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INTRODUCTION 

It is well known that quantum mechanics presents many analogies with 
the theory of Markof processes: In both cases one is concerned with a 
statistical theory in which the states of a system undergo a deterministic 
evolution; the analogy between the Green function of the Schrodinger 
equation and the transition probabilities of a Markof process, together 
with the fact that a quantum mechanical system is determined by the 
assignment of a functional on a space of trajectories, are guiding ideas 
to Feynman’s approach to quantum mechanics [9]; the formal analogy 
between the diffusion equation and the Schrodinger equation has now 
become, through the systematic use of techniques of analytic continuation, 
a powerful tool in the treatment of the latter [18]; a one-to-one cor- 
respondence between wave functions of a large class of quantum systems 
and a class of Markof processes has been constructed in such a way 
that the corresponding statistical theories, at fixed times, coincide [19]; 
and, more recently, ideas and techniques of the theory of Markof 
processes have been used with success also in boson quantum field 
theory [20, 111. 

The connection between the two theories lies at a deep level: The 
fact that the evolution of quantum systems is described by a differential 
equation of first order in time expresses the locality of the correlation 
between observables at different times; and the most general way of 
expressing, in a statistical theory, a property of local correlation is given 
by the Markof (or, more generally, (d)-Markof [6]) property. 

The present work is concerned with the analysis of the property of 
“local statistical correlation” in the particular context of nonrelativistic 
quantum mechanics-as described by the axiomatics of von Neumann- 
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Segal-Mackey’s type-and of some consequences of it. It is proven that 
the mathematical edifice of quantum mechanics, as characterized by the 
axiomatics of the above mentioned type, can be naturally embedded in 
the framework of a theory of noncommutative Markof processes. Non- 
commutative Markof processes are constructed by including the theory 
of stochastic processes (without assumptions of linearity) in von 
Neumann [32, 331 Segal’s [23, 24, 261 algebraic formulation of proba- 
bility theory (cf. N. 2) and by using a noncommutative variant of the 
multidimensional Markof property as formulated by Dobruscin [6], 
and Nelson [20] (cf. (3.4.1)). The class of Markof processes thus defined 
is strictly larger than that of quantum systems. However, for the pro- 
cesses in this class a rather rich theory can be developed which, apart 
from a nontrivial difference (cf. N. 5) is quite similar to the classical 
theory of Markof processes. In particular a system of evolution equations, 
naturally associated with the systems of this class, is derived and these 
turn out to be the noncommutative formulation of the “backward” 
and “forward” Kolmogorof equations well known in probability theory. 
It turns out that the Schrodinger equation is the simplest example of a 
noncommutative forward Kolmogorof equation, and that quantum 
systems can be characterized as those noncommutative Markof processes 
whose forward equation is the Schrodinger equation (cf. (6.1)). Another 
characterization of the quantum systems is that they are the only non- 
commutative Markof processes to which a reversible time evolution is 
associated (i.e. whose “transition operators” are invertible and depend 
regularly enough on the time parameter). From the latter characterization 
and a theorem of R. Kadison [14] it follows that quantum systems are 
exactly those noncommutative Markof processes whose transition 
operators map in a one-to-one way pure states onto pure states (and 
depend regularly enough on time); this justifies a posteriori the 
“mechanical character” of quantum systems among Markof processes. 

Any attempt to embed Quantum Mechanics in a theory of stochastic 
processes faces the problem of the joint probabilities which, at the 
present time, have no natural interpretation in the framework of quantum 
theory. In the approach discussed in the present work this problem does 
not arise because it is proven (cf. (6.1.2)) that, for the noncommutative 
Markof processes corresponding to quantum systems the joint expecta- 
tions are trivial: the expectation of a product of observables at different 
times is the product of the expectations of the single observables. This 
circumstance has a partial analogue in the classical theory of Markof 
processes: in fact quantum systems have been characterized as those 
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noncommutative Markof processes with invertible transition operators, 
and the joint expectations of a classical Markof process with invertible 
transition operators factorize if the initial state is pure. The analogy 
between the noncommutative and the classical case is thus broken only 
when the initial distribution is a mixture and the transition operators 
are invertible. This is a direct consequence of the fact that the algebra 
of the observables at any fixed time in the quantum case is a factor. 

Examples of irreversible Markof processes (i.e. not corresponding to 
quantum systems) are constructed with a procedure which corresponds 
to forming “mixtures of pure dynamics” (cf. (4.5)); other examples 
have been discussed (in the case of discrete parameter) in [2]. 

1. THE AXIOMS 

A theory is specified by its objects and the type of the assertions which 
can be formulated on them. A mathematical model of a theory is deter- 
mined by a correspondence which to every object associates a mathe- 
matical entity and to every statement on objects a statement on the 
corresponding mathematical entities. Objects of a physical theory are 
dynamical systems, observable physical quantities associated with them, 
their state&. Since the same set of observables or states can correspond 
to many dynamical systems it will be appropriate, in the specification 
of the mathematical model, to distinguish the statements which charac- 
terize the single dynamical systems, among all those to which the same 
classes of observables and states are associated, from the statements which 
describe the mathematical entities corresponding to such observables 
and states. 

In the present work the above-mentioned distinction will be carried 
out in the case of nonrelativistic quantum mechanics, as follows: the 
mathematical model of the theory will be determined, as usual, by 
means of axioms and the system of axioms wili be subdivided into two 
groups: the first one (Static Axioms) comprises the characteristics of the 
theory common to all the dynamical systems considered; the second one 
(Dynamical Axioms) gives the characterization of the single dynamical 
systems and of their evolution law. For the construction of the mathe- 
matical model we shall assume, as a postulate, the following: 

1 We shall assume here these notions as primary without probing the questions arising 
from the attempt at giving a precise definition of these entities independently from the 
mathematical models used to describe them (cf. [21]). 
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Fundamental Phenomenological Principle 

Every physical system is defined in all its physically observable 
aspects, by the set of all its bounded observables. 

This principle has been formulated by I. E. Segal [27, Chap. I], to 
whom is due the proposal of formulating the axiomatization of Quantum 
Mechanics in the context of abstract C*-algebras rather than in that 
of Hilbert space. 

The “Fundamental Phenomenological Principle” (for a discussion of 
which we refer to the above cited monograph) allows formulating the 
first group of axioms as follows: 

STATIC AXIOMS 

(I.) At each instant of time the bounded observables are in a 
one-to-one correspondence with the hermiteanelementsof aC*-algebra/L 

(II.) The phy sical states are in a one-to-one correspondence with 
a subset S, of the set of all the states of the C*-algebra A. 

(III.) If to the bounded observable 2I corresponds the hermitean 
operator a in A and to the physical state Q> the state y of the C*-algebra A, 
then the mean value (or expectation value) of 2I in the sate @ is y(a). 

The Axioms I, II, III, as formulated above do not determine uniquely 
the model. On the contrary, as follows from the analysis of J. von 
Neumann [32 or 34, p. 2971 and I. E. Segal [23, 241 one can assert that 
they describe the most general mathematical model for a statistical 
theory of physical systems for which the validity of the “Fundamental 
Phenomenological Principle is assumed. The specific character of 
nonrelativistic quantum mechanics is determined by the following 
specifications of the Axioms I and II, respectively: 

(I’.) The algebra A is the algebra d(Z) of all the bounded linear 
operators on a complex separable Hilbert space 2. 

(II’.) The set S,, is the set of all the normal states on B(s). 

The choices I’, II’ for A and S, , respectively, completely specify 
the model in the sense that, as shown by J. von Neumann (cf. [32]) 
Axiom III is the only plausible way, compatible with these choices, to 
define a “mean (or expectation) value” of an observable in a state. 
Axiom III specifies the statistical character of quantum mechanics: 
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the assertions of the theory concern mean (or expectation) values of 
observable quantities. There are, in the literature, many ways of ex- 
pressing the statistical assertions of quantum theory; the formulation 
given by Axiom III is von Neumann’s original one (34). 

In the model specified by I’, II’ Gleason’s theorem and the spectral 
theorem allow establishing the equivalence between von Neumann’s 
formulation and Mackey’s (cf. [16, Chapter 2]), however von Neumann’s 
formulation has the advantage of leaving a complete freedom in the 
choice of the C*-algebra A, and in the following we shall make essential 
use of this. 

The axioms listed above characterize the quantum (static) description 
of an arbitrary system. The fact that dynamical systems in “physical 
space” are considered is expressed by postulating the existence of a 
“group of symmetries” for the system and of a representation of such 
a group into the automorphisms of the C*-algebra A. Being concerned, 
in the present work, only with the analysis of the statistical aspect of 
quantum mechanics, we shall not formulate the corresponding postulate 
and refer, for this, to Mackey’s monograph [16] (cf. also [17]). 

