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QUANTUM CENTRAL LIMIT THEOREMS
FOR WEAKLY DEPENDENT MAPS I

L. ACCARDI and Y.G. LU* (Roma)

§0. Introduction

Recall [3] that a stochastic process over a *-algebra B, indexed by a set
T, is a triple

(0.1) {40, ()er}

where A is a *-algebra (unless otherwise specified, all algebras in the present
paper are complex, associative, with identity); ¢ a state on A; and j; : B —
— A a *-homomorphism. Every classical stochastic process (X;) (¢ € T'),
from a probability space (2,7, P) to a state space (5,0) (a measurable
space) naturally defines a structure as described above by choosing

A=L"(Q,F,P); B=L>(S,B),
Jo: f € L¥(5,B) = jl(f) := fo Xt € L%(Q, F, P)
and ¢ to be the integral with respect to the P-measure. Conversely, every
triple of the form (0.1) with A and B abelian, determines a (unique up to
isomorphism) classical stochastic process.
Now let T' be a subset of the natural integers. The classical law of large

numbers (resp. central limit theorem) studies the asymptotic behaviour (for
N — o) of the normalized sums

7=1 i=1

1 N 1 N —
¥ z f(X;) (resp. ﬁ Z[f(XJ) - f(XJ)])
where f € L*°(S5,0) and

F(X;) = /Q £(X;) dP.

* On leave of absence from Beijing Normal University.
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In the present algebraic context the analogue of these sums are

1N, L g
¥ jl;_yh(t‘)) (resp. ﬁ ;[jh(b) - ‘P(jh(b))] )

where b € B and the study of the asymptotics of these sums, for N — oo, is
the object of the algebraic (or quantum) laws of large numbers (resp. central
limit theorem).

In the paper by Giri and von Waldenfels [9] the first quantum central
limit theorems for independent random variables was proved under the
assumption that, for & # k the algebras j;(B) and ji(B) commute. Previous
results, by [11], [12] even if phrased in a quantum mechanical language
are essentially classic in nature. In von Waldenfels [17] this result was
extended to the case in which B is a Z;-graded algebra, the j; are graded
homomorphisms, and for h # k the odd elements of j,(B) and ji(B)
anticommute.

In these papers it was shown that, like in the classical quantum central
limit theorem the limit distributions are Gaussian measures, in the quantum
case the limit states are the quantum analogues of the Gaussian measures,
i.e. the quasi-free states arising naturally in quantum field theory (cf.
[13]). It was also shown ‘that the usual Heisenberg commutation relation
in unbounded form (or anticommutation, in the Fermi case) arise naturally
from the quantum central limit theorems (cf. [18] for a simple proof). A
proof of the Giri-von Waldenfels result, using cumulants techniques and an
elegant noncommutative calculus of formal power series is due to Hegerfeldt
[19].

Fannes and Quaegebeur [8] and, in a different context, Accardi and Bach
[1] extended the central limit theorem to maps. If one starts from product
maps on the CCR or the CAR algebra, the limit maps are the quasi-free
maps introduced by Demoen, Vanheuverzwijn, Verbeure [20] and Evans,
Lewis [5,6].

Motivated by the goal of extending the central limit theorem to quantum
Markov chains, Accardi and Bach [1] extended the central limit theorem to
non-independent random variables (i.e. to states ¢ which do not factorize
on products of the form ay, -ay, - ...-ax, withky <ky < ... <k, and ay, €
€ Ji,(B)) (for more details on this, cf. the remarks preceding Definition
(1.2) below, where the basic strategy of [1] is outlined). In the present paper
we take up the method of [1] and extend it to include the case in which the
algebras ji(B) are not assumed to simply commute or anticommute, but to
satisfy a more general commutation relation of the form

(0.2) Ja(0)7k (V") = on k(b b)je(b)in(b) + £,k (0,0') 5 h >k
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The first deduction of the CCR in bounded form from a quantum central
limit theorem was given in [2], where the quantum harmonic oscillator was
shown to be central limit of quantum Bernoulli processes.

In a series of papers starting from 1988, Goderis, Verbeure and Vets have
deduced the CCR in bounded form from quantum central limit theorems
in much more general conditions and with a new technique which allows
only L'-decay of correlations in the dependent case. Moreover in their
techniques, the order structure of the index set is not relevant, hence their
results include the case of a multidimensional index set (e.g. Z¢). On the
other hand, for these techniques, the commutativity of random variables
localized on different sites of the lattice seems to be essential, while the
consideration of the very general commutation relation (0.2) is a main gool
of the present paper. Under such general commutation relation our results
are new even in the product (i.e. totally independent) case.

In order to appreciate the generality of the commutation relations (0.2),
let us examine some particular cases.

EXAMPLE 1. g4 = 0 and 04 = + 1 for all 4,k € N. This is the
commuting case considered by Giri and von Waldenfels (9], and also in the
papers by Goderis, Verbeure, Vets [10].

EXAMPLE 2. Bis Zj-graded, €54 = 0 and 0}, = — 1 on odd elements.
This is the anticommuting case of von Waldenfels [17].

EXAMPLE 3. Let H be a pre-Hilbert space with scalar product
< -, >; A= W(H) is the Weyl C*-algebra of the canonical commu-
tation relations over H with symplectic form Im(f, f') (f,/' € H). It is
then given a family of pre-Hilbert subspaces Hy & H (not necessarily mu-
tually orthogonal) such that each Hy is isomorphic to a single pre-Hilbert
space Ho. Fix such an isomorphism Jy : Hy — Hy and let B = W(Hp) be
the Weyl C*-algebra over Hy; for each k € N define

R (W(fo)) = W(Jifo); fo€ Ho .
Then (0.2) holds with €4, =0, B = {W(fo) : fo € Hp}, and

ok (W(fo), W(go)) = exp 2iIm(J}, fo, Jrg0) -

ExXAMPLE 4. Let H,(Hy), Ho,W(Hy), W(H) be as in Example 3 above.
Suppose that both W{(H) and W(H,) act on Hilbert spaces H,Hq respec-
tively so that the field operators exist and admit a common invariant dense
domain D (resp. Dy). Let A (resp. B) denote the *-algebra of the poly-
nomials in the fields, defined on the invariant domain D (resp. Dp). Then

if A(f), A*(g) (resp. Ao(fo), A*(go) {f,9 € H, fo,90 € Hp)) denote the

annihilation and creation operators in A (resp. B), then the maps
Jk(Ao(fo)) = Ao(Jrfo)i  Gk(AL (fo)) := AL (Ji fo)
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186 L. ACCARDI and Y.G. LU

define embeddings j; : B — A. If

B = {Ao(fo)), Ag(90) : fo,90 € Ho}

then (0.2) holds with o5 =1 and

enk(Ao(fo), AT (90)) = (Jnfo, Jkgo),
enk(Ag (90), Ao(fo)) = —(Jrgo, Info),
enk(Ao(fo), Ao(go)) = en k(A (fo), Ad(g0)) = 0.

