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0. STATEMENT OF THE PROBLEM

The problem of determining the existence or uniqueness of a measure on a
function space with preassigned local characteristics is well known. If the local
characteristics are the restrictions of the measure on an increasing net of o-alge-
bras, the Daniell-Kalmogorof-Prohorof theorem (cf.. [4]) gives a general crite-
rion.

In a series of memoirs, starting from 1968, Dobrushin [5] considered the
problem of describing the probability measures with a preassigned family of
conditional probabilities with respect to a given decreasing net of c-algebras.
The main feature of this problem, with respect to the previous one, is the lack
of uniqueness of the solution even in the case of its existence. The attempt to
extend Dobrushin’s techniques from the case of discrete stochastic fields to that
of continuous ones is motivated by Euclidean quantum field theory. In 2-dimen-
sional Euclidean boson field theory it is given a standard Borel space (£2, O, u°)
and an increasing family (O,) of sub-o-algebras of O indexed by the family %
of bounded open (regular) subsets of R?; sub-o-algebras (Op,) of O are indexed
by the complements of elements €% and, for each A e, it is given a
random variable U/, measurable for O, , and satisfying

Uayoa, = Uy, + Uy 4,0l = . (0.0)
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PERTURBATIONS OF CONDITIONAL EXPECTATIONS 35

One studies the limits (taken in various ways) when A’ 4 R? absorbing
eventually all bounded sets, of the perturbed measures (cf. [12], for example)

pOC) = e e ) ©.1)

which satisfy the Osterwalder—-Schrader axioms [18]. The properties of U,
imply that any weak limit (on the algebra o7, cf. Part III, Section 1) p1 of perturbed
measures of the form (0.1) satisfies the following conditions:

pEga = u; plO<p®t Oy Ae F, 0.2)

where Ep, is defined by
0 e 4
B = Balka k=g o 03)
A

and EQ, denotes the conditional expectation, with respect to Op,, associated
with p®. In [13], Guerra, et al. (cf. also [7]) proposed to consider Eqs. (0.2) as an
intrinsic approach to P(¢), Euclidean quantum field theories; ie., to solve
Egs. (0.2) and prove that (some of) the solutions satisfy the Osterwalder—
Schrader axioms [18]. If p is locally absolutely continuous with respect to p®,
Egs. (0.2) have a meaning on the norm closure of the union of the algebras
L2, 0,4, u,0), AcF. This leads to the following general situation: given a
C*-algebra o7 which is the norm closure of the union of an increasing net (&7, )#
of sub-von Neumann algebras of .«; a decreasing net (o) of sub-C*-algebras
of o (Hy =~ NLR, Op, ), o =R — a); a projective (cf. (L.1.1))
family (E,-) of locally normal conditional expectations E,: &/ — o7, ; one looks
at the locally normal solutions of the equations

o By =eq; 0e F. (0.4)

One is interested in the structure of the solutions of (0.4), the Euclidean invariant
ones, the integral decomposition by means of extremal states, and, most of all,
the criteria of uniqueness. Such problems are studied in Part I. The conditional
expectations (0.3) enjoy an important locality property, singled out by Nelson
(cf., for example, [17])—the Markov property—which can be expressed by the
relation

E(£)C o, (x = closure of a).

In Part IT we discuss a more general concept of locality, namely,
E (o) C s forsome 82 &; BeF

and prove that, under some assumption on the local algebras o7, , this property
is equivalent to (a generalization of) Dobrushin’s (d)-Markov property. Under
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some locality (or regularity) assumption on the E,’s it is shown that any pro-
jective family (E,-) is of the form

E() = E¥h, ),

where E?, is the conditional expectation associated with u®. (&, ~L*(Q, O,, u,");
k, = dE,|dE’. is a local (or quasi-local) perturbation of E?, which can be
considered as the Radon-Nikodyn derivative of E,- with respect to E%; and
the (&,) satisfy

kg = k, - EJ(k); a<B. (0.5)

A family of random variables (%,) satisfying (0.5) is called a conditional martin-
gale. The structure of Markovian conditional martingales (k,) with respect to a
Markovian measure p° is determined and it is shown that they are determined
by a “potential function’’ (U,) satisfying (0.0) up to an additive “‘gauge trans-
formation’’ which leaves the &, invariant.

In Part ITI local perturbations of the conditional expectations of the d-dimen-
sional free Euclidean field are considered and it is proved that the solutions of
Egs. (0.2) satisfy the (hyperplane) Markov property.

1. EXISTENCE OF STATES WITH PREASSIGNED CONDITIONAL EXPECTATIONS

In the following o7 will denote a C*-algebra (by this we shall always mean a
C*-algebra with unit); (27) the set of states (positive normalized linear
functionals) on <7; F a set partially ordered by a filtering increasing relation <{
(i.e., if o, B F there is a y € F such that o <y, B < v); (A )ses a family of
sub-C*-algebras of ./ indexed by the “opposite’ of F (i.e., the set of o’ such
that « € # with the order relation 8’ </ o' <= 8> a < o < ) and such that
o< B = 2.y . By a conditional expectation from ./ to a sub-C*-algebra
o4, C .o/ we shall mean a norm one projector E: o/ — .o, . Tomiama’s theorem
[23] asserts that such a projection enjoys all the properties (with the exception,
at most, of normality) which, according to a result of Moy [15], characterize the
usual probabilistic concept of conditional expectation and which are assumed by
Umegaki [24] to be a definition of conditional expectation between two arbitrary
C*-algebras.

For each « €.# a conditional expectation E, : ./ — .o is given so that the
projective condition

a< B = Ey - Ey = Ey (L1.1)

is satisfied. A family of conditional expectations (E, ), satisfying (I1.1.1) will
be called projective.



PERTURBATIONS OF CONDITIONAL EXPECTATIONS 37

A state p € F (/) will be called compatible with the family (E,), or simply
(E,)-invariant, if
o E,=¢;, VYacZF. (1.1.2)

THEOREM 1.1. In the above notation the set (E, )-invariant states—which from
now on will be denoted S—is nonempty.

Proof. For each o e F the weakly compact convex set (o) is mapped
into itself by the weakly continuous map ¢ +> ¢ E,-; denote ¥ = F(A4)-
E, . % as a nonempty weakly closed set. Moreover, if « < 8 and p € % then

¢ Ly =¢ Ey By =¢ by =g
Therefore ¢ € %(#) and F C % . Thus the family (F),es of w-closed
subsets of (/) has the finite intersection property, hence

S= S # a.
aEF

Clearly each ¢ € % is compatible with (E,’) and this ends the proof.

Remark. Throughout the paper “weak topology’” on &/* (== the dual of &)
will denote the weak topology induced on 2/* by the coupling (o7*, o> (w*-

topology).

Lemma 1.2, Let % be a subnet of F, (), a family of states on o/ and
a state on 7 such that

¢' = Zl;—el‘;_l'gl ‘ﬁv ’ Ev' .
Then i 1s (E, )~invariant.
Proof. For each a e &, the projectivity condition (I.1.1) implies
‘/} : Ea' = ‘ZU-l;_f{)l lﬁv ' Ey' "Ey = w'l.;.r? l/’v : Ev' = '7&!

hence ¢ is (E,)-invariant Yo € F.

2. LocaLLy NORMAL STATES

In the above notation let (&),.# be an increasing net of C*-subalgebras of
Ao < B = o, C s). Assume that
(i) each .27 is a von Neumann algebra,
(ii) .7 = norm closure of (J,.5 27,
(iii) & is countable generated (i.e., if & is any subnet of F, there exists a
sequence (a,) in & such that for each « € #, « < «, for some 7).

Examples of countably generated nets # are: (1) the net of finite subsets of
7v; (2) the net of bounded open subsets of R¢, the subnets being given by the
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families &; such that for each bounded open set 4 in % A C A, for some A, F
(in both cases the order being given by inclusion). The conditional expectation
E, (resp. the state ¢) is called locally normal if for each Be Z, E, " 2, (resp.
@ %) is a normal map.

Under the above assumptions, if the topology of weak convergence on locally
normal states is metrizable, then the set of limits w-limgz i - E, where %, is a
a countable subnet of & is nonempty for any ¢ € #(%/) and, because of Lemma
(1.2), such limits are contained in the set % of (E, )-invariant states. By the
sequential completeness of locally normal states (cf. [3]) we conclude that if the
family (E,) is locally normal, the set of (E,-)-invariant, locally normal states on
is nonempty.

