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0. STATEMENT OF THE PROBLEM 

The problem of determining the existence or uniqueness of a measure on a 
function space with preassigned local characteristics is well known. If the local 
characteristics are the restrictions of the measure on an increasing net of u-alge- 
bras, the Daniell-Kalmogorof-Prohorof theorem (cf. [4]) gives a general crite- 
rion. 

In a series of memoirs, starting from 1968, Dobrushin [5] considered the 
problem of describing the probability measures with a preassigned family of 
conditional probabilities with respect to a given decreasing net of u-algebras. 
The main feature of this problem, with respect to the previous one, is the lack 
of uniqueness of the solution even in the case of its existence. The attempt to 
extend Dobrushin’s techniques from the case of discrete stochastic fields to that 
of continuous ones is motivated by Euclidean quantum field theory. In 2-dimen- 
sional Euclidean boson field theory it is given a standard Bore1 space (Q, 0, pa) 

and an increasing family (0,) of sub- u-algebras of 0 indexed by the family F 
of bounded open (regular) subsets of W; sub-o-algebras (Ocn) of 0 are indexed 
by the complements of elements A ES and, for each A ~9, it is given a 
random variable U, measurable for 0, , and satisfying 
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PERTURBATIONS OF CONDITIONAL EXPECTATIONS 35 

One studies the limits (taken in various ways) when A’ f R2, absorbing 
eventually all bounded sets, of the perturbed measures (cf. [12], for example) 

(0.1) 

which satisfy the Osterwalder-Schrader axioms [18]. The properties of U, 
imply that any weak limit (on the algebra d, cf. Part III, Section 1) TV of perturbed 
measures of the form (0.1) satisfies the following conditions: 

where ECn is defined by 

%I(.) = ~~,(&I -); 
e-u/l 

k,=--.---- 
E,?,(e-UA’i’) (0.3) 

and E,!* denotes the conditional expectation, with respect to O,, , associated 
with PO. In [13], Guerra, et al. (cf. also [7]) proposed to consider Eqs. (0.2) as an 
intrinsic approach to P(+)2 Euclidean quantum field theories; i.e., to solve 
Eqs. (0.2) and prove that (some of) the solutions satisfy the Osterwalder- 
Schrader axioms [18]. If p is locally absolutely continuous with respect to PO, 
Eqs. (0.2) have a meaning on the norm closure of the union of the algebras 
L-(L), 0, , pAo), A E 5. This leads to the following general situation: given a 
C*-algebra LZZ’ which is the norm closure of the union of an increasing net (,JzzJ,,~ 
of sub-von Neumann algebras of d; a decreasing net (,Pe,,) of sub-C*-algebras 
of &5? (.a&, N .a2 n Lm(sz, o,, ) &; 01’ = R2 - CL); a projective (cf. (1.1.1)) 
family (Em,) of locally normal conditional expectations E,,: $2 --f a$,; one looks 
at the locally normal solutions of the equations 

q . Em, = 9); Ll!EF. (0.4) 

One is interested in the structure of the solutions of (0.4) the Euclidean invariant 
ones, the integral decomposition by means of extremal states, and, most of all, 
the criteria of uniqueness. Such problems are studied in Part I. The conditional 
expectations (0.3) enjoy an important locality property, singled out by Nelson 
(cf., for example, [17])-the Markov property-which can be expressed by the 
relation 

E,+gJ c d: (6 = closure of a). 

In Part II we discuss a more general concept of locality, namely, 

EctGfZJ C Jy;; forsomep1c; /IE.F 

and prove that, under some assumption on the local algebras &@ , this property 
is equivalent to (a generalization of) Dobrushin’s (d)-Markov property. Under 
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some locality (or regularity) assumption on the E,,‘s it is shown that any pro- 
jective family (E,,) is of the form 

Em,(.) = E,o,(k, .), 

where E,“, is the conditional expectation associated with PO. (de N L”(G), O,, pao); 
k, = dE,jdE,o. is a local (or quasi-local) perturbation of E,“, which can be 
considered as the Radon-Nikodyn derivative of E,, with respect to Et,; and 
the (Ku) satisfy 

k, = k, . E:,(k,); cl < P. (0.5) 

A family of random variables (k,) satisfying (0.5) is called a conditional martin- 
gale. The structure of Markovian conditional martingales (km) with respect to a 
Markovian measure p” is determined and it is shown that they are determined 
by a “potential function” (U,) satisfying (0.0) up to an additive “gauge trans- 
formation” which leaves the k, invariant. 

In Part III local perturbations of the conditional expectations of the d-dimen- 
sional free Euclidean field are considered and it is proved that the solutions of 
Eqs. (0.2) satisfy the (hyperplane) Markov property. 

I 

1. EXISTENCE OF STATES WITH PREASSIGNED CONDITIONAL EXPECTATIONS 

In the following JZZ will denote a C*-algebra (by this we shall always mean a 
C*-algebra with unit); Y(d) the set of states (positive normalized linear 
functionals) on JZZ; g a set partially ordered by a filtering increasing relation < 
(i.e., if iy, /3 E .j% there is a y E 3 such that LX< y, /3 < y); (&E,)OLE~ a family of 
sub-C*-algebras of d indexed by the “opposite” of 9 (i.e., the set of 01’ such 
that 01 E .9 with the order relation /3’ < ol’ * ,8 > 01 c> 01( fl) and such that 
a: < p * ti&u, 2 J+ . By a conditional expectation from .d to a sub-C*-algebra 
Jdz, C .d we shall mean a norm one projector E: .d + ~2~. Tomiama’s theorem 
[23] asserts that such a projection enjoys all the properties (with the exception, 
at most, of normality) which, according to a result of Moy [15], characterize the 
usual probabilistic concept of conditional expectation and which are assumed by 
Umegaki [24] to be a definition of conditional expectation between two arbitrary 
C*-algebras. 

For each 01 E F a conditional expectation E,,: .d - .G$, is given so that the 
projective condition 

a < /3 s- E,, . E,, = E,! (1.1.1) 

is satisfied, A family of conditional expectations (E,,)aEr satisfying (I.1 .l) will 
be called projective. 
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A state q E 9(,01) will be called compatible with the family (E,,), or simply 
(Em,)-invariant, if 

qo . E,! = 91; VCYEF. (1.1.2) 

THEOREM 1.1. In the above not&m the set (ES,)-invariant states-which from 
now on will be denoted Y;--is nonempty. 

Proof. For each 01~9 the weakly compact convex set ~‘(JzZ) is mapped 
into itself by the weakly continuous map v t+ y * E,,; denote Sp,, = Y(A) c 
E,, . Yaj as a nonempty weakly closed set. Moreover, if 01( /3 and q E S$, then 

y . EN1 = q ’ E,, ’ E,, = q . EBr = 9. 

Therefore g, E Ya,(zZ) and 9s~ C YW, . Thus the family (Yap& of w-closed 
subsets of ~‘(zz’) has the finite intersection property, hence 

91 = (-j 5f-z~ # !a. 
a&% 

Clearly each v E Y1 is compatible with (E,,) and this ends the proof. 

Remark. Throughout the paper “weak topology” on .&* (= the dual of &) 
will denote the weak topology induced on .&* by the coupling (&*, @ (w*- 
topology). 

LEMMA I .2. Let YO be a subnet of F, (&,),,eF-, a family of states on -c9; and # 
a state on & such that 

t,b = w-i~m$, . EY,. 
0 

Then # is (En,)-invariant. 

Proof. For each a~g, the projectivity condition (1.1.1) implies 

4 - E,, = w-lirir #, . E,, . E,) = w&ix $,, . E,, = 4, 

hence $ is (Em!)-invariant Vti E 9. 

2. LOCALLY NORMAL STATES 

In the above notation let (d&g be an increasing net of C*-subalgebras of 
&‘(a < /3 =S J& 2 L$). Assume that 

(9 each -Pe, is a von Neumann algebra, 
(ii) JZ! = norm closure of uco9 &=, 

(iii) S is countable generated (i.e., if s+$ is any subnet of S, there exists a 
sequence (cu,) in f10 such that for each 01 E 9,~ < 01, for some n). 

Examples of countably generated nets 9 are: (1) the net of finite subsets of 
Z”; (2) the net of bounded open subsets of R d, the subnets being given by the 



38 L. ACCARDI 

families go such that for each bounded open set fl in z fl _C /.l,, for some /l, E g 
(in both cases the order being given by inclusion). The conditional expectation 
E,, (resp. the state v) is called locally normal if for each ,t? E 9, E,, :‘ $4 (resp. 
v p J$~) is a normal map. 

