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ABSTRACT

After having recalled some definitions concerning quantum stochastic pro-
cesses and in particular quantum Brownian motions, a general scheme is
introduced which allows a unified approach to the weak coupling and the
singular coupling limits. The analogies and differences between the two
are discussed. The main difference consists in the fact that, in the singu-
lar coupling limit, the use of a Hamiltonian unbounded below seems to be
unavoidable, while this is not the case for the weak coupling limit.

1 1. Introduction

In this section we introduce a general abstract scheme which allows a uni-
fied treatment of the singular and the weak coupling limit, in any gaussian
reference state of the reservoir (Fock, finite temperature, squeezing, ...).

The singular coupling limit for open quantum systems has been widely
studied in the physical literature. A first attempt towards a rigorous treat-
ment is due to Hepp and Lieb ([1]) and was pushed further by Gorini and
Kossakowski ([2]), Frigerio and Gorini ([3]). Its connection with the weak
coupling limit has been explained by Palmer ([4]) and studied also by Spohn
in his review paper [5]. The convergence of multi-time correlation functions
has been studied by Dümcke ([6]) and by Frigerio and Gorini ([7]).
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The basic idea of the singular coupling limit is as follows. Consider a
quantum system S coupled to a quasi-free boson or fermion reservoir R,
with total Hamiltonian

Hλ = HS ⊗ 1R + 1S ⊗HR + Vλ

This means that two Hilbert spacesHS, HR are given, interpreted respective-
ly as the Hilbert space of the sytem S and of the reservoir R. It is moreover
assumed that HR is obtained by quasi-free (gaussian) second quantization
from a 1–particle Hilbert space H1, with creation and annihilation operators
denoted a+(f), a(g) (f, g ∈ H1) and that the reservoir Hamiltonian HR is
quasi-free, i.e.

eiHRta(f)e−iHRt = a(Stf)

St = exp(iH1t) being a strongly continuous one-parameter group on the
Hilbert space H1 of test functions. We assume that the interaction has the
form

Vλ =
1

i
[D ⊗ a+(gλ)−D+ ⊗ a(gλ)]

or, more generally, is a sum of terms of this kind,

Vλ =
1

i
umj[D ⊗ a+(gλj )−D+ ⊗ a(gλj )]

with 〈gλj , Stgλk 〉 = 0 for j 6= k and for all t.
Let Q ≥ 1 be an operator on H1 with domain D(Q); I be a family of

bounded closed intervals in R; K be a set and let, for each λ > 0, [S, T ] ∈ I
and f ∈ K, be given a vector fλt ∈ D(Q) ⊆ H1 so that, for ε = 0, 1 (Q0 = 1;
Q1 = Q), there exist the limits

lim
λ→0
〈
∫ T

S

dsfλs , Q
ε

∫ T ′

S′
gλudu〉 = 〈χ[S,T ], χ[S′,T ′]〉L2(R) · (f |g)Qε (1)

where (·|·)Qε is a positive kernel on K (not necessarily positive definite).
For each λ > 0 we shall denote by Fλ the family of vectors fλt , for t ∈ R

and f ∈ K. The positivity of the kernel (·|·) follows from (1.1); it can happen
that the kernel is degenerate.

In the following the notation K will be also used to denote the pre-Hilbert
space (K/Ker((·|·)), (·|·)).

In order to state our basic result we shall introduce some definitions and
notations:
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DEFINITION Let K be a Hilbert space, T an inteval in R. Let Q ≥ 1
be a self-adjoint operator on K with domain D(Q) and let

{HQ, πQ,ΨQ}

denote the GNS representation of the CCR over L2(T, dt;K) with respect to
the quasi-free state ϕQ on W (L2(T, dt;K)) characterized by

ϕQ(W (ξ)) = e−
1
2
<ξ,1⊗Qξ> ; ξ ∈ D(Q) ⊂ L2(T, dt;K)

The stochastic process, in the sense of [10]{
HQ , A(χ(s,t] ⊗ f) , A+(χ(s,t] ⊗ f) ; (s, t] ⊆ T , f ∈ K

}
on the domain of coherent vectors, where A(·) , A+(·) denote respectively the
annihilation and creation fields, is called the Boson Q-Quantum Brow-
nian Motion on L2(T, dt;K). The 1-Quantum Brownian Motion will
be called the Fock Brownian Motion . In this case the space HQ = H1 is
isomorphic to the Fock space over L2(T, dt; K) and denoted Γ(L2(T, dt; K)).