Remark. The metrizability of locally normal states is not realizable in many
important cases. However, for the existence of locally normal states in %,
it is sufficient that on a closed, (X, )-invariant subset of locally normal states
there is 2 metrizable topology finer than the weak topology. In some cases such a
metrizable topology is provided by the “Wasserstein distance’ (cf. [6]). The
problem of existence and uniqueness of locally normal states will be discussed
elsewhere.!

3. ExTREMAL (£,,)-INVARIANT STATES

In the notation of Theorem 1.1 let .%; denote the set of (E,-)-invariant states.
&} is a nonempty w-compact convex subset of #(«7). Extreme points of .4 are
called ergodic. Our analysis of the extremal points of %7 is based on the analogy
between the systems {#/, (E,),ez} and {&/, G}—of a C*-algebra acted upon
by a group G of *-automorphisms—with the norm one projectors E,- playing
the role of the *-automorphisms g € G. The known results on G-Abelian systems,
due to Ruelle [19] and Doplicher et al. [8], are extended without difficulty to
(E,)-Abelian systems. For ¢ & #(of), denote {#,,m,,]1,} the Gelfand-
Naimark-Segal representation of .2/ with respect to ¢ [20, p. 40]; denote

oo = () m(y)'s  Hat = () [me( )+ L]

«EF «EF

([r() - 1,] = norm closure in %, of m (o) 1,; and e,: H#, — H#,°, the
orthogonal projection. If pe.% Kadison’s inequality implies that the map
m (@) - 1, +> m(Ey(a)) - 1, that satisfies

| mo(Ex(@) - 1o [P = o(Ev(@)* - Eo(a)) < p(Ey(a™a))

=llme(a) - 1o {7

1The author is grateful to Jean Bellissard for his correspondence concerning this
argument.
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is well defined, and its extension to £, defines the orthogonal projection €2
H,— [n () 1,]. One has ¢, = inf ?. = strong-lim e%; and 7 (E (a)) - %
= ¢}, ‘- m(a) - e2; ac /. Moreover

H ={feH;ené=EVaeF).

From now on the net & will be assumed to be countably generated, (cf. Part I,
Section 2(iii)). The system {7, (=)} is called asymptotically Abelian if, for any
subnet %, C #,

l‘igm l[a, by}l = O; by esy; |by i <1, aes/
0

([a, b] = ab — ba). The system {&, (E,)} is called (E,)-Abelian if Yp e &,
e, () e, generates a commutative algebra. Asymptotic Abelianness
implies (E,-)-Abelianess.

Lemma 3.1. Let {&, (E,)} be an asymptotically Abelian system and p € ;.
Then

(1) There exists a conditional expectation strongly continuous on bounded sets
E o () — A0 satisfying

u(mel@) 1) = En(m(a)) - 1, (13.1)
(ii) For every subnet %, of #,
e =1t 1] = | () mlele) L]
uEﬁTo
Proof. (i) Because of asymptotic Abelianness Va, b€ o/,
7o(b) * ealme(@) - 15) = lim 7o(0) * 7o (Ex(@)) - 1,
= lim (B (@) * 7o(b) 1, -

Hence the map E,°: w (&) — o.°, defined by E,%(m(a)) = s-lim 7 (E,(a)),

satisfies equality (I.3.1). If (w(a,)): ;€ o converges strongly to @e w (),
then if be .o/,

Eww(wai(af)) ’ Tr@(b) ' lw = ﬂaz(b) ’ em(‘”w(ai) ) lw) - 7Ta)(b) ew(a ’ lw)'

By Kaplansky’s density theorem [20, p. 22] one can assume || m (@) <l @],
therefore E ®(w (a;)) converges strongly to a limit depending only on &, and
this allows us to extend E_° to a map, m (/)" — .°, still denoted by E.° which
is strongly continuous on bounded sets. Clearly E,® is a conditional expectation.

(ii) From (i) it follows that

eo(me(H) - 1) = EP(m( ) " 1,C oL - 1,
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which implies 5#,% C [2£.% - 1,] C [Nee 7, To(Zy)" * 15). To prove the converse
inclusion let de Naer, To(#y)" and for each ae i let a, € s, such that

a-1,=s-lim, 7, 7o(ay) * 1, . Then, for each B € Z (since & is a subnet of F)

87;/(5 : 1@) = s-lim Wm(EB'(aa')) lw)
a€F

= s-c‘leig0 T 1, =a-1,,
hence e,(@ " 1,) = @ 1, and [#£,° - 1,] C #,°. And this ends the proof.

THEOREM 3.2. Let {<Z, (E,)} be an asymptotically Abelian system; ¢ € ;.
Then & is a Choquet simplex and for any ¢ € F; the following properties are
equivalent :

(i) o is an extremal point in .,

(12) {7 (), (%)} =C-1 », ({--Y denoting the commutant on #,),

@i3) #Hr=C-1,,

(4) A”=C-ly¥,,

(i5) for every ¢ >0 and a € s/ there exists a By = By, a) such that, for
any B> By,

Loa - by) — gla) - plbe)l < e lmbo)ll;  Vby € sy .

Proof. The fact that % is a Choquet simplex and the equivalences (il) <
(i2) < (i3) can be proved by adapting to (E,/)-Abelian systems the arguments
which establish the corresponding result in the case of (E,)-Abelian systems
(cf., for example, Sakai [20, Chapter 3]). The equivalence (i4) < (i5) is proved
as in [14, Proposition (2.3)].

(i4) = (i3) follows from assertion (ii) in Lemma 3.1.

(i3) = (i4). Let p € oZ° be a projection. If (i3) holds, then

prle=<lg,p" 1 'lw:P2'lw:‘ilm’P']w>2'lw'
Thus p -1, ==0 or 1. Asymptotic Abelianness implies that .&® C (center of
7(7)"), hence by the cyclicity of 1, for = (&), p =0 or 1.
4. INTEGRAL DECOMPOSITION

If the system {7, (E,)} is asymptotically Abelian and p e &7, then & * is
Abelian. If #(K) is a functional realization of .7, the restriction on &7, of the
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state @€ w ()" +—(1,,a-1,> defines a Radon measure u, on K. For each
ac o/ one has

(@) = po(Ec(m, ()

= f E(m,(@)) () poldos).

1.4.1)

The definition of E* (cf. Lemma 3.1) implies that E *m (E, (")) = E.° "7,
hence the states Ew* of 7 defined by

EMa) = EA(m(a) (w); wek;

belong to % . One easily verifies that they satisfy condition (i5) of Theorem 3.2
for p,—almost every w. Therefore equality (1.4.1) gives an integral decomposi-
tion of u by means of extremal states of %7 . In the Abelian case (I.4.1) is the
Dynkin-Féllmer decomposition (cf. [3, 10]).

5. UNIQUENESS

We keep the notation of the preceding sections. Throughout this section. The
net # is assumed to be countably generated.

THEOREM 5.1.  The following assertions are equivalent:
(i) % consists of a single point.
(i) Ny =C -1 and the net (E,) converges pointwise weakly in 7.
(1) (o 4y =C 1 and the net (E,) converges pointwise in norm in .
Proof. Clearly (iii) = (it). If (ii) holds, denoting E, = w-lim E_,, one has

E, Eﬂ = EB E, = E, VB e Z, therefore E,, is a conditional expectation on
N -, -1, hence E (@) = ¢(a)  1; ac & with pe & . If y € F then

¢ =wlimd - B = (1) ¢ =¢.
Thus (ii) = ().
To prove that (i) = (iii) assume first that there is an a € &/+ such that the
net (£,(a)) is not Cauchy in norm. Then there exists an € > 0 such that for
each B, € # there is a y > B, and a 8(y) > B, for which

H Ev'(a) - E&(v)'(a)” > e

Since E (a) — Ey,)(a) is self-adjoint this implies (cf. [20, p. 10]) that there
exists a ¥, € () such that

| $(E,(@)) — $(E iy (a))] > €[2.
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Hence there exists a subnet % of & and y, , x, € ¥(&7) such that
= wlimi, By oy — wlim b, - By
By Lemma 1.2, x, , yo € ¥ and

[ x1(a) — xe(@)] = €/2.

Therefore the pointwise norm convergence of (E,) is a necessary condition for
& to consist of a single state. If (E,-) converges pointwise in norm its limit
E, is a conditional expectation on (), &2 and for every state ¥, on N.of,,
Yo - B, € ;. Therefore, under our assumption, % consists of a single state
if and only if (N, &) contains a single state, i.e., if (), =C -1 and this
ends the proof.

ProrosiTION 5.2. If e . is the only state on </ compatible with (E, ) then
1
lim —— u((bg')V2 a - (b /%) = wla); ac .,
B M(bﬂ')ﬂ((ﬁ) (B) ) /“'( )

uniformly in by such that by € <77, u(bg) > 0.

