8),7) =
1 0 m
= N; Z H ] E(twkl(ph)a trﬁl(qh}z bph:b%)l
1€8 - Stan SN h=1

a1 () a1 () A= o
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‘E(jtﬁ (b’r{’"l )) o 'jt"zn—Zm(bﬂ{’@ﬂ—?m])) ~’
A%(2n,(S1,...,S5,),7) tends to zero as N — oo.

Proor. Let (51,...,5,) € Pyppandw € Séi’p) be good. Without loss of
generality, we can assume that Lre1(py)s br=1(qy) @re nol consecutive indices.
Denote

li= tr_l(pl)v k= t?r'l(gl)

and let {; be the smallest 15 greater than /.
Since I,k are not consecutive indices, one has I; < k. With these
notations (6.43) is majorized by

N N N

(6.44) ]\}n Z Z Z "'le(iykab:ﬂlvbm)'

=1 =141 k=l +1

Hl E(tﬂ‘l(ph)ttﬂ”‘ (Qh)’bphﬂ bqh)[ ;E(jtrl (bﬂ(h)) t ’jirm_gm (br(rzn_zm])) ;

h=2

Notice that for each X(I,...,k), since both [ and k are singletons, we can
exchange the [;-summation with all those preceding the k-summation. That
is, by our assumptions on [, k, {1, one has

N N N N -1 N
(645) Y Y o Y X k=) > X(U.. k)
=1 [1=I+1 k=l1+1 l1=1 =1 k=l+1

N i-1 N

=3 Y N XUk,

11=1 =1 k=141

Therefore (6.44) is less than or equal to

(6.46)

] e
Nn-1 H*E(tr‘l%)’tﬂ“[%]’bm’b%n
— — Pl
1St St () Sl () S Slan EN ¥
tv.—‘l(ph)>t1r—1 [qh),hz'z,...,m

H—1 N
E(‘?trl (b‘!!‘(:r‘l)) T Jtr?rt—?n» (bw('rzn—“gn'l))) —ﬁ | S({’ k’ bpl ’ b';’l )| *
=1 k=l +1
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For each K € N, split the sum

1565

et L L <.
21 ()2 1)) 2
1

nA
el
L.v]
3
HA
=

71 (pp) > bt (g ) A=

into two parts
(6.47)

2 + 2

—

LSS b)) St () S St SN 1SSt m1(p ) Sotyma g ) S Stan SN

lng’t“l’_l(P)l))t“_l(qh)’h=2’“"m Ih >K,t7r,..1(Ph}>i’t_..1(qk),h=2,...,m

Since &(+,,bp,,bq, ) is 8 — LY(C,dn), for each 5 > 0, we can choose K satis-
fying

N

(6.48) Y el by, by)] <
k=K+1

By the same arguments as in i), ii) and iii) of the proof of Theorem (1.3)
and relabeling the indices, using (6.47) and (6.48), we see that (6.46) is
dominated by

1
(6.49) Cont o >

léii<"'tﬂ-—1(le_S_"'z-,r—l(ql)g"'§t2ﬂ§N

zng't"_l(Ph)>t“—] (qh),hzz,._.,m

m
H | g(tﬂ"l(ph)7 tr‘lf%] ’ b:ﬁh ’ IE')fiv'h,)| I‘E(jfrl (bﬂ[?l)) . -jt"En—Qm (b"r(’”Eﬂ—?m))) ‘
h=2

h-1 N K

1
N Z Z |£({’k’bpl7bq1)f sCn + Clﬁ
I=1 k=l 41

where, C, C; are constants. This ends the proof.

In the continuous case, the situation is much easier. In fact, by the same
considerations as before (6.18), one needs only to consider the analogue of
Lemma (6.6) in the case of p = 2n. Replacing again (6.18a) by (6.18b), in
this case we are led to estimate the integral
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(6.50)

1. m
Ar(2n) = %";}'/ 0ty S Stgn<T ng(tw‘l(lﬂh)vtﬁ‘l(%h bylmb%n
t'ﬂ'

—‘l(ph)>tﬂ'_1(qh)?h=11"')m h=1

dtq -« dty,

’E (jtrl (b"'r('rl)) o jt"?n-—?m (bﬂ(v?n—zm)l))

which corresponds to the case in which all the blocks of the partitions are
singletons. Moreover the partitions (Sy,...,52,) are good in the sense of
the remark preceding Lemma (6.5). Denoting, in analogy with (6.42)