EXAMPLE 5. Example 4 can be modified in a obvious way to obtain the
Fermion case.

EXAMPLE 6. Let H,(Hy),(Jx), Ho be as in Example 4 above and F(Fg)
be the full Fock space (i.e. the tensor algebra) over H(Hy) and let, for f,g €
€ H l(g), I*(f) denote the free annihilation and creation operators (defined
as in [16], cf. also [15] or [7]). Similarly one defines io(fo), *(g0) (fo, 90 €
€ Hp). Let A S B(F) (B € B(F)) denote the algebra generated by the
family

{5(F)i(9): f,g€ H}
(resp. {l5(fo),%(g0) : fo,g0 € Hp}). Then for each k¥ € N, the maps
Jx(lo(fo)) = {{Jkfo) ; dk(l5(g0)) = I"(Jrg0)

define embeddings 7, : B — A. If

B = {lo(fo),*(90) : fo,90 € Ho}

then (0.2) holds with ¢4, = 0 and

enk(lo( fo), 15 (g90) = (Jnfo, Jkgo) -

The above examples show that the variety of situations that can be covered
by our results is very wide.

REMARK. The paper has been split into two parts: in Part I all the
preliminary estimates are established; in Part II these estimates are put
together to obtain the main results, i.e. the three theorems stated at the
end of Section §1.
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§1. Notations, definitions and statement of the
main results

Let A, B,C be associative algebras, assume that A and C have an identity
denoted, when no confusion can arise, by the same symbol 1. Let B be a
subset of B, usually it will be a subset of generators of the algebra. Let for
each t € Ry be given a homorphism j; : B — A, such that for each t,s €
€ R;, t # sand b, b’ € B, there exist two scalars o(t,s,b,b') and &(t, s, b, 1)
satisfying

(1.1) Ge(B)is(¥) = ot 8,6, 8)5,(¥)5:(6) + e(t, ,b,).

Notice that if A, B are *-algebras and E is a state on A, then the triple
{A,(j:), E} is a stochastic process over B in the sense of [3].

Following the notations of {1], we denote S, the family of all p-permu-
tations and Py, the family of all ordered partitions (51,...,5,) of the set
{1,...,k} into exactly p non-empty subsets (k € N and p £ k). The
partition (S$1,...,5,) is ordered with order “<” in the following sense:
S; < §; if and only if min{r : r € §;} < min{r : r € §;} and each set
S; has the natural order. If some 5), has only one elements, we shall call it
a singleton.

For each (§1,...,8p) € Pryp and T € Ry , denote [5y,...,5,], the set
of all k-tuples (t1,...,1) € [0, T)* such that

(i) for each 7 =1,2,...,p and ¢,7 € §;, we have #; = t;1;

(ii) for each j,j' = 1,2,...,p, 7 # §', i € Sj and ¥ € §;, we have
1 # ty.

The elements of [57,...,8p]; can be identified to the functions ¢ from
{1,...k} to [0,T) which are constant on the elements of the partition
(S1,...,5p) and which take exactly p different values.

Similarly for each N € N, we denote by [5},...,5,], the set of all maps
a:{l,...,k} - {1,..., N} such that

(i) for each j =1,...,p and ¢,i' € §;, we have a(z) = a(?);

(ii) for each 7,5’ = 1,2,...,p, 7 # 7/, 1 € S; and ¢ € §;, we have
a(i) # a(?).

Throughout the paper, we shall denote by v either the Lebesgue measure
on R or the counting measure on Z, both characterized by translation
invariance and

v([0,T))=T; TeR or N.
We shall use the notations

(1.2) Sr(b) = f Je(b)(ds) ; TeRy
(017)
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so that, if v is the counting measure

N
(1.2a) Sn(b)=> k() ; NeN
k=1

for each b € B. Moreover, we assume that
(i) on C, there is a semi-norm |- | and it is given a map E : A — C with
property

(1.3a) E(1)=1;
(ii) for each k € N, by,...,bx € B := {b: E(j:(b)) = 0 for each t €

€ R}, there exists a positive constant C(by,...,bx) € R4, such that, for
each P é k,(Sl, . ,Sp) € 'Pk,p, (31, Ve ,Bp) € Rﬁ_

(1.3b) |E(Fs;(bs,) - - - Js,(bs,))| S C(by,...,bz)
where and in the following, for §; = {i1,...,4;}, we use the notations
(1.4) bs; = biy - b

T

DeriNiTION 1.1. We call £: A — C an FP-mizing map (FP meaning
“faster than polynomial”) if there exist two functions d,6 : Ry — Ry,
(resp. d, & : N — N) satisfying

(i) for each ¢ > 0

(1.5a) dr — 00, %—M}, as T — x

i.e. dy tends to infinity more slowly than any power of 7,
(ii) for each ¢ > 0,

(1.5b) b7 T?' -0 as T — o0

i.e. 7 tends to zero more rapidly than any polynomial fuction.
(iil) for each k € N, z € R (resp. z € N), by,...,b; € B, one has

(16)  |E(MoNoay) = E(M)E(Notar)| € Clb,...,bi)or
where the constants C(by,...,bx) can be taken equal to those in (1.3b) and

(1-7) M, = jsl (631 ) .- 'jsq(bsq)'r
(18) Nz-}-dgp = jsq-i-l (bSq-l-l ) LR jsp(bsp)
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with ¢ £ p = 1,...,k, (51,...,5) € Prp and (s1,...,8p) € RE (resp.
(k1,...,kp) € NP), such that sy < ... < s, (resp. k; < ... < k,) and

(1.9) 5; S z, i=1,...,q,
(1.10) Sjgﬂ!:-i-d:[', i=q+1,...,p

i.e. the correlations between observables which are localized in intervals
I,J C R, whose distance is greater than dy decay at a rate which is faster
than ér.

In the following, E will always denote an FP-mixing map satisfying
(1.3a) and (1.3b). Since any state with exponential decay of the correlations
is FP-mixing and since it is known that ergodic quantum Markov chains are
exponentially mixing (cf. [2]), a Corollary of our results is that the central
limit theorem holds for ergodic quantum Markov chains on countable tensor
products of matrix algebras.

The basic idea of the proofs is the same as in [1], i.e. a quantum general-
ization of Bernstein’s method to prove the central limit theorem for weakly
dependent random variables. The idea is that, if the correlations decay
sufficiently fast (conditions (1.6) and (1.5b)), then the blocks of random
variables which are separated by a gap of length dy become asymptotically
independent. Moreover condition (1.5a) implies that, neglecting blocks of
length d7, we make an error which becomes negligible in the limit.