Under the above assumptions, if the topology of weak convergence on locally 
normal states is metrizable, then the set of limits w-limY; # . Eu where 7” is a 
a countable subnet of .F is nonempty for any v E Y(d) and, because of Lemma 
(1.2), such limits are contained in the set Y; of (E,T)-invariant states. By the 
sequential completeness of locally normal states (cf. [3]) we conclude that if the 
family (E,,) is locally normal, the set of (E,,)-invariant, locally normal states on 
is nonempty. 

Remark. The metrizability of locally normal states is not realizable in many 
important cases. However, for the existence of locally normal states in Y, , 
it is sufficient that on a closed, (Em,)- invariant subset of locally normal states 
there is a metrizable topology finer than the weak topology. In some cases such a 
metrizable topology is provided by the “Wasserstein distance” (cf. [6]). The 
problem of existence and uniqueness of locally normal states will be discussed 
e1sewhere.l 

3. EXTREMAL (&,)-INVARIANT STATES 

In the notation of Theorem 1.1 let 8 denote the set of (EN,)-invariant states. 
Y; is a nonempty w-compact convex subset of Y(d). Extreme points of Y; are 
called ergodic. Our analysis of the extremal points of Y; is based on the analogy 
between the systems (~2, (E,,),,s} and (&, G}-of a C*-algebra acted upon 
by a group G of *-automorphisms-with the norm one projectors E,, playing 
the role of the *-automorphismsg E G. The known results on G-Abelian systems, 
due to Ruelle [19] and Doplicher et al. [8], are extended without difficulty to 
(Em,)-Abelian systems. For ~JI E Y(d), denote {ZQ , nrn , 1,} the Gelfand- 
Naimark-Segal representation of &’ with respect to v [20, p. 401; denote 

([T~(&~,) * I,] = norm closure in 3E”, of VTJJ&) . 1,; and e,: SW-+ Zm”, the 
orthogonal projection. If v E Y; Kadison’s inequality implies that the map 
m,(a) . 1, ++ rQ(E,,(a)) . 1, that satisfies 

II r&L(a)) . I, iI2 = &%,(a)* . &(4) < d&@*4) 

= II r,(a) . 1, /I2 

1 The author is grateful to Jean Bellissard for his correspondence concerning this 
argument. 
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is well defined, and its extension to ZW defines the orthogonal projection ez,: 
%@ + [~JJ$~,) * l,]. One has e, = inf e,“, = strong-lim e:,; and rr,(E,(a)) . ez, 
= e,, m * r@(a) * eO; a E &. Moreover 

From now on the net 9 will be assumed to be countably generated, (cf. Part I, 
Section 2(iii)). The system {&‘, (L&P)} is called asymptotically Abelian if, for any 
subnet 9a _C F, 

l&y IlLa, b,,lll = 0; b,, E SC&; 11 b,, Ij < 1; a E &’ 

([a, b] = ab - ba). The system {&‘, (E,,)} is called (J&r)-Abelian if V~J E Y; , 

% . n@(d) . e,,, generates a commutative algebra. Asymptotic Abelianness 
implies (EN,)-Abelianess. 

LEMMA 3.1. Let {XI, (Em,)} b e an asymptotically Abelian system and q~ E Y; . 
Then 

(i) There exists a conditional expectation strongly continuous on bounded sets 
E,“: rw(sP)” -+ J&V satisfying 

e,(nJa) . 1,) = Emw(+)) . lm . (I-3.1) 

(ii) For every subnet FO of F, 

Sm” = [s&m . 1,] = 
[ 

n 7&g,)” * 1, 
I 

. 
a:Ej;o 

Proof. (i) Because of asymptotic Abelianness Va, b E SI’, 

TO(b) - e,(rJa) * 1,) = hm VW(b) - a,(E,,(a)) . 1, 

= lim rr,(E,,(a)) . rJb) . 1, . 

Hence the map E,@: TV + J&V, defined by Em@(rrw(a)) = s-lim r,(E,,(a)), 
satisfies equality (1.3.1). If (7r,(aj)): nj f JY converges strongly to 3s x,(d)“, 
then if b E s?, 

Em(P(Q4) * To(b) . 1, = n#) . e,(r&J . 1,) - r,(b) e& . 1,). 

By Kaplansky’s density theorem [20, p. 221 one can assume // VT@(Q\ < /j g/l , 
therefore E,m(rw(a,)) converges strongly to a limit depending only on Z, and 
this allows us to extend Eww to a map, nJ&)” - dmm, still denoted by E,w which 
is strongly continuous on bounded sets. Clearly E mu is a conditional expectation. 

(ii) From (i) it follows that 
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which implies =a C [s&~ * l,] c [naEFO T,J&~,)” . l,]. To prove the converse 
inclusion let Z E nol,, o TT~(J&,)” and for each ti E SO let a,’ E s4,* such that 
Z * 1, = s-lim,,FO ~~(a,,) . 1, . Then, for each fi E 9 (since 9s is a subnet of 9) 

hence e,(a . 1,) = G . 1, and [z&q . l,] C smO. And this ends the proof. 

THEOREM 3.2. Let (~2, (I&)} b e an asymptotically Abelian system; 9 E Y; . 
Then Sg is a Choquet simplex and for any q~ E YI the following properties are 
equivalent : 

(il) y is an extremal point in q, 

(i2) (.rr,(&), (la”,))’ = c . 1&p ((...}’ denoting the commutant on H,,), 

(i3) smQ = @ . I, , 

(i4) lQl,m=@*l~Q, 

(i5) for every E > 0 and a E 22 there exists a /3,, = &(E, a) such that, for 

any B > PO j 

I da . 4,) - d4 . dba,)l d 6 . II s(b,Oll; Vb,, E s(u* . 

Proof. The fact that Y; is a Choquet simplex and the equivalences (il) o 
(i2) 0 (i3) can be proved by adapting to (E,,)-Abelian systems the arguments 
which establish the corresponding result in the case of (Em,)-Abelian systems 
(cf., for example, Sakai [20, Chapter 31). The equivalence (i4) c)- (i5) is proved 
as in 114, Proposition (2.3)]. 

(i4) * (i3) follows from assertion (ii) in Lemma 3.1. 

(i3) + (i4). Let p E ,X&O be a projection. If (i3) holds, then 

p * lm = (1,) p . 1,) . 1, = pa ’ 1, = (;I, , p . I,)* . 1, . 

Thus p . lm = 0 or 1. Asymptotic Abelianness implies that z&w C (center of 
T~(J&‘)“), hence by the cyclicity of 1, for rr,J&‘), p == 0 or 1. 

4. INTEGRAL DECOMPOSITION 

If the system {&, (E=,)> is asymptotically Abelian and p E *ul, , then ,G&U is 
Abelian. If W(K) is a functional realization of J&U, the restriction on dzU of the 
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state 2 E 77J&)” t+ (1, , 8. 1,) defines a Radon measure pm on K. For each 
a~;02 one has 

CL@) = Pm(-JL‘%L(4N 
(1.4.1) 

= k EmU(~Ld4) (a) k@)* s 

The definition of Emu (cf. Lemma 3.1) implies that E,+r,(E,,(*)) = Emw . flu 
hence the states Emu of & defined by 

JLW = Em”(d4) (~1; OJEK; 

belong to 9, . One easily verifies that they satisfy condition (i5) of Theorem 3.2 
for pL,-almost every W. Therefore equality (1.4.1) gives an integral decomposi- 
tion of p by means of extremal states of 9,. In the Abelian case (1.4.1) is the 
Dynkin-Follmer decomposition (cf. [3, lo]). 

5. UNIQUENESS 

We keep the notation of the preceding sections. Throughout this section. The 
net .F is assumed to be countably generated. 

THEOREM 5.1. The following assertions are equivalent: 

(i) .YI consists of a single point. 

(ii) na da, = @ . 1 and the net (EN,) converges pointwise weak& in d. 

(iii) flu&w? = C * 1 and the net (Ear) converges pointwise in norm in d. 

Proof. Clearly (iii) 3 (ii). If (ii) holds, denoting E, = w-lim E,?, one has 
E, * Ee, = Eef * E, = E, VP E 9, therefore E, is a conditional expectation on 
nu54,=@.l,henceE,(a)=~(a).1;aEdwithg,E~,.If~E~,then 

Thus (ii) - (i). 

I+G = w-lim ZJJ * E,, = #(I) . g, = v. 