Proof. Given a family (by') such that by € 977, u(by) > 0, define the state
Yo € L) by

po(a) = u((bg)'? - a (b)) ?)ulbs); ac
and assume that there are an e > 0, an a € .27, and a subnet &, of # such that
|$e(@) — @) =z  BeF.

Then there will exist a subnet % of % and a ¢y € (/) such that w-lim,, #, by
= . For every B %, Y - Eyy =, hence by Lemma 1.2, 4 € ¥, and

| (a) — p(a)] = €
contrary to the assumption % = {u}.

CoroLLARY 5.3. Let pe .9 and assume that the family (4,') satisfies the
Jollowing condition

lim | m(a - (BeY ) Ll =0 ae; (*)

uniformly in by € o5 such that | mw(by)* -1, [ = u(by)? = 1. Then if
S = {u}, for every ae o,

lim pu(ox - by)u(by) = u(a) (L5.1)

uniformly in by € 575, such that u(by') > 0.
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Proof. For a and by as above, one has

ple-by)  p((Bg) - a - (b))
#(bs) #(by)
1

= “(bﬂ,) : K’Tu([a’ (bB')llz]) 1, ﬂu(bo')1/2 . ]u>‘

ACE "u((l(’:’?)ll)j;; awr Rt

Assumption (*) implies that the right-hand side tends to 0 uniformly in by € 277,
#(bg’) > 0. Hence the asserion follows from Proposition (5.2).

A state p on &/ which satisfies condition (I.5.1) above for every ae(J, %
will be called “uniformly regular from the outside’ (cf. [5, (2.12)]).

<

Remark. The condition of asymptotic Abelianness used in Corollary
(5.3) (i.e., condition (*)) is not implied, in general, by the one defined before
Lemma 3.1.

6. ErGcopIc PROPERTIES

In the notations of Section 2 a family (E,),.# of positive maps E,: &/ — o,
will be called ergodic if Vae |), o,; a > 0; a £ 0, and ¢ € F(Z) there exists
an a € F such that

W(E,(a)) > 0. 1.6.1)

If, given ae o4+ (B F) an a € F can be found such that (1.6.1) holds for
every € F(&7), the family (E,-) is called positivity improving. For a projective
(i.e., satisfying (1.1.1)) family of positive maps (E,’) such that E(1) =1 the
two concepts are equivalent. In fact, if (£,°) is ergodic and not positivity impro-
ving there will exist an @ € &/, a subnet %; of #, and a family (4, ),.# in F()
such that ¢, - E (a) = 0, for every y € & . The net (i, - E,’) can be assumed-—
considering, possibly, a subnet—convergent to a state ) which because of Lemma
1.2 is (E,)-invariant. Therefore, for every a € Z,

HEy(a)) = f(a) = lim §, - E(a) =0

contradicting the ergodicity of (E,).

In particular, if the projective family of conditional expectations is ergodic,
every (E,/)-invaridnt state on &7 is faithful on {J, <, .

Throughout the present section we shall use a stronger ergodic property;
namely, we shall require that (I.6.1.) holds for every ae o/+, a £ 0. This
implies that any (E,-)-invariant state is faithful on .&7.
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Ergodic properties of the family (E,-) arise naturally in the study of the uni-
queness problem for the solutions of Egs. (I.1.2). In fact if u is the unique
(Ey)-invariant state on .7 and a€(), &, , a =0, is such that p(a) > 0, then
Theorem 5.1 implies that, for every e (),

lim $(E,(a)) = u(a) > 0.

Thus, in order for the uniqueness problem to be well posed, it is necessary that
condition (I.6.1) be satisfied for all a for which there is an (E,-)-invariant stae
v such that »(a) > 0. The simplest way to describe this set of @ in terms of the
local data (i.e., the E,’s) is to restrict one’s attention to the families (E,) for
which this set coincides with the positive part of ), o, . This is done by intro-
ducing properties of ergodic type. Such properties are implicitly introduced in
Dobrushin’s papers (e.g., cf. [5, condition (2.18)]). Sometimes it is useful to
restrict the definition of ergodicity by considering condition (1.6.1) only for
locally normal states.

The asymptotic factorization properties of the measure u® associated with
the 2-dimensional free Euclidean field (deduced, for example, from [11, Sect.
(2.2)]) imply that Markovian perturbations of the conditional expectations
E?. (« C R2, open bounded set) are ergodic in this restricted sense.

THEOREM 6.2. If the family (E,) is ergodic then #; contains at most one state
uniformly regular from the outside.

Proof. We show, using an idea of Dobrushin, that if there exist two different
states on ./, compatible with the ergodic family (E,/), then no (E,)-invariant
state can enjoy the property of uniform regularity from the outside.

Let ¢, ¢ be two states on &7, (E,)-invariant and such that there is an « € F,
an a, € &%, and a p > 0 for which

(P(aoc) - ‘/J(auc) =p> 0.

Let, for each e %, Cy be the commutative C*-algebra generated by Eg(a)
and 1 and ¢ (resp. i) the restriction of @ (resp. ) on 2% . Then

p =y @dg(Esr(@) ®1— 1@ Ey(a))

(1.6.1)
< E(@) ©1— 1 Ey(a)]
(where @z & g is defined on the tensor product of C*-algebras 2% X %
with og-norm, cf. [20, p. 60]).
Let €(Ky) be a functional realization of Cg . Then Cy &) Cp =~ €(Ky X
Kpy) and if ay = ay(x), x € Ky, is the image of Ez(a,) under the isomorphism
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Cy — €(Ky'), inequality (1.6.3) implies that there exist two points %, , ¥, € Ky’
and disjoint neighborhoods U(x,), U(y,) of %, , ¥, , respectively, such that

ag(x) — ag(y) > p[2;  xe Ulxo); ye Uly)-
Let b, , b, € €(Ky) be continuous functions ;: Ky — [0, 1], j = 1, 2 such that

by(xy) = 1; b(x) =0; xeKy— Ulxp);
by(y) =1; by(y)=0; yeKy— Ul

Denoting b (j = 1, 2) the image of §; under the inverse isomorphism #(Ky')
— Cy one has

Ey(a) b @b — b @ Ela) b > 50 @by
with
WeCyCos 8720 |5 I=1 j=12

Therefore, for any y € %
(1) (2) (1) (2) P (2) (2)
x(@. - b5)  x(6) — x(b5") " X(au " b57) > 5 x(bs”) - xX(b5")-
By the ergodicity of (E,) the right-hand side is strictly larger than O thus

1) @
@ b)  x(aa-bs) _ p

&) X0 Z 2

Since B is arbitrary, the above inequality implies that x is not uniformly regular
from the outside. Since y € & is arbitrary, the theorem is proved.

CorOLLARY 6.3. Let pe %, and let {oZ,(E,)} satisfy the (asymptotic
Abelianness) condition (*) of Lemma 5.3. 4 necessary condition for p. to be the only
(E,)-invariant state is that Ve > 0; Yae o/; 3By = By(e, @); VB > Po;

| la - bg) — pa) - pulbg)l < € - plby)
uniformly in by € 4., If the family (E,) is ergodic the condition is also sufficient.

Proof. The necessity has been proved in Lemma 5.3. The sufficiency follows
from Theorem 6.2 where we have shown that the existence of different states in
&, implies that no state in & can be uniformly regular from the outside.

Remark 1. 1f the family (E,) is “local” in the sense that for each Be &
thereisay € &, y >> B such that Eg(o%) C &7, , the term “ergodic” in the formu-
lation of the theorem can be as meant in the sense of (1.6.1).
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THEOREM 6.4. Assume that the system {sZ, E, ')} satisfies (asymptotic Abelian-
ness) condition (*) of Lemma 5.3 and that the family (E,) is ergodic. Then
consists of a single point if and only if the following condition is satisfied: Yo € F;
Va, € o,; YW € F(oF); there exists a constant M(a,) such that for every ¢ > O there

is a B = B(e, a,, ) and a vy = y(e, a, , ) suck that

| H(E,(as - by)) — $(E(@:) - By (bp))l < € - M(ay) - (£, (bg)

for every y > vy, and by € ZF. .