(6.51) ST gpmantis, = { (11, t20) € [0,1)%":

11 <fg < - < iop; t,r—l(ph) > tﬂ-—l( ),h =1,...,m and there exists a

9h
h € {1,...,m} such that {1, and t.-1(,,) are not consecutive }

and
m

1
(6'52) A%(Qn) = F/ \E(t’rr_l{ph]stfr"l(qh)abphabq}z)'
=1

ET,vr.{Ph,qh}L"ﬂ h=1

\E(jcfl (b"("‘l)) T jtrzn—zm(bﬂ(ﬁn—?rvl))) Idtl o dtgn
one has the following
LEMMA (6.7). AY(2n) defined by (6.52) tends to zero as T — co.
Proor. The proof is similar to that of Lemma (6.6) (just replace the

sums there by integrals).
Now let us come back to the discrete situation. Since the indices

{tr— ()2 ta=1 (gr) }:L:]

are all singletons, we know that p 2 2m and the index set {ry,...,72n—2m}
is divided into p — 2m sets, hence from Theorem (1.3) we know that p — 2m
should be greater than or equal to n — m, i.e. m £ p—n. Now we deal
with the property of the partition (51,...,5;) and show that for each
h=1,...,m, Sy has at most 2 elements. This is our fifth step.

As a first generalization of Lemma (2.1) we prove the following result:

LEMMA (6.8). For each n € N, p 2 n, (51,...,5,) € Panyp ond
bi,...,ban € B, if there exists an h € {1,...,p} such that the cardinality
of the set Sy, is greater than or equal to 3, then the limil of the quantity
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653) A= Y |Blals) iy 0s,))|

teln(S1,...,5p)

i§ ZETO.

Proor. We shall prove that Ay(n,p) tends to zero by induction.

For the case of n = 1, there is nothing to prove. Suppose that the
conclusion of the lemma is true for all integers less than or equal to n, and
let us consider the situation for n + 1. By the FP mixing property of £ we
have that

(6.54) AN(TL +1,p) =

Ni+1 Z ’ (J‘h(bbl = Jtp (bs ))‘

tEJ‘J\'(S] ,...,S )
tpStp-1+dn

1 . .
Tyt >, > iE(Jh(bsl) o Jepy(bs,_y) ‘ '

tE[N(S1 ..... Sp.kl)ip>tp_1+d:v

‘(E(jzp(bsp)) I + b5 NP1

It is clear that the third term on the right hand side of (6.54) tends to zero
as N — 0. Moreover the second term on the right hand side of (6.54) is
equal to zero if |S,| = 1. If |Sp| = 2 then that term is equal to

(6.55)

1 y : 1 _

7 2 [BGas)duabs )5 X | E(s)]
tEIN(S],u.,SP_l) tp>tp—1+dN

=antp-1) g 3 [Blas)]

tp>ty_1+dy

Notice that Etp>fp 1+dN‘E Jt,(bs, ) l is bounded. By assumption there

exists an h € {1,. — 1} such that |S,| 2 3, so the induction assumption
implies that (6. 55) tends tozero. If |5, 2 3 then (51,...,8,-1) is a partition
of at most 2(n + 1) — 3 elements, so we can apply Comllary (2.2) with £ £
S2(n+1)-3 and ek = n = %(Q(n +1)—2) > }k. Thus we conclude
again that (6.55) tends to zero. These argnments show that the limit of
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An(n + 1,p) is equal to the limit of the first term on the right hand side of
(6.54). We write that term in the form

1 ' .
(6.56) NnHt > ’E(Jn(f’sl)- + Jty(bs,)) }+
tEIN{Si )---:Sp—l}
tpStp_1+dn tp1 Stp—2+dy

1 . .
+F Z \E(]tl(bsl ) e 'Jtp-z(bﬁ'p_z)) ’ '
tEIN(Si,...,Spq2)

1 . | .
v )3 [ Gty (b, )i (b,) | + 0 - N7,
tP—l >tp—2+dN, tp<=: tp_1+dN

It is clear that the third term on the right hand side of (6.56) tends to zero
as N — 0. Moreover in the second term on the right hand side of (6.56):