To prove that (i) 3 (iii) assume first that there is an a E J-&+ such that the 
net (E,*(a)) is not Cauchy in norm. Then there exists an E > 0 such that for 
each /30 E F there is a y > /3,, and a S(y) > /$, for which 

II -%+4 - J%w(~)~/ > E. 

Since Ey,(a) - E,(,),(a) is self-adjoint this implies (cf. [20, p. lo]) that there 
exists a 4, E 9’(d) such that 
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Hence there exists a subnet 4 of 9 and x1 , xs E Y’(d) such that 

x1 = w-lim &, * E,,; 
F 1 

By Lemma 1.2, x1 , x2 E Sp and 

I x1(4 - x2w 2 4. 

Therefore the pointwise norm convergence of (ES,) is a necessary condition for 
Sp, to consist of a single state. If (E,,) converges pointwise in norm its limit 
E, is a conditional expectation on & ,J&, and for every state I/J= on CUZZ~, , 
#m . E, E Y; . Therefore, under our assumption, 9, consists of a single state 
if and only if 9’(& da,) contains a single state, i.e., if nE dE, = C ( 1 and this 
ends the proof. 

PROPOSITION 5.2. If p E .Y1 is the only state on & compatible with (EJ1,) then 

a . (b,,)l”) = p(a); aEd; 

uniformly in b,, such that b,, E z+J , p(b,,) > 0. 

PYOO~. Given a family (b,,) such that b,, E JZ?$, , p(b,,) > 0, define the state 

40, E WJ~ by 

&&) = r-L((be,)1’2 . a . (b,,)“2)lcL(be,>; aEd; 

and assume that there are an E > 0, an a E &+, and a subnet 9s of ,9 such that 

I &3,(u) - p(a)1 3 6; p E RJ . 

Then there will exist a subnet 9r of 9s and a 4 E Y”(d) such that w-limSEgl #a? 
= #. For every j3 E $, , I&, . E,, = &I , hence by Lemma 1.2, I,!J E 3 and 

I $44 - /WI 2 6 

contrary to the assumption Y; = {CL}. 

COROLLARY 5.3. Let p E .z and assume that the family (da,) satisfies the 
following condition 

lip !I ~~([a . (bg)l/“]) * 1, /I = 0; aE&; (*Z 

uniformly in bet E A$. such that 1’ rrU(ba-)‘/” . I,, // = p(bg)‘/” = 1. Then if 
Y; = (p}, for every a E d, 

lip p(a . b,,)!p(b,,) = p(a) (1.5.1) 

uniformly in bg E d$ such that p(bB,) > 0. 
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Proof. For a and b,, as above, one has 

PL(Q . b,r) cL(UvY2 . a . (bg)l/“) - ----~ 
db,,) db) 

1 
= __ . j(r,([a, (So,)‘/“]) . 1, , n-G(b0,)1/2 . l,)/ 

P&3,) 

d rv II ([ a, 
(bB,)“‘” 1 

II gabs,)““) . 1, II 13 Ii ’ ” ’ 

Assumption (*) implies that the right-hand side tends to 0 uniformly in b,, E JS’$, 
p(bg,) > 0. Hence the asserion follows from Proposition (5.2). 

A state p on ti which satisfies condition (1.5.1) above for every a E (Ja .nl’, 
will be called “uniformly regular from the outside” (cf. [5, (2.12)]). 

Remark. The condition of asymptotic Abelianness used in Corollary 
(5.3) (i.e., condition (*)) is not implied, in general, by the one defined before 
Lemma 3.1. 

6. ERCODIC PROPERTIES 

In the notations of Section 2 a family (E,c),,y of positive maps E,r: LZ~ + -01,~ , 
will be called ergodic if Vu E uol -QI,; a >, 0; a # 0, and # E 9’(d) there exists 
an OL E F such that 

WW4) > 0. (1.6.1) 

If, given a E &s+ (fi E 9) an OT E 9 can be found such that (1.6.1) holds for 
every ~,4 E Y’(d), the family (E,,) is called positiwity improving. For a projective 

( i.e., satisfying (1.1.1)) f amily of positive maps (Eb,) such that E,(l) = 1 the 
two concepts are equivalent. In fact, if (&f) is ergodic and not positivity impro- 
ving there will exist an a E d+, a subnet 9a of 9, and a family (#~,,),,~gCg in Y”(d) 
such that #, . &,(a) = 0, for every y E %a . The net (&, * Ey)) can be assumed- 
considering, possibly, a subnet-convergent to a state 1,4 which because of Lemma 
1.2 is (Em,)-invariant. Therefore, for every ol E 9, 

#(E,,(a)) = #(a) =T lim &, . E,,(a) = 0 

contradicting the ergodicity of (Em,). 
In particular, if the projective family of conditional expectations is ergodic, 

every (E,,)-invariant state on & is faithful on VU &a . 
Throughout the present section we shall use a stronger ergodic property; 

namely, we shall require that (1.6.1.) holds for every a E &+, a # 0. This 
implies that any (Em,)-invariant state is faithful on JZ?. 
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Ergodic properties of the family (E,,) arise naturally in the study of the uni- 
queness problem for the solutions of Eqs. (1.1.2). In fact if ,A is the unique 
(&,)-invariant state on & and a E (J, &&, a > 0, is such that ~(a) > 0, then 
Theorem 5.1 implies that, for every z,f~ E Y(d), 

hm $(7&(a)) = ~(a) > 0. 

Thus, in order for the uniqueness problem to be well posed, it is necessary that 
condition (1.6.1) be satisfied for all a for which there is an (Z&)-invariant stae 
v such that v(u) > 0. The simplest way to describe this set of a in terms of the 
local data (i.e., the &s’s) is to restrict one’s attention to the families (Em,) for 
which this set coincides with the positive part of (Ja &, . This is done by intro- 
ducing properties of ergodic type. Such properties are implicitly introduced in 
Dobrushin’s papers (e.g., cf. [5, condition (2.18)]). Sometimes it is useful to 
restrict the definition of ergodicity by considering condition (1.6.1) only for 
locally normal states. 

The asymptotic factorization properties of the measure p” associated with 
the 2-dimensional free Euclidean field (deduced, for example, from [II, Sect. 
(2.2)]) imply that Markovian perturbations of the conditional expectations 
E,“, (a _C lR2, open bounded set) are ergodic in this restricted sense. 

THEOREM 6.2. If the family (E,,) is ergodic then Y; contains at most one state 
uniformly regular from the outside. 

Proof. We show, using an idea of Dobrushin, that if there exist two different 
states on A?, compatible with the ergodic family (E,,), then no (&,)-invariant 
state can enjoy the property of uniform regularity from the outside. 

Let v, 1+4 be two states on AX!‘, (Z&,)-invariant and such that there is an d E 9, 
an a, E da+, and a p > 0 for which 

Let, for each /3 E 9, Cat be the commutative C*-algebra generated by E,,(u) 
and 1 and ~a’ (resp. #a,) the restriction of y (resp. #) on A$$ . Then 

P = QW 0 ~p4%44 0 1 - 1 0 %(4) 

< II -q(a) 0 1 - 1 0 -&,(a)ll 
(1.6.1) 

(where ~a’ @ I,$ is defined on the tensor product of C*-algebras J+ @ A+ 
with %-norm, cf. [20, p. 601). 

Let Q(K,,) be a functional realization of Cap . Then C’,, @ Car E %?(K,, x 

K,,) and if a,’ = u,(x), x E K,, , is the image of Ea(a,) under the isomorphism 
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C,, -+ g(K,,), inequality (I.6.3) im pl ies that there exist two points x,, , y0 E K,* 

and disjoint neighborhoods U(X,), U(y,) of x0, y0 , respectively, such that 

q(x) - %4Y> > P/2 x E w%>; Y E U(Yo). 

Let 6, , 6, E %?(Kg) be continuous functions &: Kg + [0, 31, j = 1, 2 such that 

6,(x0) = 1; 6,(x) = 0; x E K,, - U(x,); 

&(ycJ = 1; h(Y) = 0; Y E 4, - U(YO>. 

Denoting b$) (j = 1,2) the image of & under the inverse isomorphism ‘%‘(Kg) 
-+ C,t one has 

E&z,) . by @ b$’ - b;’ @ E/&z,) * b$) > $ b/y @ bj?’ 

with 

bj’ E c,t c de’; b? 20; 11 b;j jl = 1; j = 1,2. 