(2.1) As far as the dynamical postulate is concerned, many 
authors (cf. for example [34]) d irectly postulate the Schrodinger equation 
as the (time) evolution law of quantum systems. One of the first, mathe- 
matically rigorous, attempts of giving a theoretical foundation to the 
evolution law of a quantum system is due to G. W. Mackey who, in 
analogy with the classical case (cf. [16, pg. 811) formulates the dynamical 
postulate of Quantum mechanics in the following way: 

Dynamical Postulate (Mackey) 

The temporal evolution of a quantum dynamical system is described 
by a one-parameter group (VJtsB of one to one maps of S, onto itself 
such that for each t E R: 

Using a Theorem due to R. Kadison it is possible to prove (cf. [16, 
pg. 821) that each such group is induced by a one-parameter group U, 
of unitary operators in 8(X). Thus, from the dynamical postulate one 
deduces the existence of a Hamiltonian (the infinitesimal generator of 
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Cud> and, by d ff i erentiation of the function t ++ U,& where 5 E 2 is a 
vector in the domain of the Hamiltonian, the Schrodinger equation. 

At this point, however, there are some remarks to make: first of all 
there is the methodological question, pointed out by Mackey himself 
(cf. [16, page 811) that in a statistical theory, as quantum mechanics 
turns out to be from the Static Axioms, the dynamical postulate is 
introduced as a strictly deterministic statement, namely that the assign- 
ment of a system at a given instant of time determines, through the 
transformation group whose existence is postulated, the state of the 
system at any future instant. Moreover, the analogy with the classical 
situation, although highly desirable, is not a satisfying requirement, from 
the physical point of view, as a theoretical foundation of an Axiom. 

In the formulation of the axiomatic of Quantum Mechanics discussed 
in the present work the system of the static axioms will be kept unaltered, 
while the dynamical postulate will be radically changed and based not 
on an analogy with classical deterministic systems, but on an analogy 
with classical stochastic systems which will be translated into a require- 
ment of purely physical character. 

Now, without any doubt, as already von Neumann repeatedly points 
out, the deterministic character of the evolution of the states is a funda- 
mental feature of quantum systems. However, if the term “state of a 
classical system” is meant in the wide sense of probability measure on 
its phase (or configuration) space, this feature is not peculiar to the 
deterministic systems of classical mechanics. There are classical stochastic 
processes whose state (i.e. probability distribution) at each fixed time 
uniquely determines the state at any future time. These processes are 
the so-called Markof processes. 

Therefore, quantum mechanics being a statistical theory whose states 
at any time evolve deterministically, it is natural to attempt to describe 
its mathematical structure in analogy with Markof processes, rather than 
with classical deterministic processes. Among stochastic processes, 
Markof processes are characterized by the following property of their 
random variables (observables): 

(P.) For any fixed instant of time t, , the observables at any time 
t > t, are statistically correlated with the observables at time t, and are 
not statistically correlated with the observables at any time s < to . 

Property (P.) is a qualitative formulation of the “Markof Property” 
for stochastic processes indexed by the parameter t E R (time). Clearly 
in classical probability theory terms like “observables at time t,” 
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“statistical correlation,” are given a precise, quantitative form. However, 
the above formulation expresses a purely physical requirement which 
makes sense for any mathematical model of statistical theory, as specified 
by the Static Axioms; in particular it makes sense for the model of 
nonrelativistic quantum mechanics. 

In the following we shall refer to property (P.) as to the “Principle 
of local correlation” of nonrelativistic quantum observables at different 
times. The subsequent analysis will show then that there is essentially 
a unique way of formulating in mathematical terms the “Principle of 
local correlation” stated above, namely: 

(IV.) A quantum system is a noncommutative Markof process. 

This assertion, which is the corresponding one, in the mathematical 
model, to property (P.) will be taken as the Dynamical Postulate of 
quantum mechanics. 

Thus, as the Static Axioms define the mathematical entities corre- 
sponding to physical objects which are not defined independently of this 
correspondence, so the Dynamical Axiom is the mathematical formula- 
tion of a physical property which only through this correspondence 
assumes a precise meaning. 

Axiom (IV) defines a class of processes strictly larger than the class 
of usual quantum systems. It will be proven (cf. N. 6) that this enlarge- 
ment essentially amounts to the inclusion, among quantum systems, 
of systems with an irreversible time evolution. 

2. NONCOMMUTATIVE STOCHASTIC PROCESSES 

In classical probability theory a random variable on the probability 
space (Q, -% CL) with values on the measurable space (S, 23) is defined 
as the p-equivalence class of a function x: Sz -+ S measurable for the 
respective structures. 

In the following, the space (Q, 9, p) will always be assumed complete 

( i.e., if B E 9f; p(B) = 0; and B, C B, then B, E L%‘) and the space 
(S, S) a standard Bore1 space in the sense of [17]. 

Each random variable X defines a homomorphism of a-algebras 
X: 8 -+ g/p which preserves the boolean units (if x is a representative 
of X then, VB E b, x-l(B) is a representative of X(B)), where a/p 
denotes the quotient u-algebra of 9? by the o-ideal of the p-null sets. 
Conversely, from a theorem due to J. von Neumann (35) one can deduce 
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that each such homomorphism defines a unique random variable. 
Therefore, according to I. Segal [23], a (generalized) random variable 
can be defined as a homomorphism of a-algebras which preserves the 
boolean units. In the following we shall denote X any random variable 
and X the corresponding homomorphism of u-algebras. 

A stochastic process on (Q, .9, p) with values in (S, b), indexed by 
the set T is determined by the assignment of a family (X,),,, of random 
variables. The finite-dimensional joint-distributions of the process 

(Xt) 1ET are the probability measures defined, for each finite subset 
Fc Tand Bjg!23, tEFby 

Stochastic processes are usually classified according to their finite- 
dimensional joint distributions; i.e., two stochastic processes are called 
equivalent if their finite-dimensional joint-distributions coincide (cf: 
for example [7, pg. 471). I n order to formulate this concept in a more 
precise and slightly more general way, let us introduce the following 
notations: for any subset I C T, 

X,(%3) = v X@3) 
&I 

denotes the sub-o-algebra of W/~-L spanned by the family (X,(S)),,, 
and ,c, the restriction of p on X1(23). 

DEFINITION (2.1.) Two stochastic processes (XfL)lEr indexed by the 
set T, defined on (QL, &YL, pL), with values in (Sb, SL); L = 1,2; respectively 
will be called equivalent if there exists an isomorphism of a-algebras 
+: Xr1(231) ---f Xr2(W) such that: 

and, for every finite subset F C T: 

Definition (2.1) classifies stochastic processes according to their “local 
algebras” and the corresponding classes of measures. A further weakening 
of the equivalence relation above could be obtained by allowing the two 
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stochastic processes to be indexed by different sets TI and Tz such that 
there exists an isomorphism 01: TX -+ T, compatible (in the obvious sense) 
with the isomorphism of definition (2.1). The latter classification is also 
meaningful for “continuous” stochastic processes, i.e., such that the 
set of indices TI , T, are, in their turn, endowed with a structure (e.g., 
topological; linear topological; . ..). the subsets F C T are defined in 
terms of this structure (e.g., open subsets; closed subspaces; . ..). and 
the isomorphism ol: T, --+ T, is compatible with it (i.e., continuous; 
linear continuous; . ..). 

However, in the case of discrete stochastic processes, i.e., processes 
classified according to their finite-dimensional joint distributions, this 
classification is less meaningful. Therefore, in the present work, where 
only discrete stochastic processes will be considered, the index set will 
be given once and for all and the equivalence of stochastic processes will 
be understood in the sense of Definition (2.1). 

LEMMA (2.2). There exists a one-to-one correspondence among random 
variables on (Q, 68, CL) with values in (A’, 9) and homomorphisms of C*- 
algebras 

w: Lys, 8) -+L=(Q, 9l, p) 

such that: 

(9 X(b) = 1~ ls(resp. ISa) is the function (resp. +ass of 
functions) identically equal to 1 on S (resp. Q). 

(ii) If (fJ is a jiltering increasing family in L+“(S, !I+) such that 
f = Sup fw E L”(S, 23) then X( f ) = Sup X(fa). 

Proof. Let x: Sz --+ S, be a function in the class defined by the random 
variable X. Then the mapping 

f EL-y&s, 23) w  X(j) = fo x ELrn(.Q, L3, p) 

does not depend on the choice of x E X, and clearly satisfies (i), (ii). 
Conversely, any homomorphism of C*-algebras W : Lm(S, 5B) --+ 

L”(Q, 39, p) induces by restriction on the characteristic functions a 
homomorphism of boolean algebras X: 23 -+99/p. If(i) holds, X preserves 
the boolean units; if (ii) holds X is a homomorphism of u-algebras and 
therefore a random variable. 