— if |Sp—1] = |Sp| = 1, then since E(7.(b)7.(6")) is in s — L*(C,dn), one
has that

L > B (s (05,00 05,)|

tp—1>tp_24dn, tpStp_1+dy

is bounded. By assumption there exists an h € {1,...,p — 2} such that
154 2 3, so by the induction assumption this term tends to zero.
— if |Sp_1| + |Sp| > 2, then by Lemma (6.5) with & < 2n — 3 (so that

n—1> %), the quantity

(6.57) Y |EGulbs)dalbs, ) |

o1
€N (S1 e Sp_2)

is bounded and because of (1.5a),

(6.58)
1 ) . dy
N1+% Z “E(Jip—l(bsp—l)pr(bSp)) ’ =C- f\—’ﬁz — 0.

tpe1>tp—2+dN, tpStp—1+dy

Therefore the second term on the right hand side of (6.56) tends to zero as
N — 0.
Summing up we have proved that the limit of Ax(n + 1,p) is equal to

. 1 : :
(6.59)  lim -5 > lE(le(bsl) ++ Jiy(bs,)) ‘
L€ TN (1 ersSp-1)
tpStp_1+dy tp1Stp2tdy
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Iterating the above argument one finishes the proof.

Applying Lemma (6.2) to Ax(2n,(51,...,5p), 7) we conclude that one
needs only to consider the case of |5,] £ 2 for each h = 1,...,p. Moreover
Lemma (6.1), Lemma (6.2) and Lemma (6.4) show that we can restrict
ourselves to partitions (51,...,5,) and permutations 7 such that the indices
tr=1(pn)r tr=1(gn) (B = 1,...,m) defined in Lemma (2.6) are singletons of the
partition (the other ones give zero contribution). If we omit these singletons,
we obtain a subpartition (.57, .. ,S;},) of (51,...,5p). Thusp’ = p—2m and
|S3| < 2 for each h = 1,...,p' = p — 2m. In the following we shall restrict
ourselves to this case.

The sixth step is to show that one needs to consider only partitions
with the property that between any two nomsingleton blocks there is an
even number of singletons. A corollary of the following lemma is that the
total number of singletons is even.

LEMMA (6.9). With the same notations and assumptions as in Lemma
(6.8), if the partition (Sy,...,S,) is such that either there exist 1 < i < j <
< 2n with the properties:

— §; and S; are not singleton,

—~ for each i < h < j, Sy is a singleton,

— j—i—1is odd,
or the partition either begins or ends with an odd number of singletons, then
the limit of An(n,p), as N — oo, is zero.

Proor. The proof is similar to that of Lemma (6.8).

For the case of n = 1, nothing has to be proved. Suppose that the
conclusion of the lemma is true for all integers less than or equal to n, and
consider the situation for n + 1.

By the FP mixing property of E we have

1 : -
(660 An(n+Lp)=gmm > [E(als)ds) [+
tEIN(S]."'wS}J—l)
tpStp1+dy

+N:+1 Z Z {E(jil(bsl)"'jﬂp—i(bsp—l)) l ‘

tEIN(Sl:.,.,SP_,l] tp>ip_1 +dpy

B bs,)) | + 8w - 37,

It is clear that the third term on the right hand side of {6.60) tends to zero
as N — 0 therefore we can neglect it and consider only the first two terms.
We shall distinguish several situations:
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The first term of (6.60) is equal to

(6.61) N?}H >, ‘ﬂ (G (bsy) -+ iy (bs,)) ‘

teIN(S1 1, Sp—2)
tpg tp—l"i‘dNatp—l étp—2+dN

+ 1 . Z ‘E(jzl(bsl)"'jtp_z(bsp_'z))}'

—I
N2 e (St Sp2)

1 . . —n—
Z ’E(]tp—l(bsp—l )}tp(bsp)) 1 + 6IV ' ‘{Vp ! "

.
N 2
‘!p—l >tp—2 d]\.'yipgtp—l dN

The third term of (6.61) obviously tends to zero and by the same argument
as in the proof of Lemma (6.8), the second term of (6.61) also tends to zero.
Iterating (p — 1)-times the above arguments, one reduces the first term of
(6.61) to a term of order dRT/N"‘% which tends to zero by (1.5a). So the
first term of (6.60) always tends to zero.