Therefore, for any x E Y; 

~(a~ - b;‘) . x(b,$‘) - x(b;‘) . ~(a. . b;‘) > + x(b$)) . x(b$)). 

By the ergodicity of (Eat) the right-hand side is strictly larger than 0 thus 

~(a . b;‘) 

x&?)) 
_ x(am . b,?) > p 

x(b(,,J) ’ 2 * 

Since /3 is arbitrary, the above inequality implies that X, is not uniformly regular 
from the outside. Since x E Y; is arbitrary, the theorem is proved. 

COROLLARY 6.3. Let p E Y; , and let {&‘, (E=,)} satisfy the (asymptotic 
Abeliunness) condition (*) of Lemma 5.3. A necessary condition for p. to be the only 
(Em,)-inouriunt state is that VE > 0; Vu E &; $3, = /$(E, a); V/3 > PO; 

I 4~ . be,) - 144 . /-&,)I G 6 . cL(b) 

uniformly in be, E &G. If the family (E,,) is ergodic the condition is also su$icient. 

Proof. The necessity has been proved in Lemma 5.3. The sufficiency follows 
from Theorem 6.2 where we have shown that the existence of different states in 
9, implies that no state in 9, can be uniformly regular from the outside. 

Remark 1. If the family (Eel,) is “local” in the sense that for each /3 E 9 
there is a y E F, y > p such that Eg(sB,) C dY , the term “ergodic” in the formu- 
lation of the theorem can be as meant in the sense of (1.6.1). 
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THEOREM 6.4. Assume that the system {d, E&,)j satisfies (asymptotic Abelian- 
ness) condition (*) of Lemma 5.3 and that the family (Em,) is ergodie. Then Y, 
consists of a single point if and only if the following condition is satisfied: VCI E 9; 
Va, E &@; VZ/ E Y(d); there exists a constant M(a,) such that for every E > 0 there 
is a ,8 = P(E, a, , I/) and a y,, = y,,(~, arr , #) such that 

I %%k . 4,)) - +VAaJ . E,4b~~))l d E . J%J . WWw)) 

for every y > y,, and bat E JS?~, . 

Proof. Sufficiency: Assume that the above condition holds and let I,L E 9, . 
Then, for /3, y, b,, as above 

I #(a, . b) - #(a, . E,,(b,,))l < 6 . M(a,) . #(b,,). 

If I/I is an extremal point of Y1, Theorem 3.2 and the above inequality imply 

I #(a, . 4,) - #(aJ . @,,)I < c * M(a,) * #(be,). 

The ergodicity of (E,)) and the independence of M(a,) on l imply that # is 
uniformly regular from the outside. Therefore, by Corollary 6.3, Y, = {#}. 
(Note that it would have been sufficient to require E - &&(a,) -+ 0 as 6 -+ 0.) 

Necessity: Assume that the condition of the theorem is not satisfied. Then 
there exist 01 E 9, a, E & , and E > 0 such that for every y0 , & E % there are 
y > y,, , /3 > /?a and b,, E .Q& for which 

I vVMa, - b)) - $(E,,(a,) * JXw))l > 4%(b,,)). (1.6.2) 

The above inequality implies that $(E,,(b,,)) > 0. Moreover for any a E &, 
be, E 4+, $(E#w)) > 0, 

where #, = # . E,, , and lim, l V,e(a) = 0. Choose now a subnet (y} C 4t and, 
for each y in this net, another subnet {p(y)} L F and a family bBt(,,) E .F&,~ 
such that (1.6.2) is satisfied for y’, p’(y), bs,tY) , and p(y) > y for every y. 

For each y in the net, let xv be a weak accumulation point of the family 
states 

4,Nm)1’2 . (b,,(,,)“2)l~,tb,,(y,> = $~a(v) - 
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Clearly x,, E 9, (i.e., it is (&,)-invariant). We can assume that the net (,y,} 
converges to x E 9* (considering, eventually, a subnet). For such a x one has 

I 
&(a . b(d) 

Ywl3’bd - x(4 ( 

(1.6.4) 

Therefore, for each y one can choose a /3(r) and a bg(,) such that the right-hand 
side of (1.6.4) tends to 0 with respect to the net (~1. This proves that the family of 
linear functionals 

with y, p, 4, satisfying (1.6.2) has a weak accumulation point x in Y1 _ Similar 
considerations also prove that the family 

has an accumulation point x’ E & which by construction satisfies 

I x(4 - x’(eJl 2 6, 

where a, E &a is the one appearing in (1.6.2). Hence Y; contains at least two 
different points, and this proves the statement. 

7. INVARIANT STATES 

Let &, (Jis,), (&..r), (E,,) be as in Part I, Sections 1 and 2 and let G be a group. 
We assume that there is an action of G on 5; g: 01 E 9 -+ gal E 9 such that 

and a (locally normal) covariant action of G on &’ by *-automorphisms. That is, 
g:aEd -+ga E ZZ’ is a *-automorphism of JZ’ (g E G) and 

g4 = &A gda, = &c&f; olEAT. 

A state r+~ E 9’(d) is called G-invariant if v . g = q; g E G (9’ . g(a) = v(gu)). 
If v E Y; the G-invariance of g, is equivalent to 

409/72/I-4 
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for every a E &‘, b,, E ,laa,, which if v is faithful on ~2 (in particular, if (E,,) is 
ergodic) is equivalent to 

g . Eer = E,,, . g. (1.7.1) 

A family (E,,) satisfying (1.7.1) is called (G)-cova~iunt. Thus, for an ergodic 
family (E&f), G-covariance is a necessary condition for 9, to contain G-invariant 
states. Conversely, if (E,,) is G-covariant, then the action of G leaves invariant 
the nonempty weakly compact convex set .Yr (p’ . g ’ E,, = q~ . ET,,, . g == 
‘p . g; ‘p E Y;); therefore, by the Ryll-Nardjewski fixed-point theorem 1161 the 
set of G-invariant points in Y; is nonempty. 

If G = E(d) = d-d imensional Euclidean group, following the procedure of 
Follmer [lo], one can use Wiener’s ergodic theorem (i.e., take means on bounded 
sets and pass them to the limit) to construct a translation invariant state ‘p. Let 
4 E Y; denote the mean of ‘p . g over the d-dimensional group. Then, if 
t:[c[Wd + [ - t is a translation, one has, by translation invariance of cp 

Thus I/J is a locally normal E(d)-invariant state. We conclude 

THEOREM 7.1. In the notation above, if (Z&f) zs a G-covariant family, the set of 
G-invariant states in YI is nonempty. 

Let p be an (Em,)- and G-invariant state. Denoting J&U the subalgebra of the 
elements of Se left fixed by the action of G, then-as remarked in [IO]-if 
J&U C S&U and if the system (&, (E,,)) is (EC*)-Abelian, then p admits an 
integral decomposition-associated with the conditional expectation EG.~: 
da” + J@. 

II 

1. LOCALITY AND MARKOVIANITY 

From now on we shall consider systems (&, (&J) such that ~2 is an Abelian 
C*-algebra and (&) a family of von Neumann local subalgebras of d whose 
norm clorure is equal to JZS’. In [2] it has been shown that a stochastic process is 
completely defined (up to stochastic equivalence, cf. [2, Df. (2.11)]) by a triple 
{&, (&J, CLQ}, where {&, (s4,)) is as above and ,u” is a locally normal state (i.e., 
a measure) on ~2 and, conversely, each such triple determines an equivalence 
class of stochastic processes. Since local structures are intrinsically associated 
with stochastic processes and conditional expectations with measures, it is 
natural to analyze the structure of those stochastic processes whose local struc- 
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tures are preserved (or “almost” preserved) by the associated conditional 
expectations. Such processes will be called Zocal (or quasi-ZocaZ) (cf. Definition 
2.3). It turns out that locality is the most general property of Markovian type. 
If the local algebras (&J satisfy some rather general conditions (cf. (11.2.1)- 
(11.2.4)), then locality is equivaZent to (a generalization of) Dobrushin’s (d)- 
Markov property. (The implication: locality preserving 2 (d)-Markovianness 
as well as some modified form of the perturbation theorems below, continue to 
take place in the noncommutative-at least uniformly hyperfinite-case. In this 
case the objects intrinsically associated to p” are not the (quasi-)conditional 
expectations, but the modular automorphisms of the restrictions of p” to the local 
algebras. Locality properties of these ones allow us to establish the Markovianity 
of PO--in the sense of [II-and to obtain an explicit form for the quasi-conditional 
expectations associated with p” (cf. [25]). 