Thus the assignment of a stochastic process indexed by Ton (Q, 3Y, ,u) 
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with values in (S, d) is equivalent to the assignment of a family (X1),,, 
of C*-algebra homomorphisms 

x, : Lqs, 23) -FLyi?, 58, ji) 

each of which satisfies the conditions (i), (ii) of Lemma (2.2). 

LEMMA (2.3). Let (XtL)t.T be stochastic processes (as speciJed above) 
defined on (Q, SYL, pL) and with values in (SC, St), respectiveb (L = 1, 2). 
The two stochastic processes are equivalent ;f and only if there exists a von 
Neumann algebra isomorphism: 

with the following properties: 

(jl) pT2 * 24 = FT1. i&L is the state on L”(Q&, XrL(23J), pTL) 
induced by ,&.” (L = 1, 2). 

(j2) For any Jinite subset F G T, if AL(F) denote the van Neumann 
sub-algebra of L” (QL, XTL(BJ), prL) of the XrL(B6)-measurable classes 
of functions, one has: u(Al(F)) = A2(F). 

Proof. From the above-mentioned von Neumann’s theorem [35, 
pg. 3021 one deduces the existence of a one-to-one correspondence 
between isomorphisms of boolean u-algebras 4 : XT1 (2V) --+ x,2(232) 
such that ,&.a * 4 = ,i+l and isomorphisms of von Neumann algebras 

24: LyP, X#31), f&-l) -+ L=qJ2, XT2(b2), j&-B) 

satisfying (j 1). 
Since the algebras AL(F) are spanned by their projection operators, it is 

clear that isomorphisms of a-algebras such that #(XT1(231)) = XT2(!B2) 
will correspond in a one-to-one way to w*-algebra isomorphisms 
satisfying (j2). 

Let now (X1~)IET (L = I, 2) be two stochastic processes as in Lemma 
(2.3). Assume that 

JQ(!BJL) = L%!“/p” (2.3.1) 

i.e. that the process (Xfb)teT is “determining,” in the sense of Segal [23], 
for (D, a~, ~6). In this case, 
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where A,, denotes the von Neumann algebra obtained by Lm(Q2, gL) 
and pL by means of the Gelfand-Neumark-Segal (GNS) construction. 
In this case the algebras A&(F) defined in (j2) of Lemma (2.3) are naturally 
identified with von Neumann sub-algebras of A,, . 

COROLLARY (2.4). If equality (2.3.1) holds, the conditions (jl), (j2) of 
Lemma (2.3) are equivalent to the following: if {ArL , XU1 , &,,) denotes 
the GNS triple associated to L” (Qk, 9#‘1) and pL, there exists an unitary 
transformation U: &$---f X$ such that: 

U - Al(F) - U* = AZ(F) 

for every finite F Z T. 

Proof. Follows immediately from Lemma (2.3) and equality (2.3.1). 

COROLLARY (2.5). In the notations of Lemma (2.3) property (j2) is 
satisfied if and only if for every t E T: 

4WH) = NO). (2.5.1) 

Proof. Clearly (j2) of Lemma (2.3) implies (2.5.1). Conversely, if 
(2.5.1) holds then, for every finite subset F C T, Vt E F 

4WH) C A2(F); 4-W)) 2 A2W 

and the above inclusions imply u(Al(F)) = AZ(F), since the family 
(A&((t))),,, is generating for AL(F); L = 1, 2. 

Thus to every stochastic process indexed by the set T a triple (A, 
A(F), p) is canonically associated where A is a von Neumann algebra, 
p a faithful normal state on A, (A(F)) a family of von Neumann sub- 
algebras of A indexed by the sub-sets F C T with the following properties: 

(il). If F and G are finite subsets of T then A (F U G) is the von 
Neumann sub-algebra of A spanned by A(F) and A(G). 

(i2). A is the von Neumann algebra spanned by the family (A(F)). 

Two stochastic processes are equivalent if and only if, denoting by 



340 LUIGI ACCARDI 

{AL, (A(F)), 11~) the triples associated to them, there exists a 
von Neumann algebras isomorphism U: A1 -+ A2 such that: 

IL 2 * g = pl (2.5.2) 

u(N(F)) = A2(F) for each finite F C T. (2.5.3) 

DEFINITION (2.6). T wo triples {AL, (AL(F)), pL}, L = 1, 2 with the 
properties (il), (i2) b a ove, are called equivalent if there exists an iso- 
morphism of von Neumann algebras U: A1 -+ A2 satisfying (2.5.1) and 
(2.5.2). 

Corollary (2.5) h s ows that for the equivalence of stochastic processes 
it is sufficient to limit the consideration to the subsets of T containing 
only one element. 

This fact is connected with the limitation to discrete stochastic 
processes. For stochastic processes of more general type the classification 
given by Lemma (2.3) still holds, with the difference that the subsets 
F C T no longer belong to the class of finite subsets, but to more general 
classes. For example the “infinitely decomposable” processes or the 
stochastic processes considered in euclidean field theory are of this kind. 
The relations (il), (i2) among the “local algebras” A(F) are universal 
in the sense that they take place for any stochastic process, independently 
of the eventual specific relations among the random variables of the 
process. In general, relations of this last type will be translated in terms 
of algebraic relations among the “local algebras” A(F). 

In what follows it will be shown that, in the case of discrete stochastic 
processes, it is possible, remaining inside the same equivalence class, 
to deduce some universal relations among the “local algebras” which 
are more precise (and useful) than (il), (i2). 

It is well known (cf. [7, pg. 6211) that every stochastic process indexed 
by the set T with values in the standard Bore1 space (S, 23) is equivalent 
(in the sense of Definition (2.1) to the stochastic process determined, on 
the product space 17,(S, 23) with a given probability measure, by the 
assignment of the family of the canonical projections. 

Every such stochastic process will be called of “product type”; if a 
stochastic process is equivalent to one of product type, the latter will 
be called a “product representation” of the former. Thus any discrete 
stochastic process has a product representation and any two such 
representations are equivalent. By duality the canonical projections 
induce the C*-algebra immersions: 

II,‘: L”(S, 23) -+L”(IT,S, q43). 
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Denote by A, the image of L” (8, B) under the immersion n,’ (t E T), 
by A, the norm closure of the algebra spanned by the family (AJIET, 
and by pO the restriction of p onto A, . Let A, , sU , p be respectively 
the von Neumann algebra, the Hilbert space, the faithful normal state 
on A, obtained from A, and p,, by the GNS construction; and let, for 
each finite subset F L T, A,,(F) be the von Neumann sub-algebra of A, 
spanned by the images of the A, (t EF) by the GNS representation. 

DEFINITION (2.7). Two triples {AoL, (AtL)tET, ,uOL} where AOL is a 
C*-algebra, pot a state on AOL and (AI1)lET any family of C*-sub-algebras 
of A,,l, will be called equivalent if the triples (AU‘, (AU,(F)), pL} obtained 
by them as described above are equivalent in the sense of Definition (2.6). 

LEMMA (2.8). Two stochastic processes of product type are equivalent if 
and only if the triples {A,,l, (AtL)leT, ~~~~ associated to them in the way 
described above are equivalent. 

Proof. There is a natural identification of the image of A,, by the 
GNS representation with a determining sub-algebra of L”(II$, 
17#, p) which sends the images of the A, onto the wtd (%)-measurable 
functions. Hence the assertion follows from Lemma (2.3). 

LEMMA (2.9). Let A,, and (At)tsT be as above. Then A, is naturally 
identified with the injinite tensor product of the family (At)loT . 

Proof. For each t E T, A, = 17,’ (L”(S, d)) is a commutative 
C*-algebra with identity hence on the algebraic tensor product of any 
two of them there is a unique C*-cross-norm (cf. [22, pg. 621). Therefore 
the infinite tensor product of the family (A1)LET is uniquely determined. 
It will be therefore sufficient to prove that, for any finite subset F C T, 
the sub-algebra of A, algebraically spanned by the family (At)lET is 
isomorphic to the algebraic tensor product of the A, (t EF). First let 
F = (s, t]; s f t. A ssume that, for a finite set G, fsL E A, , ftL E A, , 
L E G one has: 

(2.9.1) 

There is always a finite set (gtJ)JEH of linearly independent elements of 
A, and a set of complex numbers (aLJ) (L E G, J E H) such that 

L E G. 
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Consequently 

0 = 1 f,” * ad *g,J=hEA,vAt. 
LEJ 

By our assumptions the elements of A, v A I (= the algebra spanned by 
A, and A,), are identified with functions S x S--f 9. Since h = 0, 
the function zt E 5’ H h(xS , XJ is identically zero for every x, E S, and 
this, because of the linear independence of the g implies 

(2.9.2) 

Thus (2.9.1) takes place if and only if there are complex numbers (atJ) 
satisfying (2.9.2); this is equivalent to the isomorphism of A, v A, 
with the algebraic tensor product of A, and A, . The case of an arbitrary 
finite F G T is reduced to the preceding one by induction, and this ends 
the proof. 

