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ABSTRACT

The notion of fractional quantum Brownian motion is introduced and
the conditions of its existence (for a given pair of parameters α ∈ [0, 2],
a ∈ R and a given symplectic form σ) is derived. Some examples, involving
representations of the CCR with “random Planck’s constant” are produced.

Fractional Brownian Motions were discussed by Mandelbrot and more
generally, in a series of papers, Mandelbrot has shown the potential wealth
of applications of the stable laws of probability theory [1], [2], [3], [4]. Since
the defining property of the stable laws is self–similarity, these laws can be
considered as forfathers of the fractals and their samples as typical examples
of them. In the present paper we begin to investigate the possible significance
of the stable laws in quantum theory. More precisely we introduce the notion
of stable (and more generally, infinitely divisible) state on the CCR C∗–
algebra. The associated cyclic representation should be called a stable (resp.
infinitely divisible) representation of the CCR.

Let σ be a real symplectic form on L2(R) (i.e. a real valued symplectic
form on L2(R) considered as a real space) and let Wσ denote the Weyl C∗–
algebra over (L2(R), σ) (cf. [6]).

Let, for I ⊆ R, χI denote the characteristic function χI of I(χI(x) = 0 if
x /∈ I, = 1 if x ∈ I)) and let eI denote the multiplication operator by χI .
We shall identify eIL

2(R) with L2(I).
Suppose that

σ(f, g) = 0 (1)

whenever f ∈ L2(I), g ∈ L2(J) with İ ∩ J̇ = Φ, (İ denoting the interior of
I).

The typical example, with which we shall be mainly concerned, is

σ(f, g) = ξIm < f, g > (2)
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where ξ is a constant. For each z ∈ C, the C∗–algebra generated by

{W (zχ(s, t)) : 0 ≤ t− s < +∞} (3)

is abelian. A state ϕ on Wσ will be called stationary if, for each z ∈ C and
0 ≤ t− s < +∞, one has

ϕ(W (zχ(s, t))) = ϕ(W (zχ(0, t−s))) (4)

A state ϕ on Wσ will be called infinitely divisible if:

(i) ϕ is stationary

(ii) t ∈ R 7→ ϕ(W (zχ(0, t))) =: ϕ(z, t) continuous for every z ∈ C.

(iii) For each z ∈ C, t 7→ ϕ(z, t) is an infinitely divisible function, i.e.

ϕ(z, nt) = ϕ(z, t)n ; ∀n ∈ N (hi)

Conditions (ii) and (iii) imply

ϕ(z, t) = ϕ(z)t ; ∀z ∈ C ; ∀t ∈ R (5)

where ϕ(z) := ϕ(z, 1).
Let ψ(z) be defined by

ϕ(z) = eψ(z) (6)

The state ϕ is called stable if, for every a > 0 there exists a c(a) ∈ R such
that

ψ(z) = aψ(z/c(a)) (7)

In this case it is known [5] that c(a) must have the form

c(a) = aα; a > 0 (8)

for some 0 ≤ α ≤ 2.
The problem we want to investigate is the following: given a symplectic

form σ on L2(R) satisfying (1), classify all the infinitely divisible (resp.
stable) states on Wσ.

For a stable state ϕ one has

ϕ(W (zχ[s, t))) = e(t−s)ψ(z) (9)
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with ψ(z) satisfying, for some α ∈ [0, 2],

ψ(λz) = λαψ(z) ; ∀λ > 0

The functions ψ with this property are classified [5]. They have the form

ψ(z) =

(
−1 + i

z

|z|
a

)
|z|α

for some a ∈ R and α as above.
Let q : L2(R+)→ C denote the functional defined by

ϕ(W (f)) = e−
1
2
q(f) (10)

It is known [6] that, denoting

qs(f, g) :=
1

2
(q(f + g)− q(f)− q(g)) ; f, g ∈ L2(R+ (11)

the functional
(f, g) 7→ qs(f, g) + iσ(f, g) (12)

is positive definite and that, conversely, every functional q : L2(R+) → C
with this property defines, via (11), a unique state on Wσ(L2(R+)).

From (6) and (10), we deduce that

−1

2
q(zχ[s, t)) = (t− s)ψ(z) (13)

so that, for some
0 < α < 2

one should have

q(zχ0[s, r)) = −2(t− s)
(
−1 + i

z

|z|
a

)
|z|α (1hi)

for some a ∈ R.
If σ has the standard form

σ(f, g) = Im

∫
f(s)g(s)ds (14)

then
σ(zχ[s, t), z

1χ[s, t)) = (t− s)Imzz1 (15)
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In this case the positivity condition for the functional (12) implies that

(z, z1) ∈ C2 7→
(

1− i z + z1

|z + z1|
a

)
|z + z1|α −

(
1− i z

|z|
a

)
|z|α

−
(

1− i z
1

|z1|
a

)
|z1|α + iImzz1 =: Q(z, z1)α; a (16)

is positive definite.
Conversely, since the property of being positive definite is preserved under

sums and pointwise limits, it is clear that, if Qα, a(z, z
1), defined by (18), is

positive definite, then if q(f) has the form

q(f) = 2

∫
dt

(
1− i f(t)

|f(t)|
a

)
|f(t)|α (17)

with the conventions 0/0 = 0, 0α = 0(notice that q(f) is well defined for a
step function f), and if σ has the form (15), then q(·) defines, via (10), a
state on Wσ(S) (S being the space of finite valued step functions) if and only
if the Kernel Qα, a(z, z

1) is positive definite.
The classification of the parameters α ∈ [0, 2] and a ∈ R, for which

this positive definiteness takes place, is an open problem. The following con-
struction, which extends to the quantum case Bochner’s methods of obtaining
the fractional Brownian motions from the standard Brownian motion, shows
that some examples of infinitely divisible, in particular stable, states can be
produced.

Let (ξt) be the classical increasing symmetric stable process with parame-
ter α ∈ (0, 1] and let A(χ[0, t]), A

+(χ[0, t]) be the Fock or a finite temperature
quantum Brownian motion as defined in [7]. Performing the random time
charge

A±(χ[0,t])→ A±(χ[0, ξt]) =: a±t

we obtain a representation of the CCR with random Planck’s constant:

[at, a
+
t ] = ξt (18)

Denoting Eξ the expectation for the ξ–process, E the Fock (or a finite
temperature) state on the Weyl algebra W (L2(R+)). Then the state ϕ =
Eξ ⊗ E, defined on the algebra

L∞(Ω, F , Pξ)⊗W(L∈(R+))
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satisfies the identity

ϕ(W (zχ(0, ξt))) = Eξ(E(zχ(0, ξt))) =

= Eξ({E(W (zχ(0, 1)))}ξt)
= Eξ(e

ξt(−A2 |z|
2)) = e−

Ac
2
|z|2α

where c is a constant and A = 1 in the Fock case, A > 1 in the finite
temperature case.

Summing up: for any α ∈ (0, 1], the process A±(χ[0, ξt]) is a symmetric
stable quantum process of parameter 2α satisfying the random CCR (18).

In conclusion let me mention that K. R. Parthasarathy has shown that any
infinitely divisible random variable can be realized as a quantum stochastic
integral on the Fock space of L2(R+), however there is no Weyl representation
associated to this realization.
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