2. LOCAL CONDITIONAL EXPECTATION 

Let (Q, PO) be a standard Bore1 probability space; T a locally compact metri- 
zable space; 9 a family of bounded open subsets of T. We assume that the 
empty set is not in cF; 9 contains all the bounded balls; if (Y, /3 E F and Al C /3 
then /3 - Cu E 9 (E-the closure of (Y); finite unions and finite nonempty inter- 
sections of elements of 9 are in 9. 

Let for each cy E 9 be given a PO-complete u-algebra 0, C 0. We shall 
assume that the family ( OJaeF satisfies 

01 c/3; ol,/3EF * O,LO,; (11.2.1) 

.i 0, = 0; (11.2.2) 

o,=v(Oe:/3-Ca;/3E~}; aELF. (11.2.3) 

For any two open sets A, B (A n B # a) 

0, n 0, = O,,, , (11.2.4) 

where V,O, denotes the complete u-algebra generated by the 0,; for an open 
A C T, 0, = if{0 .:olCA;ol~F} and for any CCT O,=n{O,:A open 
2 C}. From relations (11.2.1)-(11.2.4) one deduces the following: 

Oc n O,, = O,,cT; (11.2.5) 

C, C’ arbitrary sets (in the second case C n C’ f; 0); 

j) 0, = 0.4; (11.2.6) 
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A open; {B} any increasing net of open sets such that UQ,~ B = A; 

n oB = on,; (X2.7) 
(Bl 

L’I, bounded closed (# iz~) or the complement of a bounded open (#T) set; 
{B} any decreasing net of open sets or of closed bounded sets such that 0 B = A,. 
Moreover we shall assume that 

o* = o,- v o,-,- (11.28) 

AC B; A, B open or A, B closed; and B bounded or the complement of an 
open bounded set. 

In the following we shall denote (Y’ the complement in T of a set ~1 E 9. 
Denote, for bounded C and unbounded C’, 

SQ, = L”(f4 oc 7 PC% oc, = Lrn(Q, oc, ) &); 

(6 = 0,). The Jie, will be called local algebras. Relations (11.2.1)-(11.2.8) are 
equivalent to the corresponding relations for the algebras &c , oc, . A conditional 
expectation E,,: 6 -+ as, will be called local if it preserves the local structure; 
that is, if Vol E 9, 3y I p, y E St, such that 

E&sg) c dy . (11.2.9) 

Define (/3)d as the intersection of the closures of those y for which (11.1.9) holds 
with cy = p. Clearly I’B)~ 2 p. 

PROPOSITION 2.1. Let EAp: 0 ---f ODE be a locally normal conditional expecta- 
tion. E,! is local if and only if 

%Md C 4m-, . (11.2.10) 

ProoJ Necessity: By (11.2.7), if E,, is local, Ed C &&. Therefore, 
by (11.2.5) 

Sufficiency: Assume that (11.2.10) holds. Then, if y Zp, y ~9, for any 
ab E LZ$ and a,-B E S&B , 

for some 6 E F. Thus, by local normality (not used in the proof of the necessity) 
and (11.2.8), &(J&,) C da. Since y is arbitrary (>/?), E,, is local. 
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Remark 1. Dobrushin’s (d)-Markov property for E,, corresponds to the case 

(jQd = (x E T: dist(x; j3) < d} (d > 0); 

the Markov property-to the case (/3)d = Is. 

Remark 2. If E,, is local then 

Y 2 0% =+ -%(4) C 4 . 

In particular, denoting d the norm closure of (Jas9 S$ 

Any conditional expectation Eg satisfying the latter relation will be called quasi- 
local. By “dualizing” the definition of locality for Eg one obtains the condition; 
VLYE.F, 3~~9, yC/I such that 

E&Jag z Of . (11.2.11) 

Es will be called local if the above condition holds for cz “big enough” (say ol 
contains a given open set j3s C /3). D enote d/l the union of the y’s for which 
(11.2.11) is satisfied with 01 = ,FL Then dp is open and contained in fl. 

PROPOSITION 2.2. A normal conditional expectation E,g 0 + s$ is local if 
and only if 

Es(@) C do-ds . (11.2.12) 

Proof. If Es is local, then for each y satisfying (11.2.11) 

E,g(Q) C s$+ C s$-, . 

Therefore choosing an increasing sequence (m) for which (11.2.11) is satisfied 
and such that yn 7 d/3, (11.2.12) follows from (11.2.7). Conversely let (11.2.12) 
be satisfied and let LY E 9. We have to prove that (II. .l 1) holds for some y E 9, 
y C /3. If 01 I fl, this is clear. If 01 Z /3, then for any as+ E ZZ&, and a,, E 0,~: 

-%(~a-~ . 0~~‘) = ag-, * EF(a,,) E Do,_, v OB-~~ 

= %an.s) * 

Thus, whenever 01 n d/3 # 0, the normality of Es (not used in the first step) 
and (11.23) imply (11.2.11) for any y _C Q n d/3; y E 9. 

Remark. Dobrushin’s d-Markov property for Es corresponds to the case 

d/3 = (x E /3: dist(x, /I’) > d} (d > 0) 

and the Markov property to the case d/3 = p. 
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In the following we shall use the notation f ? 0, (or sometimes f 2 J&J to 
denote the Oc-measurability off. 

DEFINITION 2.3. The measure p” will be called forward (resp. backward) 
local (with respect to the family (0,)) if the family (Z$‘,) (resp. (EbO)) of its 
conditional expectations with respect to the o-algebras 0,~ (resp. 0~) are local. 
If both conditions are verified, p” is called Zocal. 

In the following, for backward local measures, we shall also require that 
/3 t T implies d/3 1 T. 

PROPOSITION 2.4. Let p” be forward local. Then a ZocaZly normal conditional 
expectation Eet : 0 ---) @ is local if and only if there exist a ZocaZ a-algebra 0~~) d, 
and a 4 EW-Q, Cb)dl , P$,,~, ) such that 

Ee’(a) = E$(Kea); aE&. (11.2.13) 

Proof. Necessity: By the locality and local normality of E,, and (11.2.8) 
there is y E 9 (any y > (& , (j3)d being defined as stated after (11.2.9)) such 
that Ee,(dY) C Jai, . Thus Eel r dY = E,Y.: &, ---f dY n 6,~ is a normal conditional 
expactation. A theorem of Moy [15, Theorem (l.l)] implies then that there 
exists a K, EL’(SZ, 0, , pyo) such that 

(where J%&,,,,~ is the @-conditional expectation on O,, n 0,). Since ~0 is 
forward local, i? y has been chosen so that y 3_ (/I)d, ((/3)do being defined for 
E:, , as after (11.2.9)) then one easily verifies that 

Thus, by local normality and (11.2.8) 

E,,(a) = E,,(K,,a). 

Since, by (11.2.2) &’ is weakly dense in 0, K,, is the unique element of Ll(Q, 0, ~1) 
satisfying the above inequality. Therefore K,, = K, , whenever 6 E F is such 
that (/3)d U (p)d, C 6 C y, and KS is defined by the above procedure. Thus 

Denoting 
G%zl = Wd u u%% (11.2.14) 

the assertion follows. Since the sufficiency is clear, Proposition 2.4 is proved. 
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In the following if E,, is a conditional expectation and Ke is any function 
satisfying (11.2.13), then K, , which is necessarily the unique (PO-a.e.) one with 
this property, will be called the conditional density of EBr with respect to Ei, and 
denoted dE,,/dEio. . 

PROPOSITION 2.5. Let p” be local. The locally normal conditional expectation - 
E,,: 0 + O,, is quasi-local if and only if 

E,(a) = E,O,(K,a); aEd; 

where K, E Ll(Q, 0, p”) and there is a sequence of conditioned densities (K,,) 
such that pn E 9; pn t T; 

43, E L’W, OBa 9 /-4&l @EN 

such that 

lip II @[We, - K,) * aIll = 0; UEd. 

Proof. The sufficiency is clear. Let E,, be locally normal and quasi-local. 
The backward locality of p” implies that, given 01, there is a PO E 9 and we can 
assume PO 2 01 such that, for /3 > /IO , p E 9, Es”(a#,) C o,, . Therefore the map 

EBo . Em< r de: dB -+ S$ n De, 

is a conditional expectation. The same reasoning as in Proposition 2.4 yields the 
existence of a Ke E Ll(sZ, 06,pgo) such that 

&GW4) = -7W%d ; a0 E 4 

(if /3 is large enough). Choose, now, fin r T, & E 9. If a E (Jvey &, , then a E de, 
for some n and, by the quasi-locality of E,, , given E > 0, there is a pm. E Y and 
a bs, E &s, such that (1 E,(a) - be, II < E. Therefore, if /3 1&,, I /I, 

II E~~(K,a) - ~%~(a)11 < II &&~(a) - born Ii + l < 2~. 