If §, is a singleton, then the second term is equal to zero. If S, is not a
singleton, i.e. |.S,| = 2 then the second term of (6.60) is dominated by

Come X |EGalbs) i 05,)|

tedn{S1,..,5p—1)

for some constant ' and surely the subpartition (57,...,5,-1) satisfies
the condition of this lemma. Therefore the limit is zero by the induction
assumption and this ends the proof. '

Applying Lemma (6.9) to An(2n, (55, . ..,5,),7), we conclude that one
needs only to consider the situation in which each set of the subpartition
(S1,. »—2m) has one or two elements; moreover between any two nons-
ingleton blocks, there is an even number of singletons {may be zero).

Summing up the results obtained up to now we conclude that for each
p=n,...,2n (cardinality of the partition), m = 0,1,...,p — n (number of
g-factors)and 1 S p; <+ < ppy S 210, 1 S qy,...,qm £ 2n (the indices of
those operators that are coupled by an e-factor) satisfying (3.8a), (3.8b),
(3.8c), one needs only to consider those partitions (S1,...,5p) in which

(6.62) iSpi 2, foreach h=1,...,p

and there exist at least 2m singletons; and only those permutations = €
€ SZETSL’F } for which
a) {7~ (pa), 7" (qn)} =, are singletons;
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b) if we denote (5y,.. ) the subpartition obtained by omitting

{m=Ypn),m ™ (an)} ey from (Sl, ...,9p), then in this subpartition, between
any two nonsmgleton sets there exists an even number of singletons.

—2m

REMARK. Notice that if p = 2n, the partition (51,...,52,) satisfies
(6.62).

In the following we shall denote all (5,...,.5,) which satisfy this con-
dition by P3,, , and for each fixed partition (S1,...,5p) , by Sgi"v‘{ph'q"}“’)
the set of all 7 € S( ) satisfying a) b) above,

S{S,p {phs';'h.}h_

For each fixed (51,...,5,) € P, ,and 7 € S, , our seventh

step concerns t € IN(Sl, ..., 5p): we shall prove that if §] is the 2h — 1-st
singleton and S is the 2h-th singleton and there exists some index [ of some
e-factor such that g < ¢; < tgr, then we get limit zero. More precisely:

* J

LeMMA (6.10). Denote 3 g, .y the sub-sum of

(S,p} 0
(663 > -y
15t S $tan SN 156 S Stgn SN

1
t“_l(PhJ>t“_1(Qh)’ h=1,...,m t >t = d(qp) h=1,...,m

with the property that there exist 1 £ 1 < j < p' such that:
— 5} is the 2h — 1-st singleton and S} is the 2h-th singleton,
— there exists some index {; of some ¢-factor such that tgr < t; < tgr,
' 7
then

1 m
(6.64) e > T eCar(m)s te=t(gn)» bons bas )|

(Sp,e) h=1

‘F;{jtfl (b‘ff(‘i'l]) e jtan-Qm (bﬂ[i"zn—Qm))) ‘
converges to zero as N — o0,

Proor. Since the total number of singletons is even, for each term of
(6.64) one can find an integer ' such that there are exactly 2m'’ singletons
in the sub-partition (57,...,5,_5,,), defined in b) above. We label them by
i1, ... ,89,s. By the assumptmn of this lemma, we know that there exists

an z = 1,...,m/ such that between ¢ and tg there is an index of
f2x—1 2z
some e-factor. Since the indices of the e-factors are consecutive (by Lemma
(6.6)), it follows that between tg: and tg: there is an even number of
22—1 2z
indices of ¢-factors.
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Let us split (6.64) into two parts:

1
(6.65) N—n( > +
{(Sip.2)

2x—1 i2p—1-1 21 iz 3

+ > )
(S.p,s)

tor étsf_ +dp, or to +dN§t3(
21 g—1—1 12z ipr+1

H|E(t7r‘1(1>h)’t#'l{qn)v bphvb%)l ) ‘E(jfrl (bﬂ(v‘lJ) h -jtTQn—%'n (bﬂ("”ﬁn—zm))) .
h=1

By the same argument as in the proof of Theorem (1.3) it follows that
the second term of (6.65) goes to zero as N — oo. Moreover, the same
arguments as in the proof of Lemma (6.1) imply that the first term of
(6.65) is majorized by

. , 1 . .
(6.66) Coms > | En(B)n() -2k, hob,)
18h <h<k<laEN

where C' is a constant and b,0,by,b; € B, therefore the statement follows
from (4.2a).