The present paper extends the results of [1] and corrects two errors in
that paper: one, noted by von Waldenfels, is that in the formula (1.3) of [1]
a combinatorial factor (1/p!) was omitted. The other, noted by Verbeure,
is that in the expression of the correlation function in Theorem (1.1) of [1],
the term arising from the fact that the correlations at different times do not
vanish (the term F of formula (1.16) of the present paper), was omitted due
to an error in the proof of Lemma (2.2) of [1].

We are grateful to the above mentioned authors for pointing out these
errors. The results of the present paper show however that the technique
of the proof, developed in [1], was correct and applicable to a much more
general situation, like the present one.

In the proofs we have tried to understand the analogies between the
techniques used in the present paper and those developed by the authors to
deal with the weak coupling and low density problems (cf. 3], [4] and the
Remark (6.6a) in the following).

Since the proofs are long and technical, we formulate here the main
resuits. In order to do that we need the following:

DEFINITION 1.2, We say that f : R2 — Cis s — L}(C,dv) if it is
bounded and for each s € Ry, f(-,s) € L!([s,00),dv, C), the functions

(1.11a) 8 / f(t,s) v(dt), t — /f(i,s) v{ds)

[s,00) [0,t)
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are bounded; the limit

(1.11b) fim / £(t,5) v(dt)

T—oo

fs,T)

is uniform in s.

Moreover if the first integral of (1.11a) is not only bounded but also
independent of s, we say that f(.,-)is S — L}(C,dv).

In particular, if v is the counting (or the Lebesgue)} measure, we denote
s—LYC,dv) by s— L}C,dn) (s — L}(C,dt)) and the same for S — L}(C, dv).

REMARK. If there exists an {f(k)}k,_l C R+ satisfying
(i) le(R, )| < f(h —r)foreachr <h <
(ii) the series Y2, f(k) converges;

then, € is § — LY(C, dn).

The meaning of this assumption is best understood by looking at (1.1)
in the particular case in which o(t,s,,b") = 1. In this case we immediately
recognize that the condition ¢ € L!'(C,dn) is a condition of asymptotic
abelianness, i.e. if s and ¢ are very far apart, then j7,(b) and j,(b") almost
commaute.

THeEoREM 1.3. Let F be an FP-mizing map and let B C B be a set
of elements satisfying the commutation relation (1.1) and the mean zero
condilion

E(5:(b))=0, VieT, be B.

If for each b,b' € B, &(-,-,b,b) is s — LY(C,dv) and o(-,-,b,b') is bounded
then, for each by,...,by € B and ¢ > % ora= % and k odd,

1

RPN

/ E(jtl (b]) - .jtk(bk))u(dtl) - V(dtk) =0.

[0,1)*

REMARK. If FE is a stationary state, i.e. E(j:(b)) = Eo(b) on B,
independent of t, for some state Fp and a = 1, (1.12) is simply the law

of large numbers. If a = -21- and k is odd, (1.12) is the first half of the central
limit theorem, i.e. the vanishing of odd moments for mean zero Gaussian
state.

Moreover

THEOREM 1.4. In the assumptions of Theorem 1.3, suppose that T C
C N and that for each b,b' € B,
(i) o(-,-,b,0") = o(b, V') (i.e. a(h,k,b,b') does not depent on h, k).
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(ii) E(-,-,b,b"), e(-,-,b,¥) are in § — LY(C,dn) in the sense of Defini-
tion 1.1.
(iii) The limit

Neco N

N
(1.13) lim — ZE(Jh (b-b')) =: C(bb)
h=1

exists.
Then for each n € N and by,...,by, € B, the central limit

(1.14) Jim - E(S(br) ... Sx(bzn)

exists and if we denote

oo

(1.15) f(b,¥) = Y ek, h,b,b),
k=h+1
(1.16) F(b,b):= Y E(ja(b)ix(t)),
k=h+1
(1.17) Co(b,b') := C(bY') + F(b,b") + F(V',b) + f(b,b"),
then the limit (1.14) is equal to
(118) fz Z 0(31:.717 insjn;bla---1b2n)x

p-p. TESy
XCobir1)s by ) - - Colbingny s Bjray)

where, as usual Zp.p. means the sum over all ordered pairs partition of
{1,...,2n}, i.e. all pairs {iy,51,-..,%n,jn} such that

(1.19a) {1,715+ iy Jn} = {1,...,2n},
(1.19b) i < Jp, Joranyh=1,...,n,
(1.196) H<f2< ... <Jn

and the o(i1,1,.. .00, Jn; b1,y -,b2) is a product of o-factors.

In the continuous analogue of Theorem 1.4 a qualitatively new phe-
LDOINENOoN arises.

THEOREM 1.5. In the continuous case, with the assumptions of Theo-
rem 1.3, assume that for each b,b’ € B,
(i) U('v '5bs b!) = U(bsb’)a'
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(ii) E(-,-,b,0"), e(-5-,b,¥') are in § — LY(C,dt) in the sense of Defini-
tion 1.1.
Then for each n € N and by, ..., by, € B, the central limit

) 1 . .
(120) T]-l-oncfo V—([(-]—;W / E(Jtl (bl) .. .jtzn(bgn))dtl ... dty,
[0,T)2n

exists. Moreover if we denote

(1.21) F(b,8) = / dse(s, h,b,1),
(hioo)

(1.22) Fo)i= [ dsE(in).0)
fhsoo)

and

(1.23) Colb,b) := F(b,b) + F(¥,5) + f(b,b)

then the limit (1.20) is equal to
(1.24)
1 . .o
H E a(%lajly eerytny Ing bl! L ?bz?l) X Cﬁ(biw(l)v bj,r(l)) e Co(bé,r(n)}bjr(n))
P.p-

REMARK. Notice that in the continuous case there is no analogue of
condition (iii) in Theorem 1.4. This is because this condition is on products
of pairs and we shall show that in the continuous case, only the partitions
made up entirely of singletons survive in the limit.

§2. Some technical lemmata

In this section we introduce some notations and prove some lemmata
needed in the following sections,

LEMMA 2.1. Let E be as specified in Section 1 and leta 2 3, p S k €
€N, by,...,bk € B, (51,...,5,) € Pxp. Assume that either of the following
conditions s satisfied:

(i) ek > p;

(i) (S1,...,Sp) contains exactly q singletons withq 2 1,a > § ora =3

and k£ odd.