Thus lim, 11 E,,(KBnu) - E,(u)l\ = 0; a E ~2. Since (Q, 0, PO) is a standard 
Bore1 space and T is second commutable, E,, is normal on 0, hence it has a 
conditional density K. And this ends of proof. 

3. CONDITIONED MARTINGALES 

Let (E,,) be a family of normal conditional expectations E,,: 0 -+ 0,~ and let 
K, = dE,*/dEf. . The projectivity of the family (Em,) (cf. (1.1.1)) is equivalent to 

K, = K, . E,o,(K&; aCj3; %BEF (11.3.1) 
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Any family (KJ of positive random variables satisfying (111.1 .l) and 

E,o,(K,) = 1 (X3.2) 

will be called a conditional martingale. If (K,) 1s a conditioned martingale, then 
(III.l.l), (111.1.2), and the martingale theorem imply that 

Kfl/iu, ; O& UC/% (11.3.3) 

w-lim Ka, = K,; %a ?B (11.3.4) 

(in (11.3.3), and always in the following, we have assumed that K, > 0, PO-a.e., 
which is equivalent to the fact that E,, is faithful). Remark, that (111.1.2) is 
equivalent to 

K, = ebU~/E~~(evum) (11.3.5) 

for some measurable function U, . 
It is important to remark that U, is defined by K, up to a “gauge transforma- 

tion” 

Assume that the measure p” is (locally) Markovian, i.e. (cf. (II.2.10), (11.2.12)) 

and that the conditioned martingale (KJ satisfies the (strong locality) condition 

K, i 0,; CiES. (11.3.6) 

Proposition 2.4 and (11.2.14) show that (11.3.6) is equivalent to the markovinaness 
of E,, = ,$!,(K, .). Clearly, if 

u, E^ 0, (11.3.7) 

then (11.3.6) holds, and one can verify that, conversely, if (11.3.6) holds then in 
the “gauge-equivalence” class of functions U, satisfying (11.3.5), there is an 
element satisfying (11.3.7). 

Thus, under assumption (11.3.6)--i.e., Markovianity-one can limit oneself 
to the consideration of the U, satisfying (11.3.7). This restricts the class of 
admissible “gauge transformations” to those of the type 

Sa,g Oao, - (11.3.8) 
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THEOREM 3.1. Let p” be Markovian. A projective family (Ear) of locally 
normal conditional expectations EN<: 0 -+ OD* is Markovian if and only if there is a 
family of measurable functions (U,) such that 

dEd 
e- ua 

- 
dEz’, q,(e+) 

(11.3.9) 

and, modulo a gauge transformation 

u, = u, + u,-,; u, i 0,; cycp. (11.3.10) 

Proof. It is known, and immediately verified, that a family (U,) satisfying 
(11.3.10) defines, by (11.3.9), a Markovian family (Em,). Conversely, let ((Em*) be 
Markovian. K, = dE,r/dEz. , and U, be defined by (II.3.0) U, E 0,. 

By (11.3.1), applied to fl - & Cp 

e -“B = ,-%a . ,ljO (B--8),(e-~~)/E~~_,),(e-U~-“) 

and since U, C 0, 

Therefore 

where 

e--(q-u,) _ e-(u,@-,+q&6)‘) - , 

e--pl8-8)’ = EO (B+-~,(e-‘UB-U”‘)/EI)B+~~,(e-UB-i). a 

Equations (11.3.3) and (11.3.7) imply that 

e-@+J ; o,,g f-l o,, = O&, , 

therefore, by Markovianity 

Hence gtB-,)’ is a gauge transformation and this establishes (11.3.10). 

Remark. By imposing, besides (11.3.7), the invariance of the equalities 
(11.3.10) under “gauge transformations” one determines a global constraint on 
the action of such transformations on (U,), namely, 

gak-si =&?a8 - gaG ticj3. (11.3.11) 
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The relations (11.3.10) and (11.3.11) agree with the usual interpretation of 
U, and gs, as random variable-valued integrals, respectively, over the volume 01 
and the surface A. 

The connection between conditioned martingales and martingales is described, 
in the local case, by the Dobrushin-Lanford-Ruelle equations (cf. [13, Proposi- 
tion (VII, 2)] for the Markovian case). 

PROPOSITION 3.2. Let p” be (forward) local, and let (Em*) be a projective family 
of locally normal, local conditional expectations E,,: s? -+ o,t . A locally normal 
state p is (Em,)-invariant if and only if Va E P 

(11.3.12) 

((a)d being defined by the remarks after (111.1.9)). 

Proof. Necessity: Let ti E %. By the locality of E,, 

&4 = w,-dEd4) 

which is equivalent to (11.3.12). 
Sufficiency: Let 01 E 9 and ,6 E % be such that /3 1 (cY)~ . Then, VaB E A$, 

Since (Ee,) is projective, one has 

Since E,, is local and ,f3 1 (a)d 

= dE&d) 

by (11.3.12). Since /3 > (cx)~ is arbitrary, this implies p = cc. . Em, , therefore the 
proof is completed. 
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4. UNIQUENESS: FACTORIZABLE CASE 

Let F be as in the preceding sections. Let & be a commutative C*-algebra, 
ML% > (4,L.F be families of C*-sub-algebras of ~2 such that 

az~d~~s.z?~~; CYES-; (11.4.1) 

4 e 4,o 4,,; LYEF; q c 01. (11.4.2) 

Let (Ez,) be a projective family of conditional expectations E$: A! + J&, 
and X0 a faithful state on & which is compatible with (Ez,) and such that, for 
every 01 E F, X0 :z h,s @ X,“, . If Q (resp. s2, , Q,,) denotes the spectrum of &’ 
(resp. J&, da,), then Q g J&1 x Q-a1 x Qa, , whenever 01~ C 01. Let, for o( E 9, 
a function be given K,: Q -+ IF! such that the operator 

EM* = E:,(K, .) (11.4.3) 

defines a conditional expectation E,, : ~2 + J&, . Thus K, > 0 and Ez.(K,) = 1, 
ho-a.e. In the following it will be assumed that the famliy (Ka) is a conditional 
martingale (cf. (11.3.1)), that is the family (Ear) is projective in the sense of 
(1.1.1) and that the following conditions are satisfied 

K,:sZ-+ R is continuous (a E 9); (11.4.4) 

K&m 9 x,,) > 0; vx,, E A.&/ ; A,0 - vxa E s2, (11.4.5) 

(we use the notation: w = (x~ , x,,) E Q z s2, x Sz,,). If the K, are local (i.e., 
there is some p = /3(a) such that K, = K, 0 7ra , -ma: Q -+ QB denoting the 
canonical projection), instead of (11.4.4) it will be required simply that K, is 
strictly positive hsO-a.e. These conditions guarantee the ergodicity of (E,,). 

LEMMA 4.1. In the notation above, the uniqueness of the state compatible with 
the projectiwe family (E*,) is equivalent to the following condition: 

V&!EF; Vu, E da; 3M(a,) > 0; VE >o; 

38 = B(E, aa>; 3yo = ~~(5 4, 

such that 

I Evkx * be,) (w) - J%@,) (~1 . E,+w) (~11 < E . W4 . E&w) (w) 

foreveryy>yO, b,,E&$,andwEQ. 

Proof. SuiIiciency: Assume that the above condition is satisfied and let 4 
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be a state on JZ! r U(Q). Then 4 defines a Radon measure on Q, still denoted I+, 
and one has, for (II, a, , M(a,), E, 8, y, b,, as in the condition above, 

I ?fWk . b)) - W&,) - E,G3~Nl 

Therefore the condition of Theorem 6.4 is fulfilled, hence uniqueness takes 
place. 