THEOREM (1.1) l For any n ∈ N, f1, · · · , fn ∈ K, as λ → 0 the
quantity

〈ΦQ,WQ(x1

∫ T1

S1

fλ1,t1dt1) · · · ·WQ(xn

∫ Tn

Sn

fλn tndtn)ΦQ〉

converges, uniformly for x1, · · · , xnin a bounded set of R, to

〈Ψ,W (χ[S1,T1] ⊗ f1) · · ·W (χ[Sn,Tn] ⊗ fn)Ψ〉

where Ψ is the cyclic vector of the QBM on L2(R;KQ) with variance (f |g)Q.

EXAMPLE 1 (the weak coupling limit (WCL) with linear inte-
raction) We take S ⊆ H1 such that∫

|〈f, Stg〉|dt < +∞ , ∀f, g ∈ K

(in all examples K is a dense subspace of H1) and define

fλt :=
1

λ
St/λ2f
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Then

〈
∫ T

S

dsfλs ,

∫ T ′

S′
dugλu〉 =

1

λ2
〈
∫ T

S

dtSt/λ2f,

∫ T ′

S′
duSu/λ2g〉 =

=
1

λ2

∫ T

S

dt

∫ T ′

S′
du〈f, S(u−t)/λ2g〉 =

∫ T

S

dt

∫ (T ′−t)/λ2

(S′−t)/λ2
〈f, Svg〉

Thus (1.1) is true with ε = 0. If S−1t QSt = Q then (1.1) is true also with
ε = 1. EXAMPLE 2 (the singular coupling limit (SCL))

Another general scheme to construct families (fλt ) is the following.
Let K be a set and let the functions fλt have the form

fλt = Stf
λ

where λ ∈ R 7→ fλ ∈ H1 is a measurable map and for any pair of such maps
fλ, gλ there exists an integrable function Gf,g ∈ L1(R) such that

lim
λ→0
〈fλ, Stgλ〉 = Ĝf,g(0)delta(t) (2)

in the sense of distributions on R. Here as usual Ĝ denotes the Fourier
transform of a function G

Ĝ(ω) :=

∫ +∞

−∞
e−iωtG(t)dt (ω ∈ R)

Notice that condition (2 is surely satisfied if∫
e−iωt〈fλ, Stgλ〉dt = Ĝf,g(λ

2ω) (3)

In fact, if Gλ is a family of functions such that

Ĝλ(ω) = Ĝ(λ2ω)

then, for any smooth function ϕ:∫
ϕ(t)Gλ(t)dt =

∫
ϕ(t)dt

∫
eitωĜ(λ2ω)dω =

1

λ2

∫
ϕ(t)dt

∫
eitω/λ

2

Ĝ(ω)dω =

=

∫
ϕ(λ2t)dt

∫
eitωĜ(ω)dω =

∫
ϕ(λ2t)dtG(t) = ϕ(0)·

∫
G(t)dt = ϕ(0)Ĝ(0)
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i.e. lim
λ→0

Gλ = Ĝ(0)delta in the sense of distributions.

In the papers [1, 2, 3], the singular coupling scheme described above is
realized by choosing:

H1 = L2(R, dω) (4)

gλ(ω) = g(λ2ω) ; ω ∈ R , g ∈ H1 (5)

(Stg)(ω) = eiωtg(ω) ; ω ∈ R , g ∈ H1 (6)

whence it follows that, if g is continuous in zero, then:

Ĝλ(ω) =

∫ +∞

−∞
e−iωt

∫ +∞

−∞
eiω
′t|g(λ2ω′)|2dω′dt =

∫ +∞

−∞
2πδ(ω−ω′)|g(λ2ω′)|2dω′ = 2π|g(λ2ω)|2

(7)
i.e.

lim
λ→0
〈gλ, Stgλ〉 = 2π|g(0)|2delta(t) (8)

By polarization it follows that condition (2) is satisfied with Ĝf,g(ω) =

2πf(ω)g(ω) (in [2,3] the parameter λ2 was called ε).
It is not really necessary that H1 = L2(R, dω); it may well be L2(I, dω)

where I is any interval. However this interval must contain 0 in its interior
if one wishes g(0) 6= 0 the non triviality of the limit (8).