In the continuous case, for a fixed partition (57,...,59,), a fixed per-
mutation 7, a fixed m, and a fixed set p; < - < P, g1 < -+ < ¢y, denote

(667) Qc(ﬂa{phth}Tz1) = {(tlu ree 1t2n) € [O’T)Qn . (1) hh <.+ < L'Zn;
(ii) br=1(pn) > br-i(g,) and they are consecutive for any i = 1,....m;

iil) the indices 1o , teo are consecutive foreach h=1,....n —m!l.
S2h ) Szh+1 3 ,

Recall that we have already shown that, in the continuous case, we need
only to consider the case in which p = 2n, i.e. only those partitions which
are entirely made up of singletons.

LeMMA (6.11). AsT — oo the limit of Ap(2n,(S1,...,S2),T) is equal
to the limit of the quantity

] m.
{6.68) e dty - dian | | (=1 (pysta=1(gn) bpis Dan)
T Q(”){Phﬂh}?:l) f];Il (® ) (ar ) P &
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‘E(jt‘"l (b""(f'l)) . 'jtr2n—2m (bﬂ(”'Zﬂ—?m})) }

Proor. The same as in Lemma (6.10).

Summing up our conclusions:
— In the discrete case, one needs only to consider the partitions

(51,...,5,) € 'Pgn,p and the permutations 7 € Séf’p'{ph’q"}"mﬂ) (ct. (6.62)
and below). In this situation,

(6.69) lim An(2n,(S1,...,5),7) =

N—=oo

. 1 N
- Iégnoo Nn Z H €(tr=1(pn)s tr=t(gn) > bon > ban)
tEQd("rr{Phlqh};:nzl) h=1

‘E(jﬂrl (bﬂ'('f‘l)) e jirgn_;)m (bW(TEnvn?m))) l

where

(670) Qd(ﬂ'a {Ph:Qh}f’:l) =

. {t € IN(S15--3Sp) + {tr=1(pp) }s {tx-1(qn) } are singletons, h = 1,...,m;
tr=1(pp) > tr1(gy) and they are consecutive for any h = 1,...,m;

I=1,...,m and

tsy, is the consecutive index of tsy s
) -

' ' m! .
{895 52i,-1},_, are singletons }

— In the continuous case, the limit of Ar(2n,(S1,...,52.),7) is given
by (6.68).

Moreover for each p = n,...,2n and (51,...,5;), the above conclusions
show that we need only to consider the term in which there exist 2(m + m")
singletons and p — 2(m + m’) nonsingletons. Since each nonsingleton set
must have cardinality 2, we have the following relation

2n = 2(m +m') + 2(p ~ 2(m + m’))

ie.
p=n+m+m.

This shows that we have p—2(m+m') = p~2(p—n) = 2n — p nonsingletons

and each of them is of cardinality 2. Recall that in the product map case one

needs only to consider the case p = n and for each partition (5y,...,5,),

|S1] = -+ = |Sp| = 2. Therefore the number of nonsingleton sets is an

invariant which depends on the map F and the commutation relations.
Now we pass to the eighth step of the proof:
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LEMMA (6.12). Foreachn € N, p=n,...,2n and (51,...,5) € Pan,p

m|5'hi§2, h’:ls'-')p;

— between each two nonsingletons there exists an even number of sin-
gletons.

Then for by,...,ba, € B, the limit of

(6.71) Fl;; Z ‘E(jz;(bsl)"'Jtp(bSp)) — E( iy (bs,) -+ 3, (bs,))

1861 < <tp SN

is equal to zero, where

(6.72)
Ec(jtl(bsl) v 'jip(bsp)) = E(jtl (b51 )) e E(ji“l (bsﬁ )jti]+l(bsl]+] ))

e E(jt‘m, (b5|m, )jiim,+1 (bsim,ﬂ) o b (jtp(bsp))

and {ih}z;'l CH{l,...,p} with iy < < iy, {Sih,Sth}hm:rl are all single-
tons.