Necessity: Assume that the condition of the lemma does not hold. This 
means that: 3a! E F’; 3a, E A&; VM(a,) > 0; 3~ > 0 (c = E(OI, a, , M(a,)) such: 
that for every /3 2 01 there are a y 2 /3, an w E J2, and a b,, E && , for which 

In the following we shall take M(a,J = 1. The strict inequality above implies that 
E,,(b,T) (w) > 0. Dividing the above inequality by E,,(bg) (w), and defining the 
states 

xsl: a E ra2 t+ E,,,(a . b,y) (w)/E,,(bg) (w); 

xs2: a Ed t+ E,,(a,) (w); 

one has: x$ . E,r = x$; j = 1,2, and 

I x0%4 - x0*@0)1 > 6. (11.4.6) 

One can assume that w-limaG9i x$ = xj (j = j, 1) for some subnet 9s C S. 
Because of (11.4.6) x1 # x2. By Lemma 1.2 in 1, x1, x2 are (E,,)-invariant. Thus 
if the condition of the lemma does not hold, there are at least two different 
invariant states. And this ends the proof. 

In the following, on account of the identification 

szrf& x sz,-, x Q,-, x Q,, (11.4.7) 

(a C /3 C y) which follows from (11.4.2), any point w E Q will be written in the 
form 

For any function f : Q - Iw we shall use the notation 
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LEMMA 4.2. Let (K,) be a conditioned martingale (cf. (11.3.1)) satisfring 
(11.4.4) and (11.4.5); and let E,I = g,(K, 0) be the associated projective family 
of conditional expectations. Assume that the Km’s satisfy the following condition: 

For every 01 E 9 and E > 0, there exists /30 = /$(E, a) such that for every y 3 /3 3 

POW 

K,(% > 
K,& 9 

-%-a > 4-o 9 9cy,) . fW% , Qe-, 3 4-e 3 x,,> _ 1 
sz,-, , %-B 7 v> Kv(f, , %a ,%-a 3 x,,> 

< E. (11.2.8) 

Uniformly in Z1, , $a E L&; ZV-s , S& E Q-, , x,,, E Sz,, . Then there exists only one 
(E,f)-invuriant state. 

Proof. Assume that the condition of the theorem is fulfilled. Then 

K;“.K;- ~ 
K,“,w . K,^^ ( Ya 7 YW * . Lq-& t&g x,,) - 1 < E (11.4.9) 

uniformly in 3, , j= E Q,; Q-8 , &+ E sZ,-,; x,’ E QY, for every y 1 p 1/&(0(~, a,), 
where we have introduced the notation 

x K,(f, , Q,-, ,&-B , x,,) . h,‘(dZ,) . h,‘(d$) . X;-,(dZ,.-,) . h:-,(d&,) 

= E . 44 ati I> (x,,) . E,@,r) (XYO 

< E . il a, 1~ . E,,(b,,) (x;). 

Since E,,,(a) (xv , x,,) x E,,,(a) (x7,), and the above estimate is uniform in xY’ , 
the condition of Lemma 4.1 is satisfied, hence uniqueness holds. 
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LEMMA 4.3. Assume that for some a: E .F and 2, , $a E Q,, there exist neigh- 
borhoods U(Q, U&) of f, , $, respectively, and E > 0 such that for every /I,, 
there exist y 3/3 X/3, and &, & EQ_, , .q, ~52,~) such that V(% ,$,) E 

uw x w%) 

(cf. (11.4.10) for the notation). Then there exist two dazerent states compatible with 
the projective family E,, = E,,(K, .), ol E F. 

Proof. By continuity one can assume, possibly considering subneighborhoods 
and exchanging the roles of 5-O and dYPs , that 

There exist two functions a”, , & E dE (&?(QJ) such that 

Z&) = cqa,) = 1; 

cz, r Sr, - u(a,) = & r s2, - up,) = 0; 
d, ) a”,: Q + [O, 11. 

For such rZ, and & one will have 

hence, integrating with respect to A,O(dQ, h,O(d&) one finds 

By continuity there are neighborhoods U(L$,-,) and U(&) of ZV.-a, kPa, 
respectively, such that 
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for every j$+ E U(Z,+), y,,+ E U(k&). Therefore there will exist functions 
&, , &I E S& C z$ such that 

&&,-8) = li.J@-o) = 1; 

l&f I‘ .n,-, - U(q+B) = c$y r q,+ - U(i-Gyy-B) = 0; 

68, ) LfJ,: i-2,-,+ [O, 11. 

Multiplying (11.4.11) by &( j&+ , x,,,) . &,( j& , CC,,,) and integrating with 
respect to At-,(dj;-,) . A,-,(djz-,) one finds 

E,@, . &) (x,,,) . E,,@, * &) (x,,) 

> (-1 + c/2) . E./(d, * l&f) (x,,) . E,/($ * &) (x,,). 

By (11.4.5) E,,&,) (x,,) . E,,(&) (x,1) > 0, therefore 

(11.4.12) 

Assume, by contradiction, that there is a unique state TV on & compatible with 
the family (Em,). Then, taking the limit of (11.4.12) with respect to /3 one finds, 
reasoning as in Theorem 6.4 in 1, that 

Since (E,,) is ergodic, p(&) . P(c’$) > 0, therefore the above inequality is 
impossible. Thus, if the condition of the lemma is not fulfilled, then there are 
two different compatible states. 

COROLLARY 4.4. Assume that 9 is the set of jinite parts of Zd (d E IV) and that 
52, N IJitib 9’; 9’-a$nite set; 01 E 9. Then the condition of Lemma 4.2 is equi- 
valent to the uniqueness of the (Em,)-invariant state. 

Proof. The sufficiency follows from Lemma 4.2. If this condition is not 
satisfied, then there are 01 E F, E > 0, 5$ , 2, E $2, , such that for every &, 2 a, 
there are y 1 p I/3,, and gYPs , 4-s E Q+, , xv’ E Q,, such that 

Therefore, since QN is discrete, the condition of Lemma 4.3 is fulfilled, hence 
uniqueness fails. 
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III 

1. THE LOCAL U-ALGEBRAS OF THE FREE EUCLIDEAN FIELD 

Let N be the completion of the real Schwartz space Y(RP) with respect to 
the norm defined by the scalar product (f, (--d + mz)-l h), where A is the 
Laplacian and m > 0 (m > 0 if d > 3). The free Euclidean field is defined (cf. 
[17, p. 1061) as the unit Gaussian process on N, extended by linearity to the 
complexification of N. Let (Q, 0, PO) be a probability space underlying the 
free Euclidean field. 

Denote, for an open or closed set A _C Rd, NA the closure of the set of distribu- 
tions in N with support in A; e,: N -+ NA the orthogonal projection (cf. [22, 
p. 941). If A is an open set _ClFP, define OA as the PO-complete sub-u-algebra of 0 
generated by {~(f):fe NA}; if C _C Rd is any set define 

0, = n{O,: A open 1 C). 

LEMMA 1.1. The family of u-algebras, de$ned above, satisfies the following 
relations : 

If {A,) is an arbitrary family of open subsets of Rd then 

qJ.4‘ = v 0.4& * (111.1.1) 

V1 0~~ (resp. OA, v O& denotes, here and in the following, the PO-complete 
a-algebra generated by thr family {AL} (resp. by A, and A,.) We shall use the same 
symbols referred to von Neumann algebras. 

If C, D are open or closed subsets of Rd, then 

0, n 0, = o,,, . (111.1.2) 

Proof. (111.1.1) follows from the fact that S(Rd) admits partitions of the 
identity. 

For A open or closed, denoting Ei, the conditional expectation on 0, 
associated with PO, one has 

r(1.A = E& restricted on Q(sZ, 0, PO) 

(cf. [22] for the notation). Therefore if A, B are open or closed 

E&n 0s = r(eA) h r(eB) = l$(r(eA) * r(e,)) 

= r(e, A 4 = WAnB) 

= -%,s 
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which implies 0, n 0s = O,,, . Taking intersections one establishes (III. 1.2) 
for any two sets C, D. 

In particular, if 01, /3 are bounded open sets with piecewise smooth boundary, 
and (Y C /3, then 

0, = 0, v o,-, . (111.1.3) 

The free Euclidean field is a Markov field, in the sense of Nelson (cf., for 
example, [17, p. 107]), that is, it satisfies 

Ein . En0 = E:/, . E,‘; fl C Rd, open. 

We shall need a stronger property of the free field, namely, 

EAa . EBo = E’ a‘4u h-a) . EBo (111.1.4) 

for any two closed sets A, B C Rd. 
Relation (111.1.4), isolated by Guerra et al. [13, Proposition 11.31, is stronger 

than the Markov property since it gives information on the statistical correlation 
among observables localized on’two arbitrary (closed) sets, while the latter is 
limited to one set and its complement (for sufficiently regular sets the two 
properties are equivalent due to (111.1.3). 