We sum up our analysis in the following: 

THEOREM (2.10). To every stochastic process indexed by the set T a 

triple {A, (AJtcT, 1-4 is naturally associated, where is a C*-algebra, EL. a 
state on A and (AJleT is a family of sub-C*-algebras of A such that: 

(il) A is the C*-algebra spanned by (AJtET 

(i2) For any finite F 2 T, VTtEFAl = BIEF A, 

(i3) The A, (t E T) are mutually isomorphic. 

The C*-algebras A, are commutative, and two stochastic processes are 
equivalent if and only if the triples associated to them are equivalent. 
Conversely, given any triple as above there exists a stochastic process such 
that the triple naturally associated to it, according to the first part of 
the theorem, is equivalent to the initial one. 

Proof. The first two assertions follow from Lemmas (2.8), (2.9). 
Let now {A, (Ah, CL} b e a triple as specified above. Because of (i3) 
the spectrum S of A, can be chosen independent of t E T and, by a 
theorem of Takeda [29], the spectrum of A can be identified with 
17,S. Denote by B the Baire u-algebra on S and by p,, the measure 
induced on II,(S, B) by p. Then, to the stochastic process determined 
on IIT(S, 2J) by pO and the canonical projections (II,), the triple {A, , 
(A,O), po}, is naturally associated, where Alo = IITI’(Lm(S, b)), and A, 
is the norm closure in L”(17,S, 17,b) of the sub-algebra spanned by the 
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W%T - The equivalence of the two triples {A, (A,), CL}, and {A,, , 
(Ato), po) is clear, and therefore the theorem is proved. 

Remark that, interpreting the parameter t E T as “time,” from the 
above discussion it follows that the algebra A, has a natural interpretation 
as the algebra of all the bounded observables of the system described 
by the stochastic process at time t. For example, if S is the space of the 
“positions” of the system, then a point in 17,s is a trajectory; an element 
of A, is a bounded Baire function of the position of the system at time t; 
an element of A is a functional on the path space of the process. 

The passage from the classical to the noncommutative theory of dis- 
crete stochastic processes will be accomplished by postulating that the 
universal relations (il), (i2), (i3), d erived from such processes in the 
commutative case, are preserved; and by allowing that the algebras A, 
(of the “observables” at a fixed time) are arbitrary C*-algebras. More 
precisely: 

DEFINITION (2.11). A discrete symmetric stochastic process indexed 
by a set T is a triple {A, (AJ1,, , c(} where A is a C*-algebra, p a state 

on A, and (A&- a family of sub-algebras of A such that: 

(il) A = YtETA, 

(i2) For each finite F C T; Y,,,A, = BIEF A, 

(i3) The C*- Ig b a e ras A, (t E T) are mutually isomorphic. 

Two discrete symmetric stochastic processes will be called equivalent if 
the triples defining them are equivalent in the sense of Definition (2.7). 

Remark 1. The tensor products appearing in (i2) of the above 
Definition are not uniquely determined in the noncommutative case; 
thus a symmetric stochastic pr.ocess is also defined by the choice of the 
C*-cross-norms. However in the most interesting cases there is a 
“natural” choice for the C*-cross-norms arising, for example, from the 
fact that the algebras A, are realized as algebras of operators on some 
Hilbert space (cf. also the following N. 3). For this reason the dependence 
of the process on the C*-cross-norms has been left implicit in the above 
definition. 

Remark 2. Property (i2) of Definition (2.11) is a kind of “compensa- 
tion” of the noncentrality of the state t.~ which, according to I.E. Segal[23] 
seems to be a serious hindrance to the development of a sufficiently rich 
theory. The fact that, in the commutative case, property (i2) is universal 
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up to equivalence, is typical of the class of discrete stochastic processes. 
For continuous ones, a property like A (F u G) SW A(F) @ A(G) will be 
the expression of specific relations among the random variables and the 
regions where they are localized. 

3. NONCOMMUTATIVE MARKOF PROCESSES 

In the following we shall consider symmetric stochastic processes 
(A, (At)teR+, 91 indexed by R+ and with the following properties: 

(3.1) There is a complex separable Hilbert space L%? such that, 
for each t E T, there is a normal isomorphism Jt ; b(Z) -+ A, . 

(3.2) For any Finite F C Rf the C*-cross-norm on BfEF A, is the 
one induced by the identification of the algebraic tensor product of 
the family (At)lEF with an algebra of operators on OF &“. 

(3.3) For each finite T C R+ the restriction of 9) on the C*-algebra 
spanned by (AthEF has a normal extension on the weak closure of this 
algebra (identified with an algebra of operators on @r 2). 

A state with property (3.3) will be called “locally normal.” The fact that 
the “local algebras” are von Neumann algebras and that the state is 
locally normal corresponds, in a commutative context, to the fact that 
the stochastic processes considered are determined by measures (on the 
path space) locally absolutely continuous with respect to a given 
(privileged) measure. In particular (3.3) implies that the restriction of y 
on A, (t E W+) induces a normal state on 23(Z). Thus a symmetric 
stochastic process satisfying (3.1), (3.2), (3.3) is such that the statistical 
theory arising when restricting the process at any jixed time is compatible 
with the static axioms of quantum mechanics. 

By property (il) of Definition (2.11) the state ,‘p is completely deter- 

mined by the family {~f,,...,1.)~~1,<...<~~ of its restrictions on the local 

algebras 4 to... . ., q ; and, by (12), each of the states vi,, ..,,t, is completely 
determined by its values on the products atO * ... * aln ; al, E A,‘ ; 
L = o,..., n E N. 

Among the symmetric stochastic processes we shall single out those 
which satisfy the “Principle of local correlation” i.e. (cf. N. l), those 
which determine, for each instant t, a “measure of statistical correlation” 
for which the observables a, E A, relative to a (future) time t > t, are 
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statistically correlated with the observables at t, but not with those 
relative to a (past) time s < t. 

In the commutative case it is well known that the stochastic processes 
with this property are the (strictly) Markovian ones (cf. [7, pg. 811); and 
that the appropriate “measure of statistical correlation” is given by the 
conditional expectation on the u-algebra spanned by the random variables 
relative to the past history (s < t) of the process. 

From a probabilistic standpoint, a satisfactory analogue in a non- 
commutative context for the concept of conditional expectation is given 
by the concept of quasi-conditional expectation in terms of which non- 
commutative Markof processes will be now defined (cf. [l, 21 for a 
discussion of the inadequacy, for purely probabilistic purposes, of the 
usual concept of conditional expectation on arbitrary C*-algebras as 
well as for a definition of quasi-conditional expectation more general 
than the one given below, which is limited to the particular type of 
processes discussed in the present paper). 

DEFINITION (3.4). A quasi-conditional expectation with respect to 
the triple of C*-algebras: 

4o.d c &d c 4o.tl ; s<t 

is a linear map Et,, : At,,,1 -+ JI[~,~J such that 

(iI) 4,&d b 0; if a E &A ; U30 

W -f&&, .4 = a, * E,,,(b); r < s < t for any uT E A, ; b E Ato,tl 

(W ‘I E;,,(b)lI d II b II; b E 40,t~ . 

The quasi-conditional expectation E,,, will be called “normalized” if 

64) &,(l) = 1 

Property (il) implies that Et,, commutes with the involution. Thus, 
for any a, E A, ; b E At,.n ; Y < s < t: 

E,,,(b * a,) = Et,&,* * b*)* = (a,* * E,*,(b)*}* = E,,,(b) * a,. 

Consequently, denoting by A;,,,] the relative commutant with respect 
to A of A[,,,[ (i.e. (a E A : ab = ba; Vb E A[,,,[}) one has: 
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But our hypothesis on the local algebras AI,,,1 imply that, for s < t 

Thus a quasi-conditional expectation E,,, with respect to the triple 

enjoys the property: 

~t,&%s*tI) c 4 * (3.4.1) 

In the commutative case the relation (3.4.1) is an equivalent formulation 
of the (strict) Markof property (cf. [7, pg. 811). 

Remark. The use of three C*-algebras in Definition (3.4) is not a 
mathematical device, but a conceptual necessity each time that one 
wants to introduce a property of Markof type (i.e. a condition of locality 
on the statistical dependence). In the case considered above, for example, 
the use of three C*-algebras reflects the necessity of distinguishing 
between observables relative to the past (A[,,,[), the present (A,), and 
the future (A~,,,J). The situation is perfectly analogous to the classical 
case, where three o-algebras are needed for the formulation of the 
Markof property (cf. [15, pg. 562; and 201 for the multidimensional case). 