Proor. We apply induction on n. For n = 1, (6.71) is identically equal
to zero. Supposing that (6.71) tends to zero for each integer less than or

equal to n, let us see the situation for n + 1.
If |Sy] = 2, we split (6.71) into two parts:

(6.73) ﬁ( oo+ Y )

IS8 <-<tp &N 1S <<t EN
tp>tp_1tdn tpStp—1tdy

| B (bs,) -y (b5,)) = B (i (b5, -5y 05,)) |

The same arguments as in the proof of Theorem (1.3) imply that the second
term of (6.73) converges to zero as N — 0. From the FP mixing property
of E, one knows that the first term of (6.73) is dominated by

(6.74) % > ]E (Jua(bs,)++ Gtya (b5yy)) ~

184 < <tp1 SN

LB (G (bs) G (bs, ) | = 3D |G, (0s,))
N1<t <N
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where (n+ 1) - 1=n £ p— 1. The second sum of (6.73) is bounded and
the induction assumption implies that the first sum of (6.73) goes to zero.
Therefore (6.71) tends to zero.

~ On the other hand, if |5,| = 1, then |Sp_1| = 1 and the proof that (6.71)
goes to zero is almost the same as before, the only difference being that one
has to split (6.71) into two parts between the indices t,—g and t,_1.

As an improvement of Lemma (6.14), one has

LeMMA (6.13). For cach n € N, p = 2,....20n and (S1,...,5;) €
€ Pgn,p’ T e Sz(,i’p’{ph,qh}h=l), the quantzty

1 m
(6.75) R‘;‘; Z H E(trr“‘l(ph): t:rr—l(qh)abphﬂb%)

tegd{m{?’hﬂh}hm:l} h=1

}E(jtrl (bﬂ'(’i"l)) e jtrzn_zm(b’ﬂ'[?'zn—2m))) -

_Ec(jtrj (b'rr(rl}) ot 'jtrgn_gm (bW(TZn—Zm))) ‘
tends to zero as N — oo.

ProOF. The lemma is an application of Lemma (6.14) and the property
that £(-,+,b;,8]) is in s — L(C,dn) foreach { = 1,...,m.
The continuous analogue of Lemma (6.13) is

LEMMA (6.14). For each n € N,

1

(6.76) —T%/. dty - diz, E(tr=1(p,)s br=1(qn) s Opps Dan)
™ Ja,(x ton.antpey) 111;11‘ (Pr) {gn)2 %P an)|

’E(jt,—] (bﬂ-(rl)) e jtr?n—?m (b"r(rZTl—?m))) -

__'Ec(jtfg (bw("'l)) ot -jt"2n—2m (bﬂ'(fg"—Qm))) '
tends to zero as T — oo, where E° has the same meaning as in (6.72).

ProoF oF THEOREMS (1.4} AND (1.5). Applying Lemmata (5.2}, (5.4)
to

1 m
(6.77) -ﬁ Z HE(t’ﬂ"‘](ph)?t?r“"l[qh)?bpmb%)

teﬂd("l{?h!‘}ﬁ}:;l) h=1
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Ec ( jtrl (bT(Tl )) e j‘t‘l‘gn_zm (bW(T21t—2m) ))

and

(6.78) 1

dty - - dta E(t.n-—l I S ’b ’b }
™ /ﬂc(ﬂ.{m,qh}}’.‘=1) ng' (pr)s *m=1(gn) > YPro Yen |

E° (jtrl (bvr(n )) Tt jtrzn—zm (bfr(mn_.zm) ))
respectively, one has the following

THEOREM (6.15). In the discrete case, suppose that for each b,b' € B,
(i) o(+, -, b,b") = a(b, b"),
(i) E(,-,b,b), &(-,+,b,") are in § ~ LY(C,dn) in the sense of Definition
(4'1)J '
(iii) the limit

N
1 . ' '
(6.79) dim h§_1: EGa(b- b)) := C(bY)

exists. ‘
Then for each n € N and by,...,by, € B, the central limit (6.18) ewists
and if we denote

(6.80) F(bb) = i e(k, h,b,b)
k=h-+1

and

(6.81) Fb,0):= Y E(jn(b)ix(¥))
k=h+1

then the limit (6.18) is equal to

(6.82)
2n pfIN(p—n)