Denote F the family of bounded open subsets of IWd with piecewise smooth 
boundary. For each bounded set A, , define 

.4, = L”(Q, o/l, , Lo). 

If CC IWd is any set, define 

do = norm closure of u {J;4,: D bounded 2 C>. 

Because of (3.1.4), J$c is a weakly dense subalgebra of L”(Q, 0, , pco), .&d will 
be denoted &‘. 

LEMMA 1.2. The Abelian P-algebras dejined above enjoy the following 
properties 

CCD 5 .sz&C~$,; C, D arbitrary sets. (111.1.5) 

C C D bounded regular + &” = J& v sI~_c . (111.1.6) 

If C is a closed set with bounded boundary, then 

dc = d n La@, 0, , t.+O). (111.1.7) 

If A ES and Eb denotes the conditional expectation on Ocn associated with p”, 
then 

E&&4 C 4, . (111.1.8) 

409/72/r-s 
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Proof. (111.1.6), (111.1.7) are evident. 

(111.1.8) Clearly do c d n L”(f2, 0, , pco). 

Conversely, let a E & n Lm(Q, 0, , pLco ). Then there exist a sequence of 
open bounded sets (An) such that A, t IWd and a sequence (a,) such that a, E =& n 
and j/ a, - a I/ + 0. Because of (111.1.4) 

Thus, since aC is bounded, Eco(a,) E de. But then a E A&, because 

II EcV4 - a II = II Eco(an - 4 G Ii a, - 0 II - 0 

and this establishes (111.1.7). 

(111.1.9) Because of (111.1.7) one needs only to prove that Ein(-Pe) 2 ~2. 
For this it is sufficient that, for any p E 9, E&(Jje) Z 54. If /I 3 d then, by 
(II1.1.7), J$ = J& v JX$,-~ . By the Markov property Ein(&A) _C A%& C dD. 
This implies ,!$$,(&a) C z$ c d, concluding the proof. 

Remark. Since NA = NA for sufficiently regular sets (cf. [22, Remark 2, 
p. 941) the definition of the algebras ,Oe imply that, for sufficiently regular sets C 
(e.g., finite unions or intersections of open half spaces), one has &c = J& . 

2. THE GLOBAL MARKOV PROPERTY 

Let % be the family of bounded open sets in W with piecewise smooth 
boundary. In the following (EGn,)A,E~ will denote a locally normal E(d)- 
covariant family of Markovian conditional expectations EC., : & + d&r,; the 
family will be supposed projective and the associated cond&oned martingale 
(cf. Part II, Proposition (2.5) and (11.3.1)) will be denoted (KAO)+F. Thus 

%l,(9 = Jq&cl” .) 
and (111.2.1) 

K,,,, i? OAo = On,; (A0 E 9). 

The localization property (III.l.5) of the conditional expectations of the free 
field is partially transferred to the family (EC,& In fact, if A, , A, E 9, and 
A, n A, = o then 
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Therefore the projectivity of the family (EcAJ implies 

EC4 - -%A~ = Q~,un,); A,nA, = $3; A‘E.97 (111.2.2) 

(Relation (111.2.2) can also be verified directly using Theorem (3.1) in Part II.) 
Let p be any state on & compatible with the family (ECAJnOE~. Denote 

Ge 3 VII > 1,) the Gelfand-Naimark-Segal representation of ,B? associated with CL, 
and define for B C W the bounded or the complement of a bounded set 

6YB = ?T&iq”. 

If C is any other set, define 

6& = n {am”: B bounded closed C CC). 

Thus, in any case, G& 1 n,(&c”. This definition of the algebras O,o , localized 
on sets with unbounded boundary, is motivated by the necessity of controlling 
the “effects at infinity” arising when the (EeA)-invariant state is not unique (i.e., 
in presence of phase transitions). When the algebra at infinity is trivial (i.e., 
for extremal states) our definition coincides with the one proposed by Nelson 
in [17]. 

Let, for C C W, ZU(C) = [eC, . l,] (= the closure in SW of @o * 1,) and 
denote ecu the corresponding orthogonal projection, 

If A, E so one has (cf. Part I, Section 3) 

Therefore, if A, , A, E 9, A, r\ A, = 0, (111.2.2) implies that 

(111.2.3) 

LEMMA 2.1. Denote A the open half-space 

A = {(x, t) E w-1 x R: t < 0) 

and p the rejection with respect to &‘l (= the boundary of A). If (An) is any increas- 
ing sequence of sets in 2F such that 

(111.2.4) 

(111.2.5) 
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Prooj. If B is a bounded closed set CA, then B C A, for some n, since B is 
compact and {A,> is an open cover of fl, hence of B. Thus 

Since B is an arbitrary bounded closed set Ql, this implies 

& = n {z-,(z&J”: B bounded closed C A> > n ~U(z&J’. 
n 

The converse inclusion is clear since ir, CA and 7r,,(~$$’ = z-~(J&J’, 
because (1, E 9. Thus (111.2.4) is proved. (111.25) is proved with analogous 
reasoning. 

PROPOSITION 2.2. In the notation introduced above, one has 

eion * eiA = e& . (111.2.6) 

Proof. Let (An) be a sequence as in Lemma 2.1. Then 

Therefore, by the martingale theorem (or, directly, using a modification of 
Lemma 3.1 in Part I), 

em = n E(cA,); ah4 = nacP4. n 
Thus, since multiplication is strongly continuous on bounded sets 

therefore, using (111.2.3) and (111.2.5), one finds 

and this ends the proof. 
Let now p be locally normal; denote for any subset CC W, ac = ~%o@ 

the p-complete u-algebra defined by the projections of @c (9? = Wnd), and EC“ 
the conditional expectation defined by p on 9?c . One has 

e&ii * 1,) = E$(iZ) . 1,; a E n,(d)“; 
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therefore (111.24 is equivalent to 

which is the Markov property with respect to the hyperplane &l. 

Remark. The proof of Proposition 2.2 can be adapted to the case when A 
is any region with smooth boundary. 

The action of the d-dimensional Euclidean group E(d) on (Q, 0, PO) (cf. [17, 
p. 1071) induces an action g: a E &’ ---f ga E ,nZ, of E(d) on &, by *-automor- 
phisms, which is covariant, i.e., 

g . A$; = .a?& g E E(d); cc Rd. 

If p is E(d)-invariant, this action induces a unitary representation T: g G E(d) + 
T, of E(d) on ZU , defined by 

T, . r”(a) . 1, = ru(ga) . 1,; g E E(d); a E GI. 

Covariance implies that TBeCu = e&-, . 

LEMMA 2.3. Let p be an (ECAO)-compatible, E(d)-imariant state on ~2. Tke 
following conditions are equivalent : 

ei, . T, . e,$, > 0; (111.2.7) 

T, . e&, = e& . (111.2.8) 

Proof. By covariance and (111.2.6) it is clear that (111.2.8) * (111.2.7). 
Conversely, since T, . e&, = e& . T, one has 

(ein . T, . e&J2 = (T,, . e&,)’ = e&, I 

Hence if e&,, * T, * ei, is positive it is equal to e& , thus (111.2.8) holds. 
Note that (III.23 implies that 

hence #?u c X,(U). Therefore a necessary condition for property (111.2.8) 
to take place is that 

T,, . emu = emu (111.2.9) 

(ed denoting the orthogonal projector SW + XWu). Relation (111.2.9) is called 
the reflection property at infinity. It is possible that (111.2.9) is equivalent to 
(111.2.8). In such a case all To-invariant solutions of the equations 

P = CL * EC/I,; A,EF; (111.2.10) 
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with the cluster property defined by Theorem 3.2 (Part I) would satisfy (111.2.7) 
(i.e., T-positivity).2 

IffE N has compact support then for any p satisfying (111.2.10) and n E N, 
~(1 ~)(f)l”) is well defined. If the map 

extends to a continuous map S%: Y( lQw”)” + Iw we say, following [17], that TV 
satisfies assumption B. We sum up our conclusions in the following. 

THEOREM 2.4. In the above notation, let (ECCn,)A,Es*be a projective farnib of 
locally normal, E(d)-covariant, Markovian conditional expectations ECA,: A’ -+ 
JZ&~ . Then for any solution of Eqs. (111.2.10) satisfring assumption B and (111.2.8), 
the sequence of distributions defined by the maps S, satis$es the axioms ED, El, E2, 
and E3 of Osterwalder and Schrader [18]. 

Proof. The assertion follows from Theorem (2) in [17] and Lemma 1.3. 
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