Definition (3.4) shows that a (normalized) quasi-conditional expecta- 
tion from A[,,,1 to A[,,,] differs from an usual conditional expectation 
on the same algebras, only for its behaviour on the “local algebra” 
corresponding to the boundary point s. However this modification is 
essential in order to guarantee the existence of a class of nontrivial 
noncommutative Markof processes (cf. Lemma (3.6)). 

DEFINITION (3.5.) Let A, (A[,,,]) be as above; a state v on A will 
be called a Markof state with respect to the family of local algebras 
(A[,, tl) if for every 0 < s < t, there exists a quasi-conditional expectation 
E,,, with respect to the triple 

4o.d c 4o.d c 40.t1 

such that 

P’[o,tl = 9)Io,sl * Et,.s ; O<s<t. (3.5.1) 

Remark 1. If the local algebras A,(t E Rf) satisfy (3.1), (3.2), (3.3) 
the Et,, will be required to be “locally normal” in the sense that for 
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each n-tuple 0 < t, < t, < me* < t,-, < t, the restriction of E,,, on 
AtLO-, . ,, ,,-1, 1l has a normal extension in the same sense as specified in (3.3). 

Remark 2. In the commutative case any state y determines a family 
of conditional expectations satisfying (3.5.1). The Markof states are 
those for which (3.4.1) is satisfied. In the noncommutative case, due 
to the lack of a sufficiently general Radon-Nikodyn Theorem on C*- 
algebras, the existence of a family of quasi-conditional expectations 
satisfying (3.5.1) is not guaranteed for general local algebras A[,,,1 and 
states v. Even in case of existence the E,,, will be quasi-conditional 
expectations with respect to triples different from the 

(i.e. they will not enjoy the Markof property). Moreover in the non- 
commutative case the uniqueness of the family (E,,J is assured in the 
following (weak) sense; if (E,,,) and (E;,,) are families of quasi-conditional 
expectations with respect to the triples Ar,,,r C At,,,*1 S At,, rj both 
satisfying (3.5.1) then: 

w,,db . Et,.&>) = ~[o.sWt.s( ’ a )); b f? 4o.d ; a E 40,tl 

In this sense we shall speak, in the following, of “the” family of quasi- 
conditional expectations associated to the Markof state v. 

LEMMA (3.6). Let g, be a Markof state with respect to the family of 
local algebras (AI,,,,) and (IX,,,) the family of q uasi-conditional expectations 
associated to it. Then ;f each E,,, is a conditional expectation, y is a product 
state, i.e.: 

v= @ai 9% = v lAt * (3.6.1) 
k&2+ 

Conversely each product state is a Markof state and the E,,, to it associated 
can always be chosen to be conditional expectations. 

Pyoof* If F = (%,,...J,) is any Markof state, the properties of the 
quasi-conditional expectations imply that for each 0 < t, < t, < *mm < t,, , 
and a,‘ E A,‘ (L = 0 ,..., n), one has: 
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where the right-hand side of the equality does not depend on t. If 
E,,, is a conditional expectation, then for each a, E A, and at E A, : 
a, * Et., (at) = Et,,(% * 4 = Edat - 4 = E&J . a, thus Edat) E 
A,‘. But, because of the Markof property, E&a,) E A, hence E&a,) 
must be a scalar (because A, M g(Z)) and (3.5.1) implies that E,,,(a,) = 
ql(a,) * 1. Thus if for each s < t, E,,, is a conditional expectation, (3.6.1) 
implies that: 

Conversely, let v be a product state; then (3.6.2) holds. Since for 

s -=c t, Aro,tl = A lo,s~ @ AJ~,~I there exists a unique conditional expecta- 

tion%, : 4o,t1 --+ AL,,,J, which extends the map ab tt a - y(b); a E AL,,,~; 
b E Al,,,] . It is clear that E,,, satisfies (3.5.1) and, moreover, if F is 
locally normal each E,,, is such. Therefore the Lemma is proven. 

Since any state v on A is completely determined by the projective 

family (‘PO, f,. . .., t,), in equality (3.6.1) one can always choose to = 0. 
Thus any Markof state is determined, through the equalities 

vo.t,..... n t(ao*at,-*--atn) 

= vo(~tl,o(~o - G2,tl(atl - . . .  * G,t,(atJ-1. (3.6.3) 

by the couple {v. ; (E,,,)} where (E,,,) is the family of quasi-conditional 
expectations associated to ‘p and E,,, denotes the restriction of E,,, on 
the C*-algebra spanned by A, and A, . For any such a state the agreement 
conditions for the family (F~,,...,~,) can be expressed uniquely in terms of 

the couple b. , (=Wl in fact they are quivalent to the validity of the 
equalities: 

(3.6.4) 

for any O<t,~r<s(t<u<...<t,_,(t,<v, and aJeAJ 
(J = 0, t, ,..., v). 

In equalities (3.6.4), (3.6.5) we have used the notation 1, to mean that 
the corresponding expressions are obtained by the right-hand side of 
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(3.6.3) by putting a, = 1. In the following we shall use the shortened 
notations: 

-k(ar . &,(l, - b,)) = &,,(a, * bt); (modb, ; (J%J>) (3.6-6) 

Et,,(l) = 1; (modh ; (-L>>) (3.6.7) 

0 <r <s <t; a,EA,.; ~,EA~; to denote the validity of (3.6.4), 
(3.6.5) respectively, for any choice of n E N, tJE R+, and aLJ E AiJ. 
From the properties of the quasi-conditional expectations and the 
Markof property, it follows that the i?,,, : A, v A, + A,Y are completely 
positive linear maps.2 

PROPOSITION (3.7). In the notations above, let CJJ~ be a state on A,, and, 
for s < t, let E,,, : A, v A, + A, , be a linear map which (i) is completely 
positive; (ii) is “locally normal” (cf. Remark 1. after Definition (3.5)); 
(iii) satisfies (3.6.6), (3.6.7). Then the couple {y,, ; (E,,,)} determines a 
unique state v 3 (q~~,~~,...,~,) on A by means of the equalities: 

If ~JI,, is normal (cf. (3.1)) then p) is ZocaZZy normal (cf. (3.3)). 

Proof. From (3.6.6) and (3.6.7) it follows 

J%&tn> = %&fn * %t(l)> = -%t,(at,); (modh ; (~%d) 

thus the right-hand side of (3.7.1) is independent on t > t, . 
From (i) and (ii) it follows that each T,,~,, ,,.,[, is positive; therefore 

(iii) implies that bo, t,, . . . , t,> is an agreeing family of states, hence it 
defines a unique state p) on A. Finally if vO is normal, then F~,~,, ...,t, is 
obtained by composition of (n + 2) normal maps, hence is normal; 
and this concludes the proof. 

Let b. T (&,,)I b e as in Proposition (3.7). 
The complete positivity of E,,, implies that it can be extended to a 

2 For a C*-algebra A, denote M,(A) the C*-algebra of (n x n)-matrices (a,~) with 
coefficients in A and the natural operations. A linear map oi: A -+ B, (A, B - C*-algebras) 
is called completely positive if, for each 7t E N, the map OL,: M,(A) + M,(B), defined 
by: a,(ad) = (a(a,J)), is positive (cf. [28]). 

6Q7/20/3-5 
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positive linear map Ac~,J v A, -+ A[,-,,] (still denoted E,,,) by means of 
the equality: 

E&b * a) = b - &(a); b E 4o.d ; aEA,v A,. 

If E,,, (1) = 1 (without the restriction mod. (v,, ; (E,,,)}), Kadison’s 
inequality for completely positive linear maps implies that E,,, is a 
quasi-conditional expectation with respect to the triple 

In these notations the state p, defined by Proposition (3.7), can be 
expressed by the formula, particularly useful in explicit computations: 

‘p= O<t,<...<f, vo - -Q.o * %h * ... - Gt,.t,4 lim (3.7.2) 
M&xl fJ+l-fJI+O 

t,+cc 

The E,,, defined above enjoy the Markof property (E,,,(A, v A,) C A), 
however the state v defined by (3.7.2) will not be, in general, a Markof 
state in the sense of Definition (3.5). One can prove that it will be such 
if and only if: 

Ida,) = a, ; (mod{v, ; (-%J>; s -=c t, a E A, . (3.7.3) 

DEFINITION (3.8). A “Markof chain” is a state determined by a 

couple ho 9 QL)l as described in Proposition (3.7). 
The distinction between Markof states and Markof chains is typical 

of the noncommutative context. These two classes of states have an 
extremely similar structure and most of their main properties in common. 
It is relatively easy (cf. (6.5)) t 0 g ive explicit examples of families (E,,,) 
which satisfy (3.6.6), (3.6.7) without the restriction (mod. {v. ; (EL,)}). 
In such cases from Proposition (3.7) follows that the couple {y. ; (E, J} 
defines a state on A for any state v0 on A,, . This fact allows to give 
simple non-trivial examples of Markof chains. 