1 > Y ¥ >

p=n m=0 15?1 (---(pm§2n [ql,...,qm) (81, S'IJ)E,PSH,;J Wes(s,P-{ph:%}?:l)
. 2n

o(m,by,. .. ban) - Hf(bpmbqh)c(b-rr(s’;))"'F(bw(S:I)sbw(S:H_l))"'
h=1
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cFbasy  ybaes ) Clbagsy )

where {8}, S{ 1 }_"" are the singletons of (8,...,8, ,,) and

1) Y M p—2m

o(bi,...,ban) s a pmduct of some a(by,by) with 1 Sk < h < 2n.
The continuous analogue of Theorem (6.15) is

THEOREM (6.16). In the continuous case, suppose that for each b,b’ €
€ B,

()a(,,bb':a( )and

(it E(-,+,0,0"), e(-,-,b,0") are in § — L*(C, dt) in the sense of Definition
(4.1).

Then for each n € N and by,...,ba, € B, the central limit (6.19) ewists
and moreover if we denote

(6.83) f(b,0") = / dse(s, h,b,b")
(hioo)

and

(6.84) F@yy:j' dsE(5,(0)7:(6))

?

then limit (6.19) is equal to

(6.85) i—, > S>3 a(mby i ban) - [ F(bonsban)
h=1

1€p1 < <pm E2n (g1, gm) TE€ESm

J'[‘(b (ra) ﬂ'(‘FQ ) .-1;1({)71'(7'2n—2m—1)?b'ﬂ'(r2n-—2m))
where, o(by,...,ba,) is a product of some a(bg,by) with 1 S k < h < 2n.

Now let us consider some special situations in the discrete case.
First of all consider the term with m = ( in (6.82). In this case, we have
no e-factors and (6.82) has the form

(6.86) — Z Y, >

(51, SP)EPJnPWES( )

o-(ﬂ-vbla" b2n) C’( 51)) F(b (S; )': 7( =1+1))”.
"14'(bﬁ(5ip_n}’b‘ﬁ(b n‘H C(b bp))
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where

(6.87) 'Pgn‘p = {(51,...,9p) € Panyp ¢ there exist 2p — 2n singletons and

between two nonsingletons there exists an even number of singletons}.

We write (6.86) as a sum of two terms:

(6 86&) — Z Z G(ﬂ--. bl, K 5b2n) ’ C(b';r(S1)) e C(bw[sn])-i_
(‘817 ’S“)EP271 1 TES(ST‘!)

Iy oy 0y

: p=n+l (Sl.---gsp)ép’gnm ”Eséi,p)
O’(ﬂ', bla e ’b2n) : C(bﬂ'(sl)) U F(bﬂ(si1)’bﬂ(3€1+l)) o

.- .F(b.,r(_g‘

Notice that in the first term of (6.86a), all partitions are pair partitions
(without singletons), therefore, each 7 € S‘gf ™) exchanges the pairs, i.e. it is
eqmvalent to an n-permutation. More precisely, for each fixed (S1,...,5,) €

P2nn with Sy = {lp,kp} and {, < kj for any h = 1,...,n and for each

) ba(si, ) Clbags,))-

p—n

TEeS; (5 ") , define a transformation ¢ by
(6.83) oy = m(ln), ko) = m(kn), h=1,...,n.
It is easy to check that the first term of (6.86a) is equal to

1 '
(689) m Z Z O-(ﬂ- bla v ':b???.) 'C(bsﬂ(n) t .C(bs,r(nj);

(SI ‘II]EPD

[
2n,n n

this gives the result when E is a product map and the ¢ factor is zero.
On the other hand, if we introduce the notation

(6.90) C(m, 8,7,bi,b;) 1= Clbagsybas))

then we can rewrite {(6.89) as

1 .
(6.91) EZ > ol bi, .. uban) - C(m,S,n, by, by, ) - Clor, 8,y by, b, )

© p.p. T€ESH
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where } . defined in [1] is the sum over all the pair partitions of
{1,...,2n}, i.e. all the {lp, kn};—y = {1,...,2n} such that

(6.91a) Iy <kp, h=1,...,n
and
(6.91b) Iy <o <y,

More generally, considering also the second term in (6.86a), if we define
(6.92)