Acta Mathematica Hungarica 63, 1994



QUANTUM CENTRAL LIMIT THEOREMS 193

Then
(2.1)
1
lm —— / E(Gon(b8,) - g, (b5, )| -w(ds1) ... (dsy) = 0.
T—s0 :,«([O,T))k0<1< <spST o p
:-5' s 3p=

Proor. (i) If ak > p, then by (1.6),

1
22) —— E(Gsi(bsy) .- Jsp(bs, ) v(dsy) ... v(dsy) S
(22) ”([O’T””kosm/@ ST[ Uns(651) -+ iy (b3, ) (1) ... v(ds)
1 -
s Wc(bla- . -,bk)V([UyT)) 0

(ii) Assuming that (S1,...,95p) contains exactly ¢ singletons which cor-
respond to the indices j; < ... < j,, we define the set

(2.3)  A(T,dr,p, {in}isy) = {(31,...,5,,) €0, TV :s1<...<s,
and for each r = 1,...,q, either 5;, —s;, _y Sdror s 41 —s; < dT}

denoting v? the product measure (®v )", then, for each {j,}2_,, the quantity
vP (A(T,dr,p,{jn}_,)) can be written as

T T T
(2.4) /V(dsl) / v(dsy). .. / y(dsn)xfjj}l)_l'sjl gy (8i) X
0 51 sn—1
£(2) _
XX[%.1 .8;1+dr)(831+1) X
e(2g-1 e(2
X...X X[jjqq—ly-‘)ijq—1+d7‘)(3jq) X X[;‘(jq‘{qu+42‘)(sj‘1+l)

where ¢ € {0,1}*7 is determined uniquely by the rule

_Jo,  ifs; — s> dr

(2.5a) e2r—-1)= { 1, ifs; —sj—-1 Sdr;
_J0, ifsj 41 -85, >dr;
(2.5b) e(2r) = { 1, ifsjqp—sj, Sdr

and where, by definition, for any set I, x§ = 1; x} = x7. From the definition

of A(T,dr,p,{jn};_,), it follows that £(2n — 1) + &(2n) 2 1 for each n =
=1,...,9. Notice that for each n = 1,...,q, the product

(2'6) ijf:—_igm—z+d7'}(3j“) X Xs(zn) +dT)(Sj"+1)

{$in 8in
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surely depends on s;,, but not necessarily on s;,,+1 or s;,-1. So if we denote
(2.7)

7
. e(2n—
Floneesps Undimnr®) = DG an (5 XG0T oy (3500)
n=

then F* depends on s;,,...,s;, , but not necessarily on the other variables,
ie. Fis a function which depends on at least the ¢ variables s;,,...,s;,.
In the multiple integral (2.4), if the variable s; does not appear in any
characteristic function, then we majorize the corresponding integral with
v([0,T)). If it appears we would like to majorize the correspoding integral
with the factor ([0, dr)). However in doing so we should keep in mind that
some of the characteristic functions can coincide. This can happen only if,
for some r =1,...,¢,

(2.8) Jre1=Jr — L
In this case we have the factor

(2.9)

(2(r-1)-1) £(2(r-1))

3 s .
Xlsir—l —185,_1-1 +d'1"]('5.1r—1 ) : X[er—l Bir_1 +dT](‘33r—1 +1)

)8(21“—1)

2
'XISJ}--] A +dT}(3jr " X[sjp 1, +dT](3jr+1)E( T’}.

So if
(2.10) e(2r) = e(2(r — 1)~ 1) = 0
then the product (2.9) becomes
Xlss, _y 185,y +a7)(Sira41) " X(sj, _, 55, +d7)(83,)

and in the view of (2.5a) and (2.5b), this is equal to Xlsj,_ 5,y +d7)(8in )-
Thus, if both conditions (2.8) and (2.10) are satisfied, then from two single-
tons we get only one characteristic function.

Since there are ¢ singletons, the worst case is when we get only [Q_‘izi]
characteristic functions. This is clear if ¢ is even and, if ¢ = 2m + 1 is odd,
then after having formed m pairs, the remaining term will surely produce a
characteristic function, because if condition (2.8) is satisfied by three indices,
s$ay fr—2,Jr—1,Jr, then condition (2.10) cannot be simultaneously verified for
the two pairs (jr—2,7r—1), (jr-1,7r). In conclusion, if ¢ is odd we have at
least m 4+ 1 = 9—}1 different characteristic functions.

As a consequence of this we obtain the estimate

(2.11) VP(A(T,dr,p, in}ioy) < v((0, )P ([0, dp)) 0.
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Therefore if we denote

(2.12)
A(t,dr,p,q) := Z A(T,dr,p, {ntiz1)
1§j1<...<jq§p; {th}i=1 are singletons
then

120)  P(Atdrpa) S (1) 010,17 T o0, )

Moreover by (2.12a) we obtain

(2.13) ———p f |E(jsi(bs,) - - Jap(bs, ))v(ds1) ... v(ds,) <
(0,1
(T.dr.p.q)
1 — [l 9t P
S ———((0, )P w(jo, dr)) =T by, .. b ()
= 0T ([0,T)) (0, dr)) (b k) ]
But if (S1,...,5,) contains exactly ¢ singletons, then there are p — ¢ non-
sigletons, therefore
p
(2.14) k=) 1512 q+20-q)=2p—¢
3=1
and this implies that
k +1
(2.14a) p< (k+q)< +[q2 ]

Therefore, if @ > L, we have

(2.15) TR (0, dp)) T <

1
ROXDR :
=0 T)l)k(“"%_) (0,4 ~ 0

as T' — oo. Moreover, p,k € N implies that in (2.14a) it is possible to have
equality only if £ is even, therefore if a = % and k is odd, then

k g+1 ) g+1 k
P<3t+ | ] ie. p—| 5 ]<2.
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Thus
(2.16)

1 p—(2Hl] (22 _ V([O:CIT))[%_]] .
v([O’T))akV([OsT)) U([OydT)) y([U,T))g“(P-[%l]) 0

as T — oco. Define now the set
Ay ={(s1,-.-,8p) E R 18; < ... < 8, STNA(T,d7,D)

by (2.3) and (2.12). One knows that for each (s1,...,8p) € Ap there exists
agSp, 1S71<...<j; < psuch that

(2.17a)  |sj, — 8j,~1] > dr and |[sj,41—s;| >dr, Yr=1,...,q.

Therefore the mean zero condition (b; € B, j = 1,...,k) and (1.6) imply
that

1 . .
(2.17) ;@ffﬁ;llmmxwauJ%w&nwwayuuu%)g

gWV([O,T))?’-O(6T)-C(bl,...,bk)——>0, as T — oo,

Putting together ((2.16) and (2.17) we obtain that (2.1) is equal to

(2.18) mn——ir—(/+ yEmmmynh@&m-
Ap

ak
1o ((0,7)) A(Tdr,p9)

w(dsy)...v(ds,) = 0.