Proof. Sufficiency: Assume that the above condition holds and let x/: €.
Then, for B, y, by as above

| flay - bgr) — (ay - Ey(bg))l < € - M(as) - (by).
If 4 is an extremal point of &, Theorem 3.2 and the above inequality imply
| (@ - by) — $(as) - ()| < € - Mlas) - (by)-

The ergodicity of (E, ) and the independence of M(a,) on e imply that  is
uniformly regular from the outside. Therefore, by Corollary 6.3, % = {{}.
(Note that it would have been sufficient to require € + M(a,) — 0 as ¢ — 0.)
" Necessity: Assume that the condition of the theorem is not satisfied. Then
there exist a € &, a, € &, , and € > 0 such that for every y,, B,€ F there are
Yy >y, B> B, and b, € 54 for which

‘ l/’(Ev'(aat ’ bB')) - ‘/J(Ev'(aa) ’ Ey'(bﬂ'))l > €“ﬁ(Ev'(bﬂ'))' (162)

The above inequality implies that (E,(by)) > 0. Moreover for any ac </,
by € s, Y(E,(bg)) >0,

$a - by)  P(be)'? - a - (6)'%)
$.(by) $be)

<o (=D 14

(1.6.3)
= ¢€,.5(a),
where , = ¢ - E,», and limg ¢, g(a) = 0. Choose now a subnet {y} C# and,
for each v in this net, another subnet {8'(y)} C # and a family by, € .,
such that (1.6.2) is satisfied for ', 8'(¥), b5(,) , and B(y) > y for every y.
For each vy in the net, let y, be a weak accumulation point of the family
states

Pl (B )2+ (b D)o ) = Pta) -
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Clearly x, € & (i.e., it is (E,)-invariant). We can assume that the net {y,}
converges to y € % {considering, eventually, a subnet). For such a y one has

'/’v(a b '(v))
Ny~ x@|

% — 5 (@) l + 1@ — x(a)] + | x(a) — x(a)| .

(1.6.4)

<

Therefore, for each y one can choose a B(y) and a by (,) such that the right-hand
side of (1.6.4) tends to O with respect to the net {y}. This proves that the family of
linear functionals

a € o — J(E,(abg))[Y(E, (bs))

with y, 8, by satisfying (1.6.2) has a weak accumulation point y in % . Similar
considerations also prove that the family

ac A —>P(E,(a) B, (bs))P(E,(bg))
has an accumulation point y’ € {, which by construction satisfies
| X(42) — X' (@) = e,

where a, € &, is the one appearing in (1.6.2). Hence % contains at least two
different points, and this proves the statement,

7. INVARIANT STATES

Let o7, (4,), (o), (E,/) be as inPart I, Sections 1 and 2 and let G be a group.
We assume that there is an action of G on &F; g: 0 € & -» go ¢ F such that

a<pwga<gh (go) =gd; o BeF; geG;

and a (locally normal) covariant action of G on &/ by *-automorphisms. That is,
grae s/ —gaec o/ is a *-automorphism of o7 (g e G) and

8, = Ay gHy = Ay aeF.

A state g € F() is called G-invariant if @ - g = ¢; g€ G (p - g(a) = ¢(ga)).
If ¢ € ¥ the G-invariance of ¢ is equivalent to

‘Pgm'(Egm'(ga) 'gbcx') = qoﬂm'(g . Ea'(a) .gba')

409{72/1-4
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for every ae &/, b, € o, which if ¢ is faithful on o7 (in particular, if (E,) is
ergodic) is equivalent to

g E=E, g (1.7.1)

A family (£,) satisfying (I.7.1) is called (G)-covariant. Thus, for an ergodic
family (F,), G-covariance is a necessary condition for . to contain G-invariant
states. Conversely, if (E,/) is G-covariant, then the action of G leaves invariant
the nonempty weakly compact convex set ¥ (p g Ey=¢ E, g —
@ g, ¢ € F); therefore, by the Ryll-Nardjewski fixed-point theorem [16] the
set of G-invariant points in %] is nonempty.

If G = E(d) = d-dimensional Euclidean group, following the procedure of
Féllmer [10], one can use Wiener’s ergodic theorem (i.e., take means on bounded
sets and pass them to the limit) to construct a translation invariant state ¢. Let
Y€ ¥ denote the mean of ¢ - g over the d-dimensional group. Then, if
BéeR4— £ — 1t is a translation, one has, by translation invariance of ¢

bot—{ggtdg=[g-(¢t)-gde— [o-gde =4
Thus ¢ is a locally normal E(d)-invariant state. We conclude

TrEOREM 7.1. In the notation above, if (E,’) is a G-covariant family, the set of
G-invariant states in 97 is nonempty.

Let p be an (E,/)- and G-invariant state. Denoting .o%* the subalgebra of the
elements of o7 left fixed by the action of G, then-—as remarked in [10]—if
st C ot and if the system {7, (E,)} is (E,)-Abelian, then p admits an
integral decomposition—associated with the conditional expectation Eg*:
A —> M

I
1. LocaLiTy AND MARKOVIANITY

From now on we shall consider systems {7, (%)} such that < is an Abelian
C*-algebra and (<)) a family of von Neumann local subalgebras of .27 whose
norm clorure is equal to .27. In [2] it has been shown that a stochastic process is
completely defined (up to stochastic equivalence, cf. [2, Df. (2.11)]) by a triple
{, (), 1°}, where {7, (&)} is as above and pu? is a locally normal state (i.e.,
2 measure) on &% and, conversely, each such triple determines an equivalence
class of stochastic processes. Since local structures are intrinsically associated
with stochastic processes and conditional expectations with measures, it is
natural to analyze the structure of those stochastic processes whose local struc-
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tures are preserved (or “almost’’ preserved) by the associated conditional
expectations. Such processes will be called local (or quasi-local) (cf. Definition
2.3). It turns out that locality is the most general property of Markovian type.
If the local algebras (o) satisfy some rather general conditions (cf. (II.2.1)-
(I1.2.4)), then locality is eguivalent to (a generalization of) Dobrushin’s (d)-
Markov property. (The implication: locality preserving = (d)-Markovianness
as well as some modified form of the perturbation theorems below, continue to
take place in the noncommutative—at least uniformly hyperfinite—case. In this
case the objects intrinsically associated to u® are not the (quasi-)conditional
expectations, but the modular automorphisms of the restrictions of u® to the local
algebras. Locality properties of these ones allow us to establish the Markovianity
of u9—in the sense of [1]-—and to obtain an explicit form for the quasi-conditional
expectations associated with u® (cf. [25]).

2. LocaL CoNDITIONAL EXPECTATION

Let (£2, u%) be a standard Borel probability space; T a locally compact metri-
zable space; & a family of bounded open subsets of 7. We assume that the
empty set is not in &#; F contains all the bounded balls; if o, € F and a C 8
then B — & € # (x—the closure of «); finite unions and finite nonempty inter-
sections of elements of & are in %.

Let for each «€.# be given a p’-complete g-algebra O, C O. We shall
assume that thefamily (O,),.s satisfies

«CB; o BfeF = 0,00 (IL.2.1)

V O, =0; (11.2.2)
aEF

0,=V{0:BCua;8eF}; ack. (11.2.3)

For any two open sets 4, B(A N B £ @)
O0,N 0z =03, (IL2.4)

where V,0, denotes the complete o-algebra generated by the O,; for an open
ACT, O,=V{0,: 0 C4;0cF} and for any CC T Oc = {O,: 4 open
2 C}. From relations (11.2.1}~(I1.2.4) one deduces the following:

Oc N O¢ = Ocnes (I1.2.5)
C, C’ arbitrary sets (in the second case C N C' # @);

VOz=0, (11.2.6)

{8}
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A open; {B} any increasing net of open sets such that 5 B = 4;

N Oz = O4; (11.2.7)
{B}

A, bounded closed (# @) or the complement of a bounded open (#7) set;
{B} any decreasing net of open sets or of closed bounded sets such that (} B = .
Moreover we shall assume that

Op=0;v Op 1 (11.2.8)

ACB; A, B open or A, B closed; and B bounded or the complement of an
open bounded set.

In the following we shall denote o the complement in T of a set a e F.
Denote, for bounded C and unbounded C’,

e =L, 0c,p"); O =L7(L, O¢, ud);

(O = Oy). The o will be called local algebras. Relations (II.2.1)—(11.2.8) are
equivalent to the corresponding relations for the algebras o , O, . A conditional
expectation E,: O — Oy will be called local if it preserves the local structure;
that is, if Ya e #, 3y DB, y € #, such that

E(o8) C o, . (11.2.9)

Define (B8), as the intersection of the closures of those y for which (I1.1.9) holds
with « = B. Clearly (8)4 2 B.