C(x,8,p,bisb;) = {C(br{i]br{j)) , if,j are in the same S},

F(br(i),br(;)) , if 4,7 are not in the same Sy,

and notice that in (6.86a), the {S;,, Si, +1},_; are singletons, then (6.86a)
is equal to

2n
1 )
(6.93) _Z Z Z a(m,b1,...,b2,) - Clo, 5, p,biy, by )

1
n.
P=n(89,...,.5)€ onn_p TrEsgi'p]
- C(a,8,p,bi,,be,)

where

(694) {J]_,k'l} = 51,...,!-3'] = Si;akil = Si1+1,...,l

ipen =

kip—n, = Sipmn'}‘ly e ,{i'ng kn} = Sp

ip--‘n ?
In the general case, i.e. when m needs not to be zero, we have

THEOREM (6.17). Define C(x, 5, p,bi,b;) to be equal to Cbrpiyba;)) if
i, j are in the same block; equal to F(b,(;),by;)) if 4,  are in lwo different
blocks and 7 leaves i and j fized; equal to F(br(;y,br(;y) + fbiyb;) if 4, § are
in two different blocks and © permutes i and j. Then (6.82) is equaldo

2n
(6.95) ;17 N 3

P=T (110, 5p) E€PL, , mes(EP)

O'(Tl',bl, - 1b2n) ' C(ﬂ-vsﬁpvbh;bkl) oo 'C(Wus}psb!‘n!bkn)'
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PROOF. Since in the product
(696) C(J1S=p1 blj:bkl) e 'C(U,S,P,bin,bkn)

some terms have the form F + f, we can expand the product of sums into
sums of products. Suppose that in the expansion there are m factors f,
then by the definition of C(r, S,p,bi, b;) we know that m can be equal to
0,1,...,p — n. Moreover, that definition shows that each factor f corre-
sponds to two singletons, therefore, m < p/2.

For each fixed m = 0,1,...,p/2 A (p — n), we label the f factors by the
indices {pn,qr}rey- Then {ps,qn};, are singletons and it follows that we
cannot choose all partitions in Py, , but only in P‘;?n,p;‘ moreover T € Sz(f’P)
should satisfy 7~1(pn)} > 71(g) for all A = 1,...,m. This ends the proof.

Similarly, in continuous case, we have

THEOREM (6.18). Defining

F(br(i)>ba(s)) ifme (I
F(bagiy, ba(y) + f(biby) ,  if 7

(6'97) C(?T,bi,bj;) = {

T
Ld i
LN
f—

(6.85) s equal to

1
(6-98) "rﬁ Z 6(517 b2’l’l.) C’(?Tr bll}bkl C(?T b{?” )'
) Wesgi:ﬁ)

From Theorem (6.17) (resp. Theorem (6.18)) one can finish the proof of
Theorem (1.4) (resp. Theorem (1.5)). In fact, by expanding Co to C + G,
the expression (1.18) is equal to

1 o o
(6.99) o E o(i1, 1, - o iny Jn) E E Cbinybiny)
p.p.

=0 18r << En

- G(b

t1\’(1‘]_)b.77r r])

G(b r(ri)bjw(rl)) C(b"ﬂ“(n Jw(n))'

Now regard the pair partition

{313315"- sbrgadrys s brpaJrys e« r?'ﬂs.?n}

as partition (S1,. .., Sy4+¢) with singletons ¢, , Jr 5. .., 2y, Jrys and put n 44 =
p. Then (6.99) becomes

(6.100) ,Z Do D Clbigybingy) Glbiny biy)

P=T (8, Sp)e’Pg TES,
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. G(bi:r(rl)bjfr(rt)) . 'C(biw(n) bJ'rr(n) )-

Notice that G(bin(rd)bin(rd))’ d=1,...,lis a sum of two terms which corre-
spond to an exchange of two singletons. Since the exchanges act on different
pairs of singletons, they commute each other. Therefore, combining the ex-
changes and 7 € &, to a new permutation 7', then 7' € Séf’p) and which
exchanges pairs (non-singleton block or two singletons) and keeps the or-
der of elements in each non-singleton block; acts as a 2-exchange on two
singletons. This shows that (6.100) is equal to (6.95).

The arguments in the continuous case are similar.
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