COROLLARY 2.2. Let E be as specified in Section 1 and leta > £, p <
ngN, b],...,bkEB, (S1,...,Sp)€Pk‘p. Then

) 1 . ,
(2.19) %IIII ‘—;F"’"ﬁ‘ / IE(Jﬂ (bsi)‘ "Jsp(bsp))l ‘
~oo ([0, T))
01 <..<spST

v(dsy)...v(dsy) = 0.
Proor. We distinguish two cases:
i) if p.£ k/2 then ek > p;

ii) if p > k/2 then there exist singletons among 51,...,.5,.
The proof follows that of Lemma 2.1.
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§3. Normal order in abstract algebras

In this section we generalize some techniques widely used in quantum
field theory and known under the name of normal order or Wick order.
In an abstract setting, the problem giving rise to these techniques can be
formulated as follows: one starts from elements a; (¢ € N) of an algebra
Q, satisfying some commutation relations of the form (3.3); one considers
products of the a,, of the form (3.1) and, by repeated application of the
commutation relations (3.3), one wants to write the product (3.1) in such a
way that the indices 21, ..., 2z, appear in a preassigned order. In the present
paper, the preassigned order will be the increasing one (3.2). The normal
order, usually considered by the physicists is different: the indices z; take
only the values 0 (corresponding to creation operators) and 1 (corresponding
to annihilation operators), and one wants to write the product (3.1) as a
sum of products in which all the zeros are to the left of all the ones and
the original order among the zeros and among the ones is preserved. In
that case the factor £ corresponds to a scalar product and the factor ¢
corresponds to 1 (Boson case) or —1 (Fermi case). The situation considered
by us corresponds to a time ordering. The basic techniques are the same in
both cases. The techniques developed below are a natural generalization of
those, introduced by the authors, to deal with the weak coupling and the
low density problem (cf. 3], [4]).

DEFINITION 3.1. For any algebra Q, n,N € N, {ay}}_, c 9, 1 £
<zy,...,2, £ N, we say that the product

(3'1) Qg * Qg
is ordered if the indices {z,},_, are ordered, i.e.
(32) $1§$2§ ...gxﬂ.

In the following we shall investigate the ordered form of products of the
form (3.1), where the a; satisfy the commutation relations

(3.3) Uy -0y = o(z,y) - ay-a; + €(z,y), ¥V 2, yeN, z#£y
with @,¢ in the center of Q.
For each n,N € N, n £ N and 1 £ zq,...,2, £ N, there exists a

unique n-permutation © € S, (the permutation group on {1,...,n}) such
that 7 is a composition of k& consecutive exchanges

(34) Tr(l) s Tx(2) S ...% Tr(n)

and for any other n-permutation #/, if 7’ is a composition of k' consecutive
exchanges with &’ < k, then 7’ does not satisfy (3.4). An exchange is called
consecutive if it exchanges two consecutive indices and leaves the remaining
ones fixed.

In the following for any given ¢ = {z1,...,2,}, we shall denote this
permutation by 7%.
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LEMMA 3.2. In the notations (1.2a),
(3.5) St(b1) - S1(bs) =
n
DN YU A CA AR YR N}

=1 (S1,...,5p)€Pnp [S11-+Splp

Proor. (3.5) is an immediate consequence of

(3.6) [0,7)" = J U U &

P=1(51,..,5p)EPn,p t€[S1,....Spl 7

LEMMA 3.3. Foreachn,Ne N, n S N and 1l £ zy,...,2, S N, the
ordered form of the product (3.1) is equal to

(3.7)
/2] *

m
Z Z Z H E(miﬂ'h’ m%)a(ml’ T m“).awwriﬁ) T azwx(fn—zm)

m=0 lépl <---<PM§'"' (ql r'"rqm) k=1

where and in the following
i) for each fizedm and 1 S p1 < ... <pm S 1, Ly . means the

sum over all 1 £ qq,...,q, £ n satisfying

(3.8a) card ({gn}h=1) = Hantioma | = m,
(3.8b) {an}h=1 C{L -0} \ {Pntizrs
(3.8¢} pr<qy, Vh=1,....m
and

(3.8d) Tp, > g, YVh=1,...,m;

ii) for each fized m and {pn,qn}j 1,

(3-93) {Th}g;fm = {1; ‘e !n} \ {pha q}l}}T:l: r<...<Tph_2m

and .Z‘ﬂ.x(,,.l) é ‘s g :Eﬂ.x{,.n_zm);

iii) o(21,-..,2.) is @ product factor of the form o(zi,z;).

Proor. From the commutation relation (3.3) we know that in the
ordered form of the product (3.1), some elements of {4, };_, will be used

to produce an ¢-factor and in order to get an e-factor we use two elements of
{az, }r—,, therefore the number m of e-factors can be equal t0 0,1,...,[n/2].
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For each fixed m, let {ps}}-, denote indices {z3}}_, such that a,, is used
to produce an ¢-factor with some element a,, with g, > ps. By relabeling
the order, one may suppose that p; < po < ... <pp. Ipr <pa< ... < pp
and ¢1,¢2,...,9m C {1,...,n} are chosen as above then obviously:

— qx cannot be in {ps};_, for any h = 1,...,m, ie. {gn}}, C
C {1,eern} \ (P

— qh cannot be equal to another gu, ie. [{gn}r—,| = m.

*Aqh>phforea,chh—1 m;

— if for some i < j, z; < wj then we do not excha,nge the order of the
two elements a,: and ay;, so there is no factor e(z;, z;), i.e. z,, > x4, for
each h = 1,.

For ea.ch ﬁxed m and {ph,qh}h__l, denoting {ry}73™ := {1,...,n}\

\{Pn,qn}}=1, the {a,, }} are not used to produce ¢- factors, therefore in
order to bring their pr()(fuct to the ordered form one can apply the restriction
of the permutatlon 7% to the set {r5}}=}™. Thus one obtains the product
Oz sty *** Oxga,, _, s Where, by the deﬁmtlon of 7% (cf. (3.4)),

,,rz(.,.l) <. . < ‘rﬂ’"’(rn.—gm)'

Since each exchange gives rise to one o-factor, eventually we obtain a factor

o(%1,...,%,) Which is a product of some factors o(z;, z;).