ProposrTioN 2.1. Let Ey: O~ Oy be a locally normal conditional expecta-
tion. Ey is local if and only if

Ey () C Agpa s - (I1.2.10)

Proof. Necessity: By (I11.2.7), if Ey is local, Eg(o) C 44, . Therefore,
by (I1.2.5)

Eg(o) C Agya N Oy = Agyay’ -

Sufficiency: Assume that (I1.2.10) holds. Then, if y 2B, ye %, for any
age .% and a, g€ ny_,g y

Ey(as  a,5) = Ey(as) - a, 5€ Agya v 4, C %

for some § € #. Thus, by local normality (not used in the proof of the necessity)
and (I1.2.8), E, (%) C o . Since y is arbitrary (2B), E, is local.
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Remark 1. Dobrushin’s (d)-Markov property for Eg- corresponds to the case
(B)a = {x e T: dist(x; B) <d}  (d>0);
the Markov property—to the case (8); = .
Remark 2. 1If Eg is local then
72(Ba = Eg(£)C o, .
In particular, denoting &/ the norm closure of | J,.s <,
Egy(oA)C .

Any conditional expectation Eg satisfying the latter relation will be called guasi-
local. By “dualizing”’ the definition of locality for E; one obtains the condition;
Yaec F, IyeF, yCB such that

E0,)C O, . (IL.2.11)

Ej will be called local if the above condition holds for « “big enough’ (say «
contains a given open set 8, C B). Denote dB the union of the 9’s for which
(I1.2.11) is satisfied with « = B. Then dB is open and contained in f.

PrOPOSITION 2.2. A normal conditional expectation Ez: O — sty is local if
and only if
EfOg) C g5 - (11.2.12)

Proof. 1f Ejg is local, then for each y satisfying (11.2.11)
EfOp)C ol 5 C o, .

Therefore choosing an increasing sequence (y,) for which (I1.2.11) is satisfied
and such that y, 1 dB, (11.2.12) follows from (I1.2.7). Conversely let (11.2.12)
be satisfied and let « € #. We have to prove that (IL. .11) holds for some y € &,
y CB. If a2 B, this is clear. If « C 8, then for any a5 ,€ o4 _, and a5 € Opy:
Eg(op_o - ag') = apo * Ep(ag) € Op_o v Op_qp
= Oﬁ(ur\aﬂ) .

Thus, whenever o N df 7 &, the normality of Ej (not used in the first step)
and (I1.2.8) imply (I1.2.11) for any y Ca N dB; y e £,

Remark. Dobrushin’s d-Markov property for Ez corresponds to the case
df = {xefB:dist(x,f) >d} (d>0)

and the Markov property to the case df = B.
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In the following we shall use the notation f & O (or sometimes f & .2Z.) to
denote the O -measurability of f.

DeFiNiTioN 2.3. The measure u® will be called forward (resp. backward)
local (with respect to the family (0,)) if the family (EJ.) (resp. (E3%) of its
conditional expectations with respect to the o-algebras Oy (resp. Op) are local.
If both conditions are verified, u® is called local.

In the following, for backward local measures, we shall also require that
B1 T implies d 1 T..

ProposiTioN 2.4, Let p° be forward local. Then a locally normal conditional
expectation Ey: O — Oy is local if and only if there exist a local o-algebra Oy, 4
and a Kye LN(R, Oy, P’((]B)dl) such that

Ej(a) — E%(Kqa); ace . (11.2.13)

Proof. Necessity: By the locality and local normality of E; and (11.2.8)
there is y € # (any y O (B)a, (B)s being defined as stated after (I11.2.9)) such
that Ey (o) C o, . Thus Ey [ o, = E}.: &, — s, N Op is a normal conditional
expactation. A theorem of Moy [15, Theorem (1.1)] implies then that there
exists a K, e LY(L, O,, % such that

Eg'(av) = E%B'hOV(Kvav); a,c "Q{v;

(where E , o is the p’-conditional expectation on Oy N O,). Since u® is
forward local, if y has been chosen so that y 2 (8), ((B)s, being defined for
EJ. | as after (I1.2.9)), then one easily verifies that

Y ro,(Ka) = EY(K,a);  ay€ .
Thus, by local norr\nality and (11.2.8)
Ey(a) = Eg(K,a).
Since, by (I1.2.2) & is weakly dense in O, K, is the unique element of L{(2, O, p)

satisfying the above inequality. Therefore K, = K, , whenever 8 € # is such
that (8), U (B)s, 8 C v, and K, is defined by the above procedure. Thus

K, {05 (B)a Y (B)g, S8 F}.

Denoting

(B)a, = (B)a Y (B)a (11.2.14)

the assertion follows. Since the sufficiency is clear, Proposition 2.4 is proved.
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In the following if E, is a conditional expectation and Kj is any function
satisfying (I1.2.13), then Kj, which is necessarily the unique (%-a.e.) one with
this property, will be called the conditional density of Ey with respect to Ej, and
denoted dE,[dE}. .

ProposiTION 2.5. Let p® be local. The locally normal conditional expectation
E,: O — O, is quasi-local if and only {f
E (a) = Ey(K,a); aecst;
where K, €L, O, u°) and there is a sequence of conditioned densities (K )
such that B8, F; B, 1 T;

KB" € LI(Q, OB" 5 ”gn) (n € N)
such that
lim || Eg'[(KBn — K)) - a]}| =0; acd.

Proof. The sufficiency is clear. Let £, be locally normal and quasi-local.
The backward locality of p® implies that, given «, there is a 8, € # and we can
assume B, 2 a such that, for B2 B,, e F, EO,) C O, . Therefore the map

Ep - Ey | oy oly~ o0 Oy

is a conditional expectation. The same reasoning as in Proposition 2.4 yields the
existence of a Kz e L{(R, Oy, ugt) Such that

Ex(E,(ag)) = EQ(Kya); ay € A,

(if 8 is large enough). Choose, now, 8,1 T, 8, F.f ael), .5 ¥, thenae 7%
for some n and, by the quasi-locality of E-, given € > 0, there is a 8,, € # and
ab, €. suchthat||E,(a) — b || <e Therefore, if 28,28,

|| E2(Kpa) — E(a)l| < || EgEo(a) — by, || + € < 2e.
Thus lim, || E (Kpa) — E/(a)] =0; acs/. Since (2,0, is a standard

Borel space and T is second commutable, E, is normal on O, hence it has a
conditional density K. And this ends of proof.

3. CoNDITIONED MARTINGALES

Let (E,’) be a family of normal conditional expectations E,-: O — O, and let
K, = dE,|dE?, . The projectivity of the family (E,) (cf. (L.1.1)) is equivalent to

K, =K, EYK,); «CB; oBeF (I1.3.1)
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Any family (K,) of positive random variables satisfying (I11.1.1) and
ENK) =1 (IL3.2)

will be called a conditional martingale. If (K,) is a conditioned martingale, then
(I11.1.1), (I111.1.2), and the martingale theorem imply that

Ky/K, €O, aCpB; (11.3.3)

w-lim K, = Kp; o, 1B (I1.3.4)

(in (IL.3.3), and always in the following, we have assumed that K, > 0, u%-a.e.,

which is equivalent to the fact that E, is faithful). Remark, that (III.1.2) is
equivalent to

K, = e V|E%e ) (I1.3.5)
for some measurable function U, .

It is important to remark that U, is defined by K, up to a “gauge transforma-
tion”’

Up> U+ g5 82 €04
Assume that the measure p° is (locally) Markovian, i.e. (cf. (I1.2.10), (11.2.12))
BN C s ENO)C oy aeF
and that the conditioned martingale (K,) satisfies the (strong locality) condition
K,e0;; ac#. (11.3.6)

Proposition 2.4 and (I1.2.14) show that (I1.3.6) is equivalent to the markovinaness
of E,» = E’(K, *). Clearly, if

U, €O, (I1.3.7)

then (I1.3.6) holds, and one can verify that, conversely, if (I1.3.6) holds then in
the “gauge-equivalence’ class of functions U, satisfying (I1.3.5), there is an
element satisfying (11.3.7).

Thus, under assumption (I1.3.6)—i.e., Markovianity—one can limit oneself
to the consideration of the U, satisfying (I1.3.7). This restricts the class of
admissible “gauge transformations’’ to those of the type

ch > L]Ct + 8oas 8o é Oarx . (II‘3‘8)
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TueorReM 3.1. Let p® be Markovian. A projective family (Ey) of locally
normal conditional expectations E,: O — O, is Markovian if and only if there is a
family of measurable functions (U,) such that

dE, PG

.ﬁg; == W (11.39)
and, modulo a gauge transformation
Uy=U,+Uss; U€O0g5 aCB. (11.3.10)

Proof. It is known, and immediately verified, that a family (U,) satisfying
(11.3.10) defines, by (I1.3.9), a Markovian family (E,’). Conversely, let ((E,) be
Markovian. K, = dE,/dE?. , and U, be defined by (11.3.0) U, € O; .