Notice however that, if in this construction one wants to interpret H1 as
the 1-particle space of a quantum system and St as its evolution, then (1.4c)
gives the form of St in energy representation and shows that the generator
of St cannot have spectrum bounded from below.

Gorini, Kossakowski and Frigerio choose the function g to be a gaussian,
i.e. the set K consists of a single number 1 and

fλt (ω) = e−(λ
2ω)2/8−iωt ; ω ∈ R

then

〈
∫ T

S

dtfλt ,

∫ T ′

S′
dufλu 〉 =

∫ T

S

dt

∫ T ′

S′
ds

∫
R

dωe−λ
2ω2/4eiω(t−s) =

=

∫ T

S

dt

∫ T ′

S′
ds
e−(t−s)

2/λ2

(2πλ2)1/2
=

∫ T

S

dt

∫ (T ′−t)/λ2

(S′−t)/λ2
dv
e−v

2

π1/2
−→ 〈χ[S,T ], χ[S′,T ′]〉

Hence (1) with ε = 0 (Fock case) is satisfied. Also with ε = 1, (1) is satisfied
if Q commutes with translations.

5



A variant of the Gorini-Kossakowski case can be obtained by considering

fλt (ω) =
1

λ
e−(ω−ω0)2/8λ2ei(ω−ω0)t/λ2 , ω ∈ R+ (9)

then

〈
∫ T

S

dsfλs ,

∫ T ′

S′
dtfλt 〉 =

=

∫ T

S

ds

∫ T ′

S′
dt

∫ ∞
0

dωλ−2e−(ω−ω0)2/4λ2ei(ω−ω0)(s−t)/λ2

=

∫ T

S

ds

∫ T ′

S′
dt

∫ ∞
−ω0

dωλ−2e−ω
2/4λ2eiω(s−t)/λ

2

=

∫ T

S

ds

∫ T ′

S′
dt

∫ ∞
−ω0/λ2

dxe−λ
2x2/4eix(s−t)

=

∫ T

S

ds

∫ T ′

S′
dt

∫ +∞

−∞
dxe−λ

2x2/4eix(s−t) +O(e−ω
2
0/λ

2

)

=

∫ T

S

ds

∫ T ′

S′
dt
e−(s−t)

2/λ2

(πλ2)1/2
→ 〈χ[S,T ], χ[S′,T ′]〉 (10)

We can interpret the space to which the fλz belong as the 1-particle space
of a system with Hamiltonian H − ω0 in the spectral representation for H.

The choice (9) corresponds to a mixed SCL and WCL situation:
- the SCL part is 1

λ
e−(ω−ω0)2/8λ2

- the WCL part is e−i(ω−ω0)t/λ2

This model is better than the GKF because here the Hamiltonian is
bounded below and the shift in frequency is physically motivated (RWA).

2 2 Convergence of the Wave operator

In the assumptions of the section 1) consider the iterated series

U
(λ)
t = um∞n=0

∫ t

0

dt1dots

∫ tn−1

0

dtnV (gλt1)dotsV (gλtn)

one has the following THEOREM (2.1) l If the functions (fλt ) satisfy:
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1) 〈fλs , gλt 〉 = 〈fλ0 , gλt−s〉
2) ∀f, g ∈ k there exists a constant M(f, g) such that, for any λ > 0∫

R

|〈fλ0 , gλt 〉|dt ≤M(f, g) < +∞

then

lim
λ→0
〈u⊗Φ(

∫ T1

S1

fλ1,udu), U
(λ)
t v⊗Φ(

∫ T2

S2

fλ2,vdv)〉 = 〈u⊗Φ(χ[S,T ]⊗f1), U(t)v⊗Φ(χ[S2T2]⊗f2)〉

where the limit U(t) is solution of a quantum stochastic differential equation
driven by quantum Brownian motion.

The proof of the theorem (2.1) is similar to what we have done in the
section 6) of [11].

3 3 The modified SCL as a modified WCL

A slight modification of the singular coupling scheme, described in Section
1, leads to a connection between the schemes of the weak and the singular
coupling. This connection was discovered by Palmer ([4]) and discussed more
explicitly by Spohn ([5]).