As a special case of Lemma 3.3, foreach T > 0, n € N, {t,},_, C [0,T]
and by,...,b,, we can obtain the ordered form of the product
(39) j‘h (bl) n 'jtn(bn)'

COROLLARY 3.4. In the notations of Lemma 3.3, for each T > 0, n €
€N, t:={th}p— C[0,T] and b1,..., by, the ordered form of the product
(3.9) is equal to

[n/2]

(3.10) Z Z Z Hg(tpm an> Opns bay)

m=01<p; <..<pm<n (q1,3m) h=1
O'(tl, ceesln, bl . abn) . jt"t(rl}(bﬂ-t(‘rl)) v jtw‘(rﬂ_gm)(b’rt("“—zm)).
Moreover we have the following

COROLLARY 3.5. In the notations of Lemma 3.3, for each T > 0, n €
€N, and by,...,b,, the product

(3.11a) St(by)--- S7(by)
is equal to
[n/2]

vy 3 Y [/ Y ¥ ¥

r=1 (Slv--wsp)ephi,p tEISIv---vSp]T T"-'*GISIH( <Pm§ﬂ (QIr :Qm)
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m
H (tpns tans bp> ben ) (e, ooy tn, b1y, bn) 'jtw‘(n)(b”‘{ﬁ}) T
h=1

B jt.,,t(,n_zm)(b‘n'l"(f‘n—zm))y(tl) e U(tﬂ)'
" Proor. Corollary 3.5 follows immediately from Lemma 3.1 and Corol-
lary 3.4.

REMARK. Notice that since (Sq,...,Sp) is an ordered partition, one has
that inside each Sy, h = 1,...,p, vt will keep the order, i.e. if [}, < k;, € 5},
h € {1,...,]9} and [, < kjp,then Wt(lh) < Wt(kh) and trt(!h) = tfr‘(kh)' In
other terms, 7t acts on the blocks S;, keeping the order inside each block.

Now let us consider Corollary 3.5 from another point of view: for each
= 1,...,n and any n-permutation =, let [S1,...,5p]7 be the subset of
€ [S1,...,Sp]p such that 7' = = with #* defined by (3.4), i.e. t,q) £
e+« S ty(n). Clearly we have

12)
Sr(by)...Sr(ba) =Y > D D> ju(b1).--dea(bn)-

P=1(51,...,5p)€Pn,p TESn tE[S1,...,5p] T

DA S

For each t € [S1,...,Sp]7, the product j;, (b1)...J:,(bs) is not ordered
(unless 7 is the identity) and the permutation which makes the product
Jt, (b1) + - Jt, (by) ordered is 7. Therefore we can write the product as

(3.13) Jtpmrgry(B1) - dt 2y ()

with ¢t € I7(S1,...,5p).
In the following for each fixed partition (S1,...,5p) € Prp, we shall use
the notation

(3.14) 850) .= {r € 8,: [S1,...,5,)5 non-empty}.
That is, S,S,S‘p ) consists of all permutations on {1,...,7n} which permute
among themselves the blocks S;, considered as individual objects. Thus

557 is isomorphic to Sy
Applying Corollary 3.4 to the product (3.13) we find the following result.

LEMMA 3.6. In the notations of Lemma 3.3, for each T > 0, n € N
and by,...,b,, the product (3.11a) is equal to

(n/2] *

sy Y Y [ Y ¥ %

=1 (Sl .---,Sp)G'Pn,p WE_S,ES'P) tEIT(Sl ,---,Sp) m=01§p1<---<?’m§n (91,---,Qm)

H E(tﬂ-—l(ph), [ (qh)7bph! bqn)
h=1

U(tla vroesitng bl} e :bn) : jtr1 (b'lr(-rl)) ot 'jt,-"_zm (bﬂ(rﬂ_gm])y(tl) T V(tn)'
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REMARK. Notice that (3.11b) and (3.15) are two different ways to write
the product (3.11a).

ProOF. From the definition of [Sy,...,5,]7 and the identity

(3.16) f ey (b1) -+ G, (bn)v(tr) -+ - v(tn) =
t€[S1,..,Sp] ™

= S Gy B e (BaY(t) (1)

iEIT(Sj ,...,Sp)
immediately follows.

For each fixed partition (S1,...,5,) € Py, the sum qu;....,qm) is the
same as in Lemma (3.2), the only difference being that (3.8d) is replaced by

(317) tﬂ'_l(lﬂh) > t,n.—l(qh), h = 1,...,m

It will be useful, in the following, to perform the summation first in the
m, Py, qp indices and then in the 7.t indices. This goal is achieved in the
following lemma

LEMMA 3.7. For eachT > 0, n € N and by,. ..,b,, the product (3.11a)
18 equal to

(3.18)
n [n/2]

> Y Y ¥ %

p_]. m=0 15?‘1 <e <pm§n (ql’ st (S]' Sp)G'Pn P WGSE; ) tEIT(Slv--sSPa{pthh}r-l 'ﬂ)

T €@t (nys bt gnyr bonsban) - (t1, -y B,y B)
h=1

J-"L"1 (b‘”("l)) o .jtrn—2m (b‘ﬂ'(fn—z,n))y(tl) e V(tn)

where and in the following, Zi(‘h-----q'm) means summation over all 1 <

£ G14--yqm S n satisfying the conditions (3.8a), (3.8b) and (3.8c) (but
without the condition (3.8d)), and

(3.19) IT(Sl,...,Sp,{ph,qh}zl___l,fr) =
= {t € It(S1,...,8,): Lr=1(py) > tx—1(gn)s h= 1,...,m}.

Proor. The Lemma is proved with the following procedure: First we
choose m and {pn,¢n};—, as in Lemma (3.6) but without the condition

(3.17). Second, for each fixed m and {pn,qn};.; and 7 € S(S’p) we define
IT(Sla Spa {ph:th}h_hla "T) as (3 19)

Acta Mathematica Huangarica 63, 1994



202 L. ACCARDI and Y.G. LU

§4. The negligible terms

In analogy with weak coupling and low density limit, the following
lemma corresponds to proving that, in these limits, the so called “type
IT terms” tend to zero. Recall that, in this analogy, the index k (resp. t)
is interpreted as time, the e-factor as scalar product, and the type II terms

are those products of e-factors which contain at least one factor of the form
e(h,k) with k — h 2 2.