DEFINITION (3.9). A “noncommutative Markof process” is a 
symmetric stochastic process (A, (AJfeT, y) such that the state y is a 
Markof chain. 

Summing up: the analysis of a classical discrete stochastic process in 
canonical (i.e. product) form naturally leads to the definition of sym- 
metric stochastic processes; the class of non-commutative Markof 
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processes is the most general class of symmetric stochastic processes to 
which is naturally associated, for each choice of the “present instant,” 
a “measure of statistical correlation” (i.e. a quasi-conditional expectation) 
enjoying the Markof property which is the quantitative formulation of 
what we have called the “Principle of local correlation.” 

It is in this sense that we assert that Axiom (IV) is the mathematical 
formulation of the above mentioned principle. 

4. STATIONARY MARKOF PROCESSES 

In the notations of the preceding number, let Jt : B(Z) -+ A, be the 
(normal) isomorphism defined in (3.1). Denote s E Rf w T, E End(A) 
the action of R+ on A uniquely determined by: 

Ts * It = It+, ; s, t E Rf. 

DEFINITION (4.1). A state 93 on A is stationary if it is T-invariant: 
i.e.:g,.T,=F;VsER+. 

Correspondingly, a symmetric stochastic process {A, (AJIGR+ , y} 
will be called stationary if the state y is stationary. Let now y be a 
Markof state on A; (E,,,) the family of quasi-conditional expectations 
associated to it; E,,, the restriction of E,,, on A, v Aj (s, t E Rf; s < t). 
Each E,,, induces a completely positive linear map @.[,S : B(X) @ 
b(Z) + 8(Z) defined by the relation: 

J%, . (1s 0 It) = I, . ‘h, . (4.1.1) 

One easily sees that the Markof state q~ is stationary if and only if for 
every r, S, t E R+; a E AL,,~I ; b E A[,,s+rl ; one has: 

m-,s+rl(b * T, - L(a)) = v[r.s+r~(b . Et+,>,+,(Tva)). (4.1.2) 

In the following, in agreement with the notations employed up to now, 
we shall write simply: 

Tr * J%, = Et+,,s+r * T, ; (mod v) (4.1.3) 

to denote the (weak) covariance property expressed by the stationarity 
condition (4.1.2). 

The following lemma proves that the stationarity of a Markof state 
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is a purely local property, i.e. expressible only in terms of q,, and of the 
(5 6,s * 

LEMMA (4.2). In the notations above, the Markof state v = (y,, , (C&J} 
is stationary z.. and only if Vs, t E R+, s < t, one has: 

qs =qo; SER+; qt = vt * It 

KS = %+r.s+s ; (mod v) 

where (4.2.2) means: 

(4.2.1) 

(4.2.2) 

~~o.db - 1s . %+9) = ~[o,db . Is . @t+r.s+rW) (4.2.3) 

for every b E A[,,,[ ; x E B(X) @ b(8). 

Proof. If p is stationary, then, for every b E A[,,,[ and x E %5(P) @ 
?qq: 

#J * (1s 0 Jt)W = ~~[o.s~(b - &dJs 0 Jt>W = v[o.db - Is . @t.&)) 

and for each r E R+: 

PVJ * (1s 0 I&)> = 4 T,(b) . (Js+r 0 Jt+rW) 
= v,ro,s+r~(~r(b) - G+r,s+r((Js+T 0 Jt+X4) 
= ~)[o.s+dT#) * Js+r . @t+r.s+rW 
- c~[o.db * 1.s . @t+,,s+&)) - 

and this proves (4.2.2); (4.2.1) is obvious. Conversely, assume that 
(4.2. l), (4.2.2) hold. Then, for each 0 < t, < +-* < t, < t, and a,, E 
23(X) (J = O,..., n), one has: 

dJt,(Q . ..* . J&t,)) 

= m,t,l(J&to) . ... * It,&,-,) * %,(J&tn)N 

= vm,l(J&t,,> * ... - It,&,-,) * It, * Q&&t, 0 1)) 
= m,l(Jt,h,) . ... * Jt,_@tr,-l) . It, . %+r.t,+&t, 0 1)). 

Thus, iterating the procedure and applying (4.2.1) one finds: 

dJ&t,> . ..* . Jt&t,N 
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and the right-hand side of this equality is nothing but: 

from the arbitrarity of the tJ and of the afJ, it follows 

v = v - T, ; Qr E Rf, 

i.e. is stationary, and therefore the lemma is proven. 
From the proof of Lemma (4.2) it follows that conditions (4.2.1), 

(4.2.2) are sufficient conditions for stationarity also for a Markof chain. 
In the following we shall use the notations CZ-, for the operators CZt,s 
associated, by (4.1.1) to a stationary Markof chain. 

Remark. The restriction of the maps @,,, on sub-algebras of the type 
2&, @ d(X) where b, is an abelian von Neumann sub-algebra of d(P) 
enjoy, in particular, all the properties which define an “expectation” 
in the sense of E. B. Davies [3]. 

5. EVOLUTION EQUATIONS 

In the present No. it is shown that, like the commutative case, to the 
non-commutative Markof processes, some evolution equations are 
naturally associated. 

Let (4 (At)t,~+ , @I b e a non-commutative Markof process and 
let the Markof chain 9 be determined by the couple {qO , (E,,,)}. Denote 
Z(t, s) the restriction of E,,, on A 1 ; then the properties of the E,,, 
imply that Z(t, s): A, -+ A, is a completely positive linear map satisfying: 

qt, s)[l] = 1 (50.1) 

Z(s, r) * Z(t, s) = Z(t, r); r < s < t. (50.2) 

In the above equalities, as well as in the following, the restriction 
(modbo > (%JH is understood. In all the processes considered in the 
present paper, the equalities (3.6.6), (3.6.7) thus, in particular (5.0.1), 
(5.0.2) will be satisfied without any restriction and, therefore the couple 
{vO , (E,,,)} defines a Markof chain for any choice of the “initial state” 
y0 . Moreover, denoting q’l (t > 0), the restriction of v on A,, one has: 

pt = p,Z(t, s): 0 < s < t (50.3) 
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where we have used the notation yS ct y8 * Z(t, s) to denote the adjoint 
of qt, s). 

In the classical case (i.e. all the algebras A, are commutative), y1 is 
the distribution of the process at time t; (5.0.3) is the evolution equation 
of vt ; (5.0.1) is the Chapman-Kolmogorof equation Z(t, s) is the 
transition operator, from time s to time t, associated to the Markof 
process, and any (completely) positive linear operator A, --f A,, which 
preserves the identity is called a transition operator. 

Equations (5.0.2), (5.0.3) can be considered as evolution equations 
in “integral form”; in order to write them in the more convenient 
differential form let us introduce some regularity conditions. First of all 
remark that from the local normality of the E,,, it follows that the operator 
induced by Z(t, s) on B(S) is normal. In the following, unless explicitly 
stated the contrary, we shall still denote Z(t, s) this operator, and we shall 
identify states on (resp. operators in) A, with states on (resp. operators 
in) 8(Z). 

LEMMA (5.1). Assume that the transition operators satisfy the following 
conditions: 

(il) For every t E IL!+ and every a E b(S), the map s E [0, t[ I+ 
Z(t, s)[a] extends to a weakly continuous map of [0, t] in b(S). 

(i2) lim,,, Z(t - l , s) = .Z(t, s); (pointwise weakly). 

(In the following the term “weakly continuous” will be meant in the sense 
of the duality (b(S), , B(S)).) Then the (pointwise weak) limit: 

hIi- qt, s) = P(t) 

exists and is a projector satisfying the relations: 

qt, s) * P(t) = qt, s); 93 = 9% * P(t); O<s<t. 

Proof. For every s < t; 0 < E < t - s; a E d(S); #E d(X), ; denote 
P(t)[a] the weak limit, for s---t t- of Z(t, s)[a], existing by (il). Then, 

I G% s> - Wl4) - WT4 Wal)l 

< I WV, 4 * [W - w, t - ~)1(4l 
+ I $w[-qt, s) - -qt - f, 41 * -qt, t - ~)bl)l, (5.1.1) 

From (il) it follows that the set {Z(t, t - c)[a] : E E [0, 61) is weakly 
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compact, hence totally bounded. Because of (i2) and the Banach- 
Steinhaus theorem the set {[Z(t, s)* - Z(t - E, s)*]$ : E E [0,6]} is 
equicontinuous, hence on it the topology of pointwise convergence 
coincides with that of uniform convergence on totally bounded sets. 
This implies that the right hand side of (5.1.1) is of order E. The arbi- 
trariety of c, $, a, imply Z(t, S) * P(t) = .Z(t, s); hence, by (il), P(t) is a 
projector. The second equality of the Lemma follows from the first 
and (5.0.3). And this ends the proof. 