By (I1.3.1), applied to 8 — & CB

e B == B8 By (e Y Efy_ay(e”"R)
and since U, € O,
0 — U - Bl (e U By (e7).
Therefore

e~ VeUo) — p~Up_ato(p-a)?)

where
—9(B-a) __ —(Ug-U,) —Ug_g
el = E(()ﬂ+&)'(e o8 “)/E?B+&)'(e va )-

Equations (11.3.3) and (II.3.7) imply that

eV 20N Oy = 0p,,
therefore, by Markovianity
869" € Og(g—s) -

Hence g(_z- is a gauge transformation and this establishes (I1.3.10).

Remark. By imposing, besides (I1.3.7), the invariance of the equalities
(I1.3.10) under ‘“‘gauge transformations’’ one determines a global constraint on
the action of such transformations on (U,), namely,

8a(e~a) = Lop — Bows aCBh. (I1.3.11)
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The relations (I1.3.10) and (I1.3.11) agree with the usual interpretation of
U, and gy, as random variable-valued integrals, respectively, over the volume «
and the surface do.

The connection between conditioned martingales and martingales is described,
in the local case, by the Dobrushin-Lanford—Ruelle equations (cf. [13, Proposi-
tion (VII, 2)] for the Markovian case).

ProposITION 3.2. Let u® be (forward) local, and let (E,-) be a projective family
of locally normal, local conditional expectations E, . o/ — O, . A locally normal
state p is (E,)-invariant if and only if Vae F

d/“'i 0 ( dEa’ d:u'(a)d-—u

I E& e
d”"&o dEc(x)' d'u'?a)d—oz

(11.3.12)
((«) 4 being defined by the remarks after (111.1.9)).
Proof. Necessity: Let « € #. By the locality of E,
f"‘(ao'z) = /L(a)d—m(Ea'(a&))

A (a4« dEy
( di;‘:’a::_a B dE, ))

dEy  dp)
= (EO ( dE°. 4 ) ) “)
o’ (a)y—a
which is equivalent to (I1.3.12).
Sufficiency: Let a €% and Be % be such that 82 («);. Then, Vaze o4,

dE, dl’«(e)d—s
e 140 . e »
[L(a‘;) = ( dEg, d,U-(()B)d_B aﬁ) .

Since (Ey) is projective, one has

dEy _ dE,
dE, ~ dE?

(),

dE;,
dE, dE; 4
0 /0 « 0 B H@) a8
wlag) = 1 (EY (~pa @) B (- 7)) -
(as ( (dEg, ;) (dEg, Bl s )
Since E, is local and B 2 (a),

wlag) = po (Es' (% : %ﬂi—) : Ea'(ae))

(8),—8
= w(Ey(ag))

by (I1.3.12). Since B 2 (a)4 is arbitrary, this implies 4 = u - E,-, therefore the
proof is completed.
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4, UNIQUENESS: FACTORIZABLE CASE

Let & be as in the preceding sections. Let &/ be a commutative C*-algebra,
(Aoes » (Hy)ues be families of C*-sub-algebras of o7 such that

oA = A, R A, aeF; (11.4.1)
A, A, R A,y aeF; ogCo (11.4.2)

Let (E%) be a projective family of conditional expectations EJ.:.f — <7
and X° a faithful state on o/ which is compatible with (£2.) and such that, for
every ae F, X = A0 @ AL . If Q (resp. R, , ©2,) denotes the spectrum of 2/
(resp. &, &,’), then Q2 ~ ‘Q% X .Qm_o,1 X ., whenever oy C . Let, for a € #,
a function be given K,: 2 — R such that the operator

E, = E%K, ") (11.4.3)

defines a conditional expectation E,: o7 — &7, . Thus K, > 0 and E3(K,) = 1,
M-a.e. In the following it will be assumed that the famliy (X,) is a conditional
martingale (cf. (IL.3.1)), that is the family (E,’) is projective in the sense of
(1.1.1) and that the following conditions are satisfied

K,:Q-->R iscontinuous (a€F); (11.4.4)
K(x,,x,) >0; Vxy e, AL — Vx, e 0, (11.4.5)

(we use the notation: w = (%, , x,/) € 2 >~ 2, X 2,). If the K, are local (i.e.,
there is some B = B(«) such that K, = K, 0wy, —my: £ — 5 denoting the
canonical projection), instead of (I1.4.4) it will be required simply that K, is
strictly positive A’-a.e. These conditions guarantee the ergodicity of (E,).

LemMma 4.1. In the notation above, the uniqueness of the state compatible with
the projective family (E,’) is equivalent to the following condition:

Vo F; Va, € o; iM(a,) > 0; Ve > 0;
B = B(e’ a,); Ty = vole, @),

such that
| E/(a, - by) (0) — E(a) (w)  E,(bp) ()] <€ - M(a,) - Ey(by') (w)
Jor every y Dy, by € Y., and w € Q.

Proof. Sufficiency: Assume that the above condition is satisfied and let
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be a state on &/ =~ %(£2). Then i defines a Radon measure on £, still denoted 4,
and one has, for «, a,, M(a,), ¢, B, v, bs as in the condition above,

| BB (s b)) — BEAa) - By (b))
< 1 Etacbe) (@) — E@) (@) - B (by) ()] $(do)
< < Ma) - 9B, (b).

Therefore the condition of Theorem 6.4 is fulfilled, hence uniqueness takes
place.

Necessity: Assume that the condition of the lemma does not hold. This
means that: Jue F; a, € o,; YM(a,) > 0; Je >0 (¢ = €(w, a, , M(a,)) such
that for every B2 o there are a y 28, an we £, and a by e &/}, for which

| E(ay - by) () — Ey(a) (@) - Ey(by) (w)] > € - M(a,) * Ey(by') ().

In the following we shall take M{(a,) = 1. The strict inequality above implies that
E,(bg) (w) > 0. Dividing the above inequality by E.(bs'} (w), and defining the
states

Xs':a€ o > Ey(a - by) () Ey(by) (w);
Xs* a € o/ > E(a,) (w);

one has: x5/ - Egr = yg';j = 1, 2, and
| X6*(4) — x6%(a6)| > €. (1L.4.6)

One can assume that w-lim,;eg‘o xé = x' (j =17, 1) for some subnet &, C F.
Because of (I1.4.6) x* # x* By Lemma 1.2 in I, ¥}, ¥ are (E,)-invariant. Thus
if the condition of the lemma does not hold, there are at least two different
invariant states. And this ends the proof.

In the following, on account of the identification

R0, X8 . X2, s X2, 114.7)

(¢ C B C ) which follows from (I1.4.2), any point w € £ will be written in the
form

w = (xa » Xg—a > Xy—g xv'); « C/g C Y-

For any function f: 2 — R we shall use the notation

f(xa ) Qﬂ—a » Xy—g s xy') = J'p f(xa »Yo—ar X > xv') : )‘g—u(dyﬂ—a)'
28
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Lemma 4.2. Let (K,) be a conditioned martingale (cf. (11.3.1)) satisfying
(I1.4.4) and (11.4.5); and let E, = EX(K, -) be the associated projective family
of conditional expectations. Assume that the K's satisfy the following condition:

For every c € F and ¢ > 0, there exists By = By(e, o) such that for every y D 8D
Bo(D2)

K%y, 250, %y g, %) . K%y, 82 o Xyp > %) _
K‘y(icx ’ QB—a ] ﬁy—ﬁ bl xy') Ky(ﬁa b Qﬁ—a » "é'y—-B y xv')

1| <e (11.2.8)
Uniformly in %,, £,€ 2,3 %, 5, &, €82, 5, %, €82, . Then there exists only one
(E,)-itnvariant state.