LEMMA 4.2. Suppose that €1,¢2 : N* — C are in s — L}(C,dn), then

) 1
(4.1a) ]\;1_15100 ) Z le1(ka, k2)| - le2(k3, k1) = 0
1Sk <ka<k3<ksSN
and
) 1
{4.1b) Nim > le1(ka, k1 )ez(ks, k2)| = 0.
lgk] (kz(ka(lﬂ_ﬁ_N

PROOF. Since |-| is a semi-norm on C, we may suppose that the ¢;(h, k)

are positive numbers. Thus ¢; are s — LI(R_,., dn), i = 1,2 and, because of
(1.11a), there exists a finite constant M; such that

o0 h
(4.2) rna.x{ Z ei(k,h), Zs,-(h,k), he N} < M; < 4o0.
k=h+1 k=0

Then, because of (4.2), for each 5 > 0, there exists a K € N such that for
any hi,hs €N

(4.3) 3 alkh)+ Y ealkh)<n
k=K+h k=K-+h3
We rewrite .
Nz Z e1(ks, k2)ez(ks, k1)
1Ski<ka<ka<ks EN
as
(4.4)

| N=3 N-2 ki +K N-1 N
- ( o+ ) Y er(ka ko)ea(ks, k).
k4

k1=1 ko=ki+1 ksa=ko+1 ks=ki+K+1 =ka+1
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Then the first term of (4.4) becomes

N-3 N-2 hk+K N
(4.4a) sz S 0Y ealks k) Y erlkako) S
k1=1 ko=k1+1 ka=k+1. ky=ka+1

N-3 N-=2 ki+K
LT N v 3 atums
ki1=1 ko=ki1+1 ka=ka+1 ka=ky+1
N-3 N-2 ki +K

Z Z Z eo(ka, k1) - My.

k1=1 ka=k1+1 k3=ka+1

Notice that on the right hand side of (4.4a), k1 < k3 £ k1 + K, hence
one has k; < k2 < k; + K. This implies that the right hand side of (4.4a)
is less than or equal to

N-3 ki+K-1 ki+K

(4.4b) sz Yo Y ealks,ka) My S

ki=1 ko=ki+1 ka=k+1
N-3 ki+K-1

_sz Z M? Ml NZZK Mg Ml

ki=1 ky=ky+1 k1=1

and this tends to zero as N — . By (4.3), the second term of (4.4) is
majorized by

(v -3)°
(4.4C) n- M1 . "—'"'-N-T—
therefore
1
(4.5) lim sup NE Z e1(ka, ka)ealks, k1) < - My
Novoo 1Sk <k2<ka<ks SN

and since n > 0 is arbitrary, this proves (4.1a).
In order to prove (4.1b) we rewrite

Y akukelkk)
1Sk <ka<ks<ky EN
a5
-3 -2 N-1 ki+K N
(4.6) — Z Z > ( Yoo+ Y )al(k4,kl)sg(k3,k2).

k1=1 ko=k1+1 kaz=ks+1 “ki=k3+1  ks=ki+K+41
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By the same arguments as above, (4.6) is dominated by

K
(4.6&) n- My + M- Mg“ﬁ(N - 3).
Hence,
) 1
(4.7) lim sup -5 > e1(kq,k1)ea(ks, k2) S m- M2
N=voo 15k <ka<ka<ks SN

and this implies (4.2a) by the arbitrariness of 7 > 0.
LEMMA 4.3. Suppose that 1,¢2 : NZ — C are in s — L1(C,dn), then

. 1
(48)  lim - > |€1(k1, k)| - | ealke, h2)| = 0.
18hy <ky ho <k EN
[{hyks}5o, <4

REMARK. The condition ‘{hj,k } 3—1‘ < 4 means that in the sum
Yo1<hy <ky hp<ky s S0me of the indices hj, k; are equal.

Proor. Let us denote

Yimmr X etk ek ho)

2 18k <k, h2 <k EN
|{h k}} I<4

and discuss separately all the possibilities according to which indices are
equal.
i) If hl = hg then

N

(4.9) z Z Z lerkr,ha)] Y |ealka, ha).

hi=1ki=h;+1 ko=h1+1

Since £1,69 are in s — L1(C,dn) one has, in the notation (4.3b),

My - My
(4.10) Z<M1 M, - N221_ ~— — 0.
h1=1

ll) If hy = kg then

hi—1
(4.11) Z Z Z |ex(ku,ba)| D ea(ha, ha)|-
hi=1ki=h1+1 ho=1
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Changing the order of summation on the right hand side of (4.11), we find
that

(4.12) Z sz Z Z |e1(kr, ha)| - |e2(ha, ho)| £

ho=1 hy=ho+1 k1=h1+1

1 L 1
éMl'-N-?Z E |e2(hy, hs)| §M1Mz-ﬁ—+0-
ha=1 hi=hs+1

The cases ky = hy and k1 = k; follow from the same arguments.

Now we prove the generalization of Lemma 4.2 to the case of a product
of n e-factors. These products are analogues of the type II terms of [3].

LEMMA 4.3. Foreachey,éz,...,&q : N? — C which are in s— LY(C, dn),
we have

n

. 1
(4.13) Jim > [Tleitki.hy)| = 0.
1§h1<k1,...,hu<kn§N J=1
|{h.j,kj};-'=1|<2n

REMARK. The condition |{h;,k;}}_,| < 2n means that in the sum

Zlih1<k1,...,hn<kn_€N some of the indices h;, k; are equal.

Proor. Let us first consider the case in which hq,k; are free indices,
i.e.

(4.14) {P1, k) 0 {Rj, i}, = 0
Then, since £1(k1,h1) is in s — L'(C,dn), it follows that

s Yem o ¥ stk =

1Sh1 <kt nhn<kn SN §=1
Ay ks Y <20

N N
Z Z ek, hn) ) TTeshinks)| <
1=1ki=h1+ 1€hy <ka,...,hn<kn SN 3=2

|{hJ ,kJ-} |<21‘1—2

< M- N:-l Z [Tleithi k)]

1Sho<ky,...hn<kn SN =2
Hhj kj} g l<2n-2
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Thus if (4.14) is true then (4.15) and the induction gives our proof. There-
fore we may assume that (4.14) is not true, i.e. that there exists a j =
= 2,...,n such that

(4.16) {ha, k1 } O {hj, k;} # 0.

In any case, because of (4.1),

1
(4.17) 5 2 lem(hm,hn) € M
1€hm<km<N
therefore
1
(4.18) Y <= Yo eaha, k)| g5k, k)l

lghl <k ,hj <k_,‘ gN
|{h1,k1 ,hj,kj}l(‘l

for some constant 7 and the statement follows from Lemma 4.2.

§5. The non-negligible terms

LEMMA 5.1. Suppose that €1,¢2,...,6n : N2 — C are §— L}(C,dn) and
that Fy, ..., F,: N — C are such that the limits

N .
(5.1) J&@w%Zf}(is):sz . i=12,...,m,
k=1

erist. Then, for each {i1,...,in} C N, we have

(5.2)
1 n .
&Enoo Nnt+m Z Ei(k;,ki)- H Fj("’j) —
1€k <k <.y <R <r1<hip 41 <k << =1 =1
<ki2 <k£2<r2 <"'<Tm<--4<kn<k:1§N
1 i n
=——1\|F;- Hf
1 H 7 1
(n 4+ m)! e 4
where
o0
(5.3) fir= Y edk,h), i=1,2,....n
k=h+1
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Proor. For n + m = 1, (5.2) is clearly true. Suppose that (5.2) is true
form+n< q Wehave,form+n=qg+1

(5.4)