In a similar way one proves: 

LEMMA (5.2). If the transition operators (.Z(t, s)) satisfy: 

(jl) For any s < t, and a E 23(Z) the map u E Is, t] H Z(U, s)[u] 
extends to a weakly continuous map of [s, t] on b(X). 

($2) lim,,, qt, s + c) = qt, 4 (p oin wise weakly) then the (point- t 
wise weak) limit 

$Z(t, 4 = Q(s) 

exists and sutisjies the relation 

Q(s) - qt, s) = qt, s). 

If, in the hypothesis of Lemma (5.1), for each t E IF!+ there are dense 
sets 9(t) C 23(%), 9*(t) C B(Z), such that for every $ E B.+.(t) and 
a E 9(t) the limit 

lji tj ([‘(’ + ‘j - ‘(‘)](cz)) = $(S(t)[a]) 

exists, then the evolution equation (5.0.3) can be written in differential 
form: 

$Pt = vt - w; % E D*(t); tell%+ 

where the (right) derivative is meant in the weak sense for the duality 

<~*(t>, 9(t)>. 
Analogously, in the hypothesis of Lemma (5.2) and under the same 

conditions as above, the limit 

lii I/( [‘(” - “,‘“’ ’ - “](a)) = #(R(t)[a]) 
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exists, then for fixed a,, the function s E [0, t[ t-+ a, = Z(t, s)[aJ is 
derivable in 10, t[, in the topology specified above, and d/ds a, = R(s)[a,]. 
If, moreover P(t) = Q(t), i.e. if for each t: 

hJ qt + E, t) = hi qt, t - c). 

The above equations take the form: 

(5.2.1) 

1% = vt * s(t) (5.2.2) 

$ a, = -S(s)[a,]. [5.2.3] 

These are the noncommutative analogue of the well known Kolmogorof 
equations of probability theory; consequently (5.2.2) (resp. (5.2.3)) will 
be called the noncommutative forward (resp. backward) Kolmogorof 
equation associated to the Markof process {A, (A,), ~1. 

Remark (1). Both equations (5.2.2) and (5.2.3) follow respectively 
from: 

f qt, s) = qt, s) * S(t) (5.2.4) 

; qt, s) = --s(s) * qt, s) (5.2.5) 

and it is in this form, i.e. as equations on the transition operators, that 
they are often introduced in the probabilistic literature (cf. for example, 
[7, pg. 2541). 

Remark (2). The regularity conditions for the validity of the non- 
commutative Kolmogorof equations have not been completely specified. 
Also in the commutative case, for nonstationary processes, there is no 
set of regularity conditions which is both natural and general enough. 

In the stationary case however, the situation is simpler since, in this 
case, Z(t, s) = Z(t - s); and, by the Chapman Kolmogorof equation 
(Z(t)) is a semi-group. In this case the appropriate regularity conditions 
come from semi-group theory, and the operators S(t) in the Kolmogorof 
equations do not depend on t. 

Thus the family of transition operators of a non-commutative Markof 
process is, under regularity conditions, the Green function of equation 
(5.2.2) or (5.2.3). 
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DEFINITION (5.3). A family of densely defined linear operators 
(S(t)) of B(S) into itself, will be called a family of (noncommutative) 
Kolmogorof operators if the Green function of equation (5.2.2) or 
(5.2.3) is univoquely determined and is a family of transition operators 
(i.e. completely positive and preserving the identity). 

A characterization of non-commutative Kolmogorof operators in the 
case when 8 is finite-dimensional has been given in [lo]. 

One can prove that if (s(t)) is a family of Kolmogorof operators then 
there is a Markof process such that (5.2.2) (or (5.2.3)) is the non- 
commutative forward (backward) Kolmogorof equation of the process. 

However the process above will not be, in general, unique, indepen- 
dently on the regularity conditions on the S(t). More specifically: 
in general the family of the transition operators of a noncommutative 
Markof process does not determine univoquely the process. 

This is a nontrivial difference between non-commutative and classical 
Markof processes which stems from the circumstance that, in the first 
case the quasiconditional expectations E,,, in general are not projection 
operators and therefore ,!?,,, is not determined by its restrictions on A, , 
i.e. Z(t, s) (cf. (6.5) for an example). 

However the following assertion holds: 

PROPOSITION (5.4). Let 9 be a non-commutative Markof chain and 
Z(t, s) the family of its transition operators. If for each s < t, Z(t, s) is 
invertible, one has: 

Proof. Let (qO ; (I?,,,)} be the couple determining the Markof chain 
(cf. Proposition (3.7)); and &!.l,S : d(S) @ B(Z) -+ B(Z) the map 
induced by E,,, (cf. No. 4). Define: 

%.A4 = 1 0 %.sW; x E 23(3P) @ %(sq 

Z(t, s)[l @ b] = E&l @ b) = 1 @ Z(t, s)[b]; b E 23(X). 

By hypothesis Z(t, s) is invertible, hence 

Ft,, = qt, s)-1 - ci& : ‘B(2q @ 23(.x?) -+ 10 b(X) 

is a conditional expectation. Therefore F,,,(b(Z’) @ 1) = C * (1 @ 1). 
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Hence there is a state xt,s on 8(Z) such that 

Ft,s(a 0 b) = xt*&> - 1 0 6 

and this is equivalent to: 

wir, - 4) = x&J * -w spt1; St = h(G)* 

By definition of Markof chain one has: 

%.t,,....t,(% * at, * *.. * atn) = %(~tgkl * Gz,tl(ut, * -*. * G.t&tn)...) 

for 0 < t, < a** < t, < t; atJ E At . Taking t, = s; a, = 1, for 
tJ = 0, t, ,..., t,-, , one finds, for an; s < t: 

I 

%(J&s>> = Xt.sGd - %(Gt,.oU - *.* - &,U) *-) 

= xt.&d. 

Thus one concludes: 

%.t,,....t,(% * at1 * -*. * a&) = %(4 * v&J * -*- - v&t,) 

for any choice of n, tJ , u,J ; and this establishes the first assertion. 
The second one is true for every Markof chain; therefore the proposition 
is proved. 

6. QUANTUM SYSTEMS 

Identifying the predual of S(X) with the space of trace-class operators 
T(S); denoting V E T(Z) w  V. Z(t, s), the action induced on 7’(S) 
by the adjoint of .Z(t, s); and using the same notations for the action 
induced by the adjoint of the Kolmogorof operator S(t), one can write 
the noncommutative forward Kolmogorof equation (5.2.2) in terms of 
the density matrix of the state qr : 

1 w, = w, * S(t). (6.0.1) 

The simplest example of a noncommutative Kolmogorof operator is 
obtained by taking S(t) = S (independent of t) and 

W * S = i[W, H] = i(WH - HW), 
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where H is a self-adjoint operator. In fact, for this choice of S equation 
(6.0.1) becomes 

-g w, = i[W, , H] 

and the Green function of Eq. (6.0.2) is a (uniquely determined) one- 
parameter group of inner automorphisms of b(Z) which, clearly is 
completely positive and preserves the identity; i.e. the Schrcidinger 
equation (6.0.2) can be considered as the forward Kolmogorof equation of 
a noncommutative Markof process. More precisely one has the following: 

THEOREM (6.1). Given an arbitrary quantum system (as univoquely 
specified by a (time-dependent) Hamiltonian H(t) and an arbitrary initial 
state W,,) there exists exactly one noncommutative Markof process 

VP wt4+ 9 9J } with the property that the forward Kolmogorof equation 
associated to it coincides with the Schriidinger equation (in Heisenberg’s 
form) of the quantum system. 

Proof. Consider the Schrbdinger equation in Heisenberg’s form: 

f W, = i[W, , H(t)]. 

The hypothesis that the family (H(t)) univoquely determines the quantum 
process means that the Green function (G(t, s)) of Eq. (6.1.1) is univoquely 
determined (this always happens, for example, if the family (H(t)) 
satisfied the conditions: Domain (H(t)) = B (independent of t); 

II(i - H(t)) * (i - H(s))-1 - 1 Ij < K . 1 t - s I; K > 0) 

and, for each s < t, G(t, s) in an inner automorphism of 23(~@).~ There- 
fore the operators V E T(Z) b i[V, H(t)] constitute a family of 
Kolmogorof operators and the (G(t, s)) are the transition operators of a 
noncommutative Markof process. Since each G(t, s) is invertible, the 
result of Proposition (5.4) is applicable, and implies that the Markof 
state y whose transition operators are the G(t, s) and whose initial 
(i.e. at time t = 0) state y0 has density matrix W, is univoquely deter- 
mined by: 

v= @Pt; qh = v’s * -qt, s). (6.1.2) 
tER+ 

3 The author is grateful to Giuseppe Da Prato for having shown him a proof of this 
assertion. 
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By construction Eq. (6.1.1) is the non-commutative forward Kolmogorof 
equation associated to this state. And this ends the proof. 