In the class of models considered by Hepp, Lieb, Frigerio, Gorini, Kossa-
kowski, Verri, Sudarshan ..., condition (3) becomes∫ +∞

−∞
eiωt〈gλ, Stgλ〉dt = Ĝ(λ2ω) ; g ∈ L2(R) (3.1)

where Ĝ(α) =
∫ +∞
−∞ eiαu〈g, Sug〉du.

Let us now relax this condition by admitting a λ-dependence not only
in the test functions but also in the evolution St. More precisely, let H1

be arbitrary, and let St = exp[iH1t] be a strongly continuous one-parameter
semigroup on H1 with Lebesgue spectrum. Define

gλ =
1

λ
g (11)

and replace St by
S
(λ)
t := St/λ2 (12)
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Then ∫ +∞

−∞
e−iωt〈gλ, S(λ)

t gλ〉dt =

∫ +∞

−∞
e−iωt〈g, St/λ2g〉

dt

λ2
=

=

∫ +∞

−∞
e−iλ

2ωu〈g, Sug〉du = Ĝ(λ2ω) (13)

The above choice of gλ and the replacement of St by St/λ2 correspond to
a total Hamiltonian

Hλ = HS ⊗ 1R + λ−21S ⊗HR + λ−1V (14)

with V = 1
i
[D ⊗ a+(g)−D+ ⊗ a(g)] (see eq. (5.47) of [Spohn 1980]).

Let τ = λ2t, it is immediately seen that

exp[iτHλ] = exp[itH
(w)
λ ] = exp[i(τ/λ2)H

(w)
λ ]

where Hλ is given by (14) and H
(w)
λ is given by

H
(w)
λ = λ2HS ⊗ 1 + 1⊗HR + λV (15)

This is Theorem 3.1 of [4]. In other words, this means that the modification of
the singular coupling limit described above is equivalent to a weak coupling
limit with rescaled time (slow macroscopic time τ , fast microscopic time
t, τ = λ2t) and with system Hamiltonian of the order of λ2. The superscript
(w) in (15) stands for weak. In what follows we shall use the scaling (14).

4 4 The modified WCL

One is interested in the convergence as λ→ 0 of

j
(λ)
t (X) := eiHλt(X⊗1)e−iHλt = U

(λ)+
t (eiHStXe−iHSt⊗1)U

(λ)
t ; X ∈ B(HS)

where{
U

(λ)
t = ei(HS⊗1+

1
λ2
⊗HR)te−iHλt = um∞n=0

∫
0≤tn≤...≤t1≤t umε1,dots,εn=0,1

Dε1(t)dotsDεn(tn)⊗ Aε1(St1/λ2g)dotsAεn(Stn/λ2g)dt1 . . . dtn

and by definition:D0(t) := eiHStD+e−iHSt

D1(t) := eiHStDe−iHSt

A0(g) := a(g), A1(g) = a+(g)
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If the reference state of the reservoir is the Fock vacuum, then U
(λ)
t should

converge to a unitary 1−parameter family U(t) satisfying

dU(t) = [D0(t)dAt −D1(t)dA
+
t + Ĝ−(0)D0(t)D1(t)dt]U(t)

where At, A
+
t is the Fock quantum Brownian motion with Ito table:

dAtdA
+
t = Ĝ(0)dt , dA+

t dAt = 0

and

Ĝ−(0) =

∫ 0

−∞
〈g, Sug〉du =

1

2
Ĝ(0) + imaginary part

In order to get a feeling of the limiting procedure, it is useful to evaluate
the matrix elements, of the first few terms of the iterated series, with respect
to some collective coherent vector. For the first term we find:

< u⊗ Φλ(S, T, f), λ

∫ t/λ2

0

V (t1)dt1v ⊗ Φλ(S
′, T ′, f ′) >=

= λ−1
∫ t

0

dt1{< u, eiHSt1De−iHSt1v >< Φλ(S, T, f), A+(S0
t1/λ2

g)Φλ(S
′, T ′, f ′) > −

− < u, eiHSt1D+e−iHSt1v >< Φλ(S, T, f), A(S0
t1/λ2

g)Φλ(S
′, T ′, f ′) >} =

=

∫ t

0

dt1{< u,D(t1)v > 〈S0
t1/λ2

g ,

∫ T/λ2

S/λ2
S0
uf〉du−

− < u,D+(t1)v > 〈
∫ T ′/λ2

S′/λ2
S0
uf
′ , S0

t1/λ2
g〉du}·

· < Φλ(S, T, f),Φλ(S
′, T ′, f ′) >

It is clear that as λ→ 0, this converges to∫ t

0

dt1{< u,D(t1)v > χ[S,T ](t1)(g|f)− < u,D+(t1)v > χ[S′,T ′](t1)(f
′|g)}

< Ψ(S, T, f),Ψ(S ′, T ′, f ′) >

which can be rewritten as

< u⊗Ψ(S, T, f),

∫ t

0

{D(t1)⊗ dA+
t1

(g)−D+(t1)⊗ dAt1(g)}v⊗Ψ(S ′, T ′, f ′) >
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When n = 2 one of term corresponding to the case in which the creator and
annihilator are used to produce scalar product is equal to

λ2
∫ t/λ2

0

dt1

∫ t1

dt2e
it1HSλ

2

D+e−it1HSλ
2

eit2HSλ
2

De−it2HSλ
2〈St1g, St2g〉

< Φλ(S, T, f),Φλ(S
′, T ′, f ′) >

= λ−2
∫ t

0

dt1

∫ t1

0

dt2e
it1HSD+ei(t2−t1)/λ

2·λ2HSDe−it2HSλ
2〈g , S(t2 − t1)/λ2g〉·

· < Φλ(S, T, f),Φλ(S
′, T ′, f ′) >

=

∫ t

0

dt1

∫ 0

−t1/λ2
dt2e

it1HSD+eit2λ
2HSDe−i(t2λ

2+t1)HS〈g , St2g〉·

· < Φλ(S, T, f),Φλ(S
′, T ′, f ′) >

which tends to, as λ→ 0,∫ t

0

eit1HSD+De−it1HS(g|g)· < Ψ(S, T, f),Ψ(S ′, T ′, f ′) >=

=

∫ t

0

D+(t1)D(t1)d[At1(g), A+
t1

(g)]· < Ψ(S, T, f),Ψ(S ′, T ′, f ′) >

If we define
Vt := e−itHSU(t)

then
dVt = d(e−itHS)U(t) + e−itHSdU(t) =

= −idtHSVt + [D0e
−itHSdAt −D1e

−itHSdA+
t + Ĝ−(0)D0D1e

−itHSdt]U(t) =

= [D0dAt −D1dA
+
t + (Ĝ−(0)D0D1 − iHS)dt]Vt

The associated semigroup Tt = E0[jt(X)] = E0[V
+
t (X ⊗ 1)V1] has the gene-

rator L determined by{
L(X) = Ĝ(0)D+XD − (Ĝ−(0)D+D + iHS)+X −X(Ĝ−(0)D+D + iHS)
= Ĝ(0)(D+XD − 1

2
{D+D,X}) + i[H ′, X]

with H ′ = HS + (ImĜ−(0))D+D. This form follows from the paper on the
singular coupling limit.
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Remark 1 It is very important that HS should appear in the final form of
the generator; so use Vt and not Ut.

Remark 2 No assumption should be made on the spectrum of HS, but only
that HS is bounded (so that D0(t), D1(t) are norm continuous functions of
t). In particular, no assumption should be made as to whether Dε(t) is a
multiple of Dε(0).

Remark 3 In the special case that D is skew-adjoint, say D = iQ, with
Q = Q+, (so that Dε(t) cannot be a nontrivial multiple of Dε(0)), one obtains

L(X) = −1

2
Ĝ(0)[Q, [Q,X]] + i[H ′, X]

Remark 4 We may write

Ĝ−(0) =

∫ 0

−∞
〈g, Sug〉du =

∫ 0

−∞
du

∫ +∞

−∞
dα
eiαu

2π
Ĝ(α) =

1

2
Ĝ(0)−iP

∫ +∞

−∞

1

α
Ĝ(α)dα

where P denotes the principal part of the integral. In [G & K, F & G, 1976]
one has Ĝ(α) = 2π|g(α)|2 taken to be an even function of α (for this it is
essential that H1 has a spectrum which is symmetric upon reflection in 0) so
that Ĝ−(0) is simply 1

2
Ĝ(0). If Ĝ(α) is a continuous function vanishing on

R− (as happens if the spectrum of H1 is contained in [0,∞)) then Ĝ(0) = 0
and Ĝ−(0) is purely imaginary.

Then the singular coupling limit only gives a shift of the Hamiltonian.
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