Proof. Assume that the condition of the theorem is fulfilled. Then

K~ Ky~ . .
W ( Yo s Yai Xy—ps Xy—g5 xv') — 1| <e (1149)

uniformly in §,, 9,€8,; &4, £, € 2, 5 x, €82, for every y D B D By(e, 4,),
where we have introduced the notation

K~ K>~ . . . Y
W: (Fss Pus By &y s %,7)
) ) ) ) (11.4.10)
_ Ky(yu > 'Qﬁ—a > Ay—8 > xv') . Kv(yu > QB»a s Xy—g s x‘v') .
Kv'(ya ’ Qﬂﬂx Xy g x'y') Kv(j}a ’ 'QB-a ’ "ev—li ’ xv')
Therefore, if a, € o, , by € .
| Ey'(aubﬂ') (xv') - Ev'(aot) (xv') ' Ev'(bs') (xv')l

f J. : J. aa("za) ' bB’("év—B ’ xv') ) {Kv("za H ‘Qﬁ-u ’ :’éy—ﬂ ’ xv')
24V )-8

)-8

X Kv("ém ’ ‘QB—m ’ 'iy—B ’ xv'} — Kv("za ’ 'QB-—ot , ‘i/—B ’ xv')
X Kv(ﬁu 3 ‘Qﬂ—a ’ ﬁy-—ﬂ ’ xv') : Aao(d&’ot) : Anto(a%a) : As—ﬂ(div—-ﬁ) : )\B—B(d"év—ﬂ)

<o [ [0 [ el botssn) K By g )

B
X Kv(ga ’ ‘Qﬂ—a ’ "’év—ﬂ ’ xy') ' Aono(dﬁot) ' Aaco(dx'm) ’ A2~B(d£v—8) ) Ag—ﬂ(d'ﬁv—ﬂ)
=€ Ev'(! ay |) (xv') ' Ev'(bB') (xy/)
Ke il a,|l- EV'(bB') (xv)

Since E (a)(x,, x,) = E {(a)(%,), and the above estimate is uniform in x,-,
the condition of Lemma 4.1 is satisfied, hence uniqueness holds.
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Lemma 4.3, Assume that for some a € F and %, , £, € 2, there exist neigh-
borhoods U(%,), U(%,) of %,, %, , respectively, and ¢ > Q such that for every f3,
there exist y DRI By and X, 5,8, €, 5, x, €8, such that V(F,,9,) €
U(#,) x U(#,)

K~ KA~
v ¥ ~ A a

K~~~ RA~ (ya » Vas ¥y—g s Xygg s xv') —1|>e
Y v

(cf. (I1.4.10) for the notation). Then there exist two different states compatible with
the projective family E,, — E (K, "), € F.

Proof. By continuity one can assume, possibly considering subneighborhoods

and exchanging the roles of &,_; and £, g, that

~a an
K‘Y ) K’V

Roo goix (Fas Jas By £y 2) > 1 A
b3 Y

There exist two functions 4, , 4, € .o, (==%(£2,)) such that
4 (%) = d(%,) = 1;
éa ¥ Qa - U(xm) = ‘ia P Qaz - U("e&) - 0;
a,,d,: 20, 1].
For such &, and 4, one will have
(K;A : K;A a~a : dnt) (y~(t )ﬁa; ﬁv~5 > ‘fv——B ’ x*/')
21+ ) (KJ™ - K77 dyy do) (Fa s Jus Xyg s £, %))

hence, integrating with respect to A\,%d&,), A,%(d%,) one finds

(KV&M) (ﬁv—ﬂ ’ xy') ' (dem) (‘iy—B ’ xv')
2 (1 + 6) (Kyﬁzx) (£V~B ’ ‘xv') ' (dea) ("év—*B ’ x’y/)’
where
(Kvaa) (.yy—B ’ ‘xv') = J;? K (za ’ ‘QB—u s Vy—8 s xv') ) au(za) ’ )‘ao(dzx)‘
By continuity there are neighborhoods U(%,_5) and U(£, ) of X, 5, £, 4,
respectively, such that

(Kvarx) (j’y—/i ’ xv') : (K’)/dot) (yv—B ’ xv')

; . (I1.4.11)
> (1+ €,/2) : (Kvaa) (yv—B > xv') : (Kvaa) (yv—B ’ x*/)
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for every #, ge U(%, ), ¥,s€ U(%, 5). Therefore there will exist functions
by, by € of,_5 C sy such that
By (%,s) = byr(%,-5) = 1;
by 12, — U(&, 5) = by [ 2,5 — U(&, ) = 0;

by , by: 2, 5 —1[0,1].

Multiplying (I14.11) by bg( 5,5, %) - bs($,_4, x,/) and integrating with
respect to A>_,(d5,_p) * A,_s(d9°_,) one finds
E, (a,- EB') (%) - E,(d, EB') (%)
> (14 €/2) - Ef(@ - by) (%) - Ey(d, - bg') (x,)-
By (IL4.5) E,(by) (x,7) - E,(by) (x,) > 0, therefore
Evu(dml;ﬂ') (xv') . Ev'(aAm ’ 53') ('xv')
E (6s) (v,)  E,(by) (%)
Ey'(da ) I;ﬂ') (xv') . Ey'(éagﬂ') (xv') .
Ey'(gﬂl) (xv/) Ev'(EB') ('xv')

(11.4.12)
> (1 + €/2)

Assume, by contradiction, that there is a unique state p on &/ compatible with
the family (£, ). Then, taking the limit of (I1.4.12) with respect to 8 one finds,
reasoning as in Theorem 6.4 in I, that

&) - w(ds) = (1 + €/2) w(@,) - w(é.)-

Since (E,) is ergodic, w(@,) - u(d,} > 0, therefore the above inequality is
impossible. Thus, if the condition of the lemma is not fulfilled, then there are
two different compatible states.

COROLLARY 4.4. Assume that F is the set of finite parts of Z¢ (d € N) and that
2, =Tl & S—afinite set; o€ F. Then the condition of Lemma 4.2 is equi-
valent to the uniqueness of the (E, )-invariant state.

Proof. The sufficiency follows from Lemma 4.2. If this condition is not
satisfied, then there are a e F, € >0, %,, £, € £, , such that for every 8,2 «,
there are y DB DBy and &, 4,4, s, 5, x,» €2, such that

KK~ o, .
Trmm . A~ (xa » X3 Xy y Xy s xv’) —1|>e
K’V ’ K’V

Therefore, since £2, is discrete, the condition of Lemma 4.3 is fulfilled, hence
uniqueness fails.
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III
1. Tue LocAL o-ALGEBRAS OF THE FREE EUcCLIDEAN FIELD

Let N be the completion of the real Schwartz space #(R¢%) with respect to
the norm defined by the scalar product {f, (—4 + m®)~1 k), where 4 is the
Laplacian and m > 0 (m = 0 if d >> 3). The free Euclidean field is defined (cf.
[17, p. 106]) as the unit Gaussian process on N, extended by linearity to the
complexification of N. Let (£, O, u% be a probability space underlying the
free Euclidean field.

Denote, for an open or closed set 4 C R¢, N, the closure of the set of distribu-
tions in N with support in 4; e,: N— N, the orthogonal projection (cf. [22,
p. 94]). If 4 is an open set CR4, define O 4 as the u°-complete sub-g-algebra of O
generated by {@(f): fe N}; if CC R? is any set define

Oc = N{O4: A open 2 C}.

Lemma 1.1. The family of o-algebras, defined above, satisfies the following
relations :

If {A} is an arbitrary family of open subsets of R¢ then

OUAL: VOAL' (III.I.l)

V.Oy, (resp. O, v O,) denotes, here and in the following, the pO-complete
o-algebra generated by thr family {A.} (resp. by A, and A,.) We shall use the same
symbols referred to von Neumann algebras.

If C, D are open or closed subsets of Re, then

Oc N Op = Ocnp - (IT1.1.2)

Proof. (111.1.1) follows from the fact that S(R?) admits partitions of the
identity.

For A open or closed, denoting Ep  the conditional expectation on O,
associated with % one has

I(l,) = Ej,  restricted on LR, O, p°)
(cf. [22] for the notation). Therefore if 4, B are open or closed
Eb4nos = T(e4) A I(eg) = im(I'(e,) - I(es))"
=1TI'(e4 A e5) = I'(€4rs)

- E°

O 4B
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which implies O, N Op = O~ . Taking intersections one establishes (III.1.2)
for any two sets C, D.
In particular, if «, B are bounded open sets with piecewise smooth boundary,
and « Cf, then
O =0,v Op_;. (II1.1.3)

The free Euclidean field is a Markov field, in the sense of Nelson (cf., for
example, [17, p. 107]), that is, it satisfies

Ey-EL =E}, - E“% ACRY open.
We shall need a stronger property of the free field, namely,
E, - Es’ = E3sstanm * Es’ (IT1.1.4)

for any two closed sets 4, B C R4

Relation (II1.1.4), isolated by Guerra et al. [13, Proposition I1.3], is stronger
than the Markov property since it gives information on the statistical correlation
among observables localized on-two arbitrary (closed) sets, while the latter is
limited to one set and its complement (for sufficiently regular sets the two
properties are equivalent due to (III.1.3).

Denote # the family of bounded open subsets of R? with piecewise smooth
boundary. For each bounded set A, , define

tpy =L@, 0,y 1%).
If CC R is any set, define
&4 = norm closure of U {/,: D bounded C C}.

Because of (3.1.4), o4 is a weakly dense subalgebra of L=(2, O, uc?), 2 will
be denoted /.