1 )3 [Leikisk) - T] FiCri) =

Na+1 : :
15k <hj <o <hiy <kj <r1 <o <rm <o <kn<kp SN i=1 J=1

k-1
i\]’m+n . Z Z

L=2n+m kn=2n+m-—1

n

m
o (k! -
3 [Leiki, k) - TT Fi(ri) =
1Sky <hj <ooo<hiy <k <r1<e< i=1 =1
<Tm<---<kn—1 <k:‘_1<kn"1

Kl —1
Nn+m }: S ek k) — 11

kl=2n+m kn=2n+m-—1

1 n—1 m
(k _ l)n-l-m——l Z H Ei(kgski) ' H FJ(TJ) =
n 1S k1 <k <ooo<hiy <k{, <1 << 1=l i=1
<rm<nhn-1 <kn-—1 <kn-1

N K+1 k! -1

=N"1+m 2. ( >+ > )en(k;,kn)(kn_ pyrtme1.

k.=2n+m “kp=2n+m-1 [kp=K+2

n—1

1
‘(kn - 1)n+m—1 Z H Et(kz:k ) H Fj (TJ)
1S ks <k <o hiy <k <1 <€ 1=
<rm <. <kn_1<k,,_1$kn-1

For each n > 0, we take K such that

1 m
(5.5) Trtm=1 > H ekl k) - [ Fi(r)
18k <k < <hn_1<k!,_ | SK =1 i=1
and
=]
(5.52) Y alk,h)| <.
k=K+h+1
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First of all let us see the absolute value of the first term on the right hand
side of (5.4), i.e.

N (K+1)A(K) 1)

(5.6) anm > S enlklykn) - (kn — 1m0

ki =2n+m kn=2n+m-1

1 n-1 m
(! (o
(ko — 171 > [T eitkis k) TLFiCr)).
n 18k <kj <...<hiy <kl <r1<..< =1 i=1
<rm<.. <kn 1<k“ lskn-l

By the assumption of the induction, (5.6) is dominated by, with a constant
M,

N {(K+1)A(kn-1)

(5.7) ‘Mm"'”“l-ji}— > Y. ekl ka)| =

ki, =2n+m | kn=2n+4+m-1
(K+1)A(k,-1)

_mel(f‘f Z) S calkiok).

k! =2n+m =K+2 kn=2n+m-1
The first term on the right hand side of (5.7) is equal to

(5.8) O(l)i—j;r—f_—2 — 0, as N — o0,

The second term on the right hand side of (5.7) is equal to

N (K+1)
m+n—1 1 kf <
(59) M “jv E E Sn( n,kn) =
k=K 42 [kn=2n4+m-1

(K+1)

g Mm+n—1_jl_\7 Z Z |5n(k kn)t =

kn=2n+m=1kl,=K+42

K
—O(l)—-j-—l——ﬂ) as N — oo.

Let us now consider the second term of (5.4) and rewrite it as

kp—1

Nn+m Z Z En(k' kn)(kn - 1)ﬂ+m—1 )

kl=2n4+m k,=K+2

(5.10)
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(n+m—1)vHF Hf‘

=1
k-1

D T A

kp=2n+m kn=K+2

((n+m~l)'HF Hf‘

i=1

1 m
!
 (kp — 1)1 2. H eiki ki) - ] B (Tj))'
™ 18k <kf <o <hig <KL <73 << i1 i=1
<rm<o<hno1 <k)_; Skn—1

By (5.4) one knows that the absolute value of the second term of (5.10) is
less than or equal to

k-1

(5.11) - Nn+m Z Z len(kLy, k)|(kn — 1)1 = . 0(2).

kn=2n+m kn=K+2

Moreover, since n, m, K are fixed so that the limit, as N — o0, of the first
term of (5 10) is equal to the limit of the followmg quantity:
(5.12)

N K,-1
(n+m—1fHF Hf‘ N‘n+m;2 kzlfn(k' Jkn = 1)

Exchanging the order of summations in (5.12), it becomes
(5. 12a)

N
(n +m - 1)1 H H fir Nn,-lr-m Z (kn — 1)n+m_1 Z en(kl, ky).
1= kn=1 kL =kn+1

Letting N tend to infinity, we obtain the limit of (5.12a):

1 m n

and this ends the proof.

More generally we have the following
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LEMMA 5.2, With the same notations and assumplions as in Lemma

5.1,

: 1
(5.14) dim

m

'

Z Ef(kiaki) . HFJ(TJ)

1Sk <kj <...<kiy <K <ry<kip41<k] ;<< j=1
<kiy <k,'-2<rz <okPm< o lhin<kl, SN

Ky Skyy+dwrekl Skip+dy

(n+m)rH Hf"

where dy — 00 and N —dy — 00 as N — o0.

Proo¥F. Notice that the only difference is that on the left hand side of
(5.14), ki, — kj, < dy for each h = 1,...,p but on the left hand side of
(5.2), ki, — kj, can be greater than dy (g N —1) for some h € {1,...,p}.
Since the series 3 5o, €(h,k) converges and dy — oo, we know that

N-1 dn
(5.15) Jim kz_; e(h, k) = ]&Enm;hs(h,k).

This ends the proof.

In the continuous case, the analogue of Lemmata 5.1 and 5.2 are the
following

LEMMA 5.3. Let €1,69,...,6n : N? — C be in § — LY(C,dt) and
F,...,Fpn: Ry — C such that the limits

T
1
(5.16) lim —fFj(t)dt:Fj Ci=12....m
T—oo T
0
ezist, then for each {iy,...,i,} C N we have
1
(5.17) L ey /

Oft] <t;<...<til (t:] <8 <t{1+1<t£3+1<“,<
ti, <t;2 <52<"'<3m<--~<tn<t;lgT

Ha,(t,,t, [I Fitsi)dta...dtn dt)y...dt;, dsy...ds, =

= G 18 11
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where

s

{5.18) fi= / ety s)v(dt), i=1,...,

fs,00)

LEMMA 5.4. Let €1,69,...,6, : N2 = C be in § — LY(C,dt) and let
F,...,F,: Ry — C be such that the limits

T
(5.19) qlgl;o%-/ﬂ(t)dt:ﬂ , J=12,....m
0

ezist. Then for each {i1,...,in} C N and {j1,...,j,} C {0,1,...,n}, we
have

. 1
(5.20) e ey
0841 <#] <.ty <t <s1<tiy 43 <t g1 <<

tiy <}, <2< Com <. <t <1, £T
t;-h gijh'l'd’r. h=1,....p

n m
[Tei ) I] Fitsiydtr ... dtn dty...del, ds,...ds, =
i=1 i=1

1 m T
:m.gf}.nﬁ

i=1
where dr — oo, and T — dy — o0 as T — .

The proofs of these two lemmata are the same as those of Lemmata 5.1
and 5.2.
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