COROLLARY (6.2). If a noncommutative Markof process is such that 
each transition operator of it maps in a one-to-one way pure states, in 
B(X) .+ into pure states, then the family of the transition operators univoquely 
determines the process through (6.1.2). 

Proof. A theorem of R. Kadison [14] implies that each such transition 
operator is induced by an inner automorphism of 23(&). Hence the 
assertion follows from Proposition (5.4). 

Thus if, under the hypothesis of Corollary (6.2), the transition 
operators (Z(t, s)) satisfy differentiability conditions (in t and s), the 
process is the non-commutative Markof process associated to a quantum 
system. 

COROLLARY (6.3). A non-commutative Markof process with stationary 
transition operators is the process associated (as described in Theorem (6.1)) 
to a Quantum system if and only if each transition operator of the process 
maps in a one-to-one way pure states into pure states. In such a case the 
corresponding Quantum System is conservative. 

Proof. The stationarity of the transition operators and Corollary (6.2) 
imply that the family of transition operators of such a process is a 
pointwise weakly continuous one-parameter group of inner auto- 
morphisms of !B(Z). Th us Mackey’s analysis (cf. [16, pg. 821) is 
applicable and yields that to such a process it is associated the Kolmogorof 
operator V t-+ i[ v, H], where H is a self-adjoint operator on X. Thus 
the initial process is associated to a conservative quantum system. 
Conversely, if H is the Hamiltonian of a conservative quantum system 
the transition operators associated to it, according to theorem (6.1) are 

Z(t, s)[a] = exp(-i(t - s)H) * a * exp(i(t - s)H) 

hence they are stationary. 
Remark that, as in the commutative case, the stationarity of the 

transition operators does not imply the stationarity or the process. For 
this the further condition: v0 . Z(t) = v0 ; Vt E [w+ is needed. 

(6.4) A theorem of J. von Neumann, generalized by V. S. 
Varadarajan [30, Vol. 1, pg. 1631 asserts that a set of quantum observables 
admits a family of joint distributions if and only if the observables 
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commute. Theorem (6.1) shows that, even if one limits oneself to the 
consideration of joint distributions of observables at different times and 
allows the commutativity of these ones (inside the larger algebra cor- 
responding, in the classical case, to the algebra of the continuous 
functionals on the paths of the process) then, under the requirement 
that the statistical correlation among these observables be of markovian 
type, the only joint expectations compatible with the quantum mecha- 
nical evolutions and the choice of 8(Z) as algebra of the quantum 
observables at a given time, are the trivial ones: i.e. the joint expectations 
at different times are given by the product of the expectations at the 
single instants of time. 

But for noncommutative, as well as for classical stochastic processes, 
a property of Markovian type, expressing the local character of the 
statistical correlation among observables at different times, is necessary 
in order to guarantee the determinism of the time-evolution of the 
states which, as already remarked (cf. no. 1) is a fundamental charac- 
teristic of quantum systems. Therefore one can conclude that the only 
joint expectations, for observables at different times, compatible with 
the following four assumptions: 

determinism of the (time) evolution. 

reversibility of the time-evolution 

B(X) as algebra of the observables at any time 

commutativity of observables at different times (in A m OR+ 
S(Z)) are the trivial ones. The first three assumptions are well establish- 
ed in quantum mechanics. The fourth one arises from the consideration 
of a quantum process as a particular discrete stochastic process. Usually 
one considers observables at different times (i.e. in different A,) mapped, 
through implicit use of isomorphisms, into the same 8(P) where of 
course in general they do not commute. 

(6.5) Quantum systems have been characterized as those non- 
commutative Markof processes whose quasi-conditional expectations 
have the form: 

~t,&s - 4 = %(%) * 44 +,I, (6.5.1) 

where ~~ is a state on A, and z(t, s): A, ---t A,, is a C*-algebra iso- 
morphism. A simple way for building noncommutative Markof processes 
which are not of quantum type, is the following: let, for every s E [w+ 

(cps”) ‘SF a family of states on A, ; (Z,(t, s))&~~ a family of automorphism 
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groupoids of b(X) and (ZJLEF a family of projections in %3(X) such that 

I, * lJ = 6,,1, ; p=1 

w, WI = 1‘ ; c EF. 

Denote as in no. (4), Jt : b(Z) --+ A, the tth immersion; Jt* the left- 
inverse of J1 ; and 

Define, for every s < t, a, E A,, a, E A, : 

where 

p:,(4 = J&J * at * JtVJ; u,eA,. 

From our assumptions it follows that Z,(t, S) * Pf, = Pf. - Z,(t, s), L E F. 
Each E,,, is a completely positive linear map because it is a sum of such 
ones. Moreover: 

and,ifr<s<t,‘da,EA,,Va,EAl. 

L@r * -ml s - 4) 

= E&, - at). 

Therefore the conditions of Proposition (3.7) are satisfied without any 
restriction; hence for any state yO on A,, , the couple &II,, , (E,,,)) defines 
a unique noncommutative Markof chain on A. The transition operators 
of this chain are given by: 

-qt, w = c -at, m41; a E B(iw) 
LEF 
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and, denoting V E T(s) w V * Z(t, s), th e action induced by the adjoint 
of Z(t, s) on the trace-class operators on 3, one has: 

w - qt, s) = 1 1, - (W - Z,(t, s)) * 1‘ . 
SF 

Therefore, in general Z(t, s) will map pure states into mixtures; 
consequently the non-commutative Markof process determined by 
(q,, , (E,,,)} does not correspond to a quantum process. 

The passage from quantum Markof processes (characterized by (6.5.1)) 
to processes characterized by (6.5.2) is the analogue, for the dynamics, of 
the passage from a pure state to a mixture of states and corresponds to the 
passage from a “pure dynamic” to a “mixture of dynamics.” 

(6.6) The fact that quantum Markof processes are characterized 
as those whose Kolmogorof operator is determined by the commutator 
with an “Hamiltonian function H(t)” lies at the root of the possibility 
of defining a “Schrijdinger representation” for such processes and of 
establishing the equivalence with the original (Heisenberg) representa- 
tion. From it, in fact, it follows that the transition operators of the 
process are of the form: .Z(t, ~)[a] = U(t, s)* * a * U(t, s) where the 
U(t, s) are unitaries in 23(X) satisfying U(s, r) . U(t, s) = U(t, r). 
Hence the well known formulas: 

define observables and states u,~ E+ <c,(t), a&.(t)) of a new realization 
of the process unitarily isomorphic to the initial one. 

For noncommutative Markof processes of more general type the 
transition operators determine an irreversible evolution, i.e. they do not 
map pure states into pure states, hence, for such processes a “Schriidinger 
representation” cannot be even defined, while, as the preceding discus- 
sion shows, the Heisenberg representation still makes sense for them, 
the Schradinger equation in Heisenberg’s form, generalizes into the 
non-commutative forward Kolmogorof equation. 

For this reason such noncommutative Markof processes (which may 
be thought to correspond to “non-Hamiltonian” quantum systems) 
provide a mathematical model in support of Dirac’s assertion on the 
inequivalence, in the context of a general quantum theory, between the 
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Schrbdinger and the Heisenberg picture. More precisely Dirac asserts 
[5, pg. 61) that: “... the situation that we have at one particular time is 
essentially the same whether we are thinking in terms of the Heisenberg 
picture or the Schrodinger picture. The difference between the Heisen- 
berg picture and the Schrodinger picture comes into effect only when 
we vary t, .” 

8. CONCLUSIONS 

In the present work the following inclusions have been discussed: 
Quantum systems C Markof Processes C Symmetric stochastic processes. 

Our restriction to discrete stochastic processes means that one can 
consider the algebra of the observables at each fixed time t E Rf. Clearly 
it is physically more meaningful to consider observables localized in 
intervals of time. With natural assumptions on the algebras of local 
observables, the theory carries out also to this case without difficulties. 
Yet, even with the above modification the theory is essentially non- 
relativistic, since time is considered as an exterior parameter. To make it 
such it is necessary to localize the observables not only in time, but also 
in space; i.e. one has to consider local algebras A(B) where B is a region 
in Minkowski space, and the relations among them (which correspond 
to the relations among the random variables of a stochastic process) 
expressed by the Haag-Kastler axioms [12]. 

In the terminology of algebraic quantum field theory the results of the 
present paper might be synthetized in the assertion that a noncommuta- 
tive Markof state on the algebra of “non-relativistic quasi-local 
observables” (i.e. the noncommutative analogue of the algebra of 
continuous functionals on the paths of stochastic process) of a quantum 
system contains all the information on the dynamic of such a system; 
that the Markof property expresses the locality (in time) of the interaction; 
and that, in its turn, the state is completely recovered (up to the initial 
state) by its local characteristic (i.e. the quasi-conditional expectations). 
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