LemmMmA 1.2. The Abelian c*-algebras defined above enjoy the following
properties
CC D= o C s C, D arbitrary sets. (111.1.5)

C C D bounded regular = oy = S v p_ . (T11.1.6)
If C is a closed set with bounded boundary, then
= NL=8, Oc , uc®). (II1.1.7)

If A e F and E}, denotes the conditional expectation on Op, associated with o,
then

EQA(A) C Ay - (111.1.8)

409(72[1-5
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Proof. (I11.1.6), (ILL.1.7) are evident.

(IIL1.8) Clearly o7 C .o/ NL¥&, Oc , ucd).

Conversely, let ae o NL2(Q, O¢, uc®). Then there exist a sequence of
open bounded sets (4,) such that 1, T R% and a sequence (,) such that a, € <7,
and [ a, — a|l— 0. Because of (III.1.4)

EC(](an) = ECOE?T"(‘ZM) - EgCu(an\C)(an)'
Thus, since oC is bounded, £.%a,) € o4 . But then a € o, because
I £c%a,) — all = ESa, — o)l <!/ @y — a] >0

and this establishes (111.1.7).

(IIL.1.9) Because of (IIL.1.7) one needs only to prove that E (/) C 7.
For this it is sufficient that, for any fe &, E§ (%) C /. If B2 A then, by
(L.1.7), o4 = ;v of_;. By the Markov property Eg,(o;) C 5,C .o .
This implies Ef (%) C 7, C o7, concluding the proof.

Remark. Since N, = N for sufficiently regular sets (cf. [22, Remark 2,
p. 94]) the definition of the algebras %% imply that, for sufficiently regular sets C
(e.g., finite unions or intersections of open half spaces), one has o = o .

2. THE GLoOBAL MARKOV PROPERTY

Let # be the family of bounded open sets in R? with piecewise smooth
boundary. In the following (Egs )4 s Will denote a locally normal E(d)-
covariant family of Markovian conditional expectations Ec,,o: A — 4 4,5 the
family will be supposed projective and the associated conditioned martingale
(cf. Part II, Proposition (2.5) and (I1.3.1)) will be denoted (K, )4 e . Thus

EcAo(') = EEAO(KAU )
and (I11.2.1)
K4 €0 =0,; (d4eF).

The localization property (I111.1.5) of the conditional expectations of the free
field is partially transferred to the family (Eg, ). In fact, if 4,, 4,€ %, and
A, N A, = @ then
Eﬂfh - E, DAz(a) = E[O:AI(KAI ) EgAz(K»’12a))
= EGOA1 ) EgAz(KAl ’ KAz - a)

- Eg(/llu/lg)(KAl -K,4, - a).
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Therefore the projectivity of the family (Ep, ) implies
Egy,  Egay, = Byagoayy  MhNdy= o5 A, eF. (I11.2.2)

(Relation (I11.2.2) can also be verified directly using Theorem (3.1) in Part IL.)

Let p be any state on & compatible with the family (E; Ao) 4,67 - Denote
{5, , m, , 1,} the Gelfand-Naimark-Segal representation of <7 associated with u,
and define for B C R¢ the bounded or the complement of a bounded set

Ay = m(y)'.

If C is any other set, define
Qe = () {m.(4s)": B bounded closed C (C}.

Thus, in any case, (¢ 2 ()" This definition of the algebras O , localized
on sets with unbounded boundary, is motivated by the necessity of controlling
the “effects at infinity’’ arising when the (E; )-invariant state is not unique (i.e.,
in presence of phase transitions). When the algebra at infinity is trivial (ie.,
for extremal states) our definition coincides with the one proposed by Nelson
in [17].

Let, for CC R?, #,(C) = [(!c - 1,] (= the closure in i, of (¥ -1,) and
denote e.* the corresponding orthogonal projection.

If Aye %, one has (cf. Part I, Section 3)

e‘[;/lo(ﬂu(a) : lu) = 77'u(E‘l::Ao(a)) . ]u .
Therefore, if 4, , dye #, 4, N Ay = o, (111.2.2) implies that
ega, " B, = €ftauay) - (I11.2.3)

Lemma 2.1.  Denote A the open half-space
A={x1)eR¥ x R:t <0}

and p the reflection with respect to 0A (== the boundary of A). If (A,) is any increas-
ing sequence of sets in & such that

n

then
Xpa = () 7l Ha,)"s (I11.2.4)

n

Toa = () 7l Aytg,000,0) " (I11.2.5)

n
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Proof. If B is a bounded closed set C/, then B C A, for some #, since B is
compact and {/,} is an open cover of /A, hence of B. Thus

T As)" 2 Tl Ha,)" 2 () Tl A,
k

Since B is an arbitrary bounded closed set C/, this implies

Olc = () {m.(s)": B bounded closed C A} D () m,(Hp4,)"-

The converse inclusion is clear since A,C A and () = mHa)"s
because 4, € #. Thus (II1.2.4) is proved. (II1.2.5) is proved with analogous
reasoning.
ProrosiTION 2.2. In the notation introduced above, one has
€Gon " €0a = €54 - (I11.2.6)

Proof. Let (4,) be a sequence as in Lemma 2.1. Then

Oga = ﬂ "u(‘%lln)”; Xgun = ﬂ ’Tu('%o/ln)”'

n

Therefore, by the martingale theorem (or, directly, using a modification of
Lemma 3.1 in Part I),

H(CA) = Y #.(CA.);  H(Cpd) = () H#(CpA,).

Thus, since multiplication is strongly continuous on bounded sets
€0 ' epa = S-limeg,, - €gy,
therefore, using (I11.2.3) and (III1.2.5), one finds
€foa " €4 = S-lim € (,1,04,) = €2

and this ends the proof.

Let now u be locally normal; denote for any subset CC RY, %, = B+
the p-complete o-algebra defined by the projections of (7. (# = Hrs), and E*
the conditional expectation defined by u on % . One has

ec'(@- 1) = Eca@) - 1,;  aen (),
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therefore (I111.2.6) is equivalent to
EEDA ' EEA = EgA
which is the Markov property with respect to the hyperplane 4.

Remark. The proof of Proposition 2.2 can be adapted to the case whén A
is any region with smooth boundary.

The action of the d-dimensional Euclidean group E(d) on (£2, O, u®) (cf. [17,
p. 107)) induces an action g: a€ .o/ —gaec ., of E(d) on </, by *-automor-
phisms, which is covariant, i.e.,

g A=A, geEd); CCRY

If 41 is E(d)-invariant, this action induces a unitary representation T": g € E(d) —
T, of E(d) on 5, , defined by

T, 7m(a) 1, =m(ga) 1,; gecE(d);, acs.
Covariance implies that Tyec* = eje.r

Lemma 2.3. Let p be an (Ey, )-compatible, E(d)-invariant state on /. The
following conditions are equivalent :

ega T, ega =05 (I11.2.7)
T,-e5,=¢e5,. (I11.2.8)

Proof. By covariance and (1I1.2.6), it is clear that (III.2.8) = (IIL.2.7).
Conversely, since T, - ¢4, = ¢}, - T, one has

(e‘én T, e‘(;A)z =(T,- eSA)z =e5, .

Hence if eg, - T, * e, is positive it is equal to ¢}, , thus (II1.2.8) holds.
Note that (II1.2.5) implies that

Ola/l 2 ,,Q{w“y

hence .+ C #,(0A4). Therefore a necessary condition for property (I111.2.8)

to take place is that
T, e = ex* (I11.2.9)

(eo* denoting the orthogonal projector £, — 5#.+). Relation (II1.2.9) is called
the reflection property at infinity. It is possible that (IT1.2.9) is equivalent to
(II1.2.8). In such a case all T, -invariant solutions of the equations

n=np"Ep; Aye F; (I11.2.10)
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with the cluster property defined by Theorem 3.2 (Part I) would satisfy (I11.2.7)
(i.e., T-positivity).?

If fe N has compact support then for any u satisfying (IT11.2.10), and n € N,
(| e(f)I™) is well defined. If the map

(fis fu) € Z(R)" — (1) -+ ()

extends to a continuous map S,: S (R%)" -~ R we say, following [17], that u
satisfies assumption B. We sum up our conclusions in the following.

'THEOREM 2.4. In the above notation, let (Egy ) e 7 be a projective family of
locally normal, E(d)-covariant, Markovian conditional expectations Eg, : oZ —
Ay, - Then for any solution of Egs. (111.2.10) satisfying assumption B and (III 2.8),
the sequence of distributions defined by the maps S, satisfies the axioms EQ, E1, E2,
and E3 of Osterwalder and Schrader [18].

Proof. The assertion follows from Theorem (2) in [17] and Lemma 1.3.
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