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1 Introduction

The Feynman–Kac formula is a technique, based on functional integration,
which allows to perturb a markovian (i.e. positivity and identity preserving)
semi–group exp tH with suitable continuity properties into a new positivity
preserving semi–group whose formal generator has the form H + V and to
obtain a fairly explicit representation of the latter in terms of a functional
integral.

The purpose of this paper is to show that the formalism on which the
classical Feynman–Kac formula is based can be generalized to a quantum
(i.e. non–commutative) context. The role played, in the classical case, by
multiplicative functionals is played in the quantum case by localized 1–cocyles
(markovian cocycles). In the algebraic (i.e. L∞) theory, perturbations arising
from unitary markovian cocycles are derivations (such perturbations have
no classical analogue), those arising from hermitian markovian cocycles are
dissipations. A more general form of markovian cocycle allows to obtain the
full dissipative part of Lindblad’s generator of a quantum markovian semi–
group. As far as possible, we develop the formalism in a language common
to the classical and quantum case (cf. §’s (1), (2), (4), (13), (14)).

The equivalence between the algebraic framework of the present approach
and the usual probabilistic one is based on the equivalence between the the-
ory of commutative local algebras with a state and the theory of classical
stochastic processes. This equivalence lies at the basis of our definition of
“quantum stochastic process” and is briefly reviewed in § (0), which means
to provide a heuristic back–ground as well as a motivation for the definitions
introduced later.

In §’s (8) to (11) we review some analytical properties of the perturbed
semi–group, and in § (12) the beautiful Kac–Ray asymptotic estimates of the
spectrum of generators.

We have not discussed here the important property of hypercontractivity;
for this we refer to [16], [7], [22] and to the bibliography therein.

As far as the classical Feynman–Kac formula is concerned, our main result
is the asymptotic estimate (90), obtained in Theorem (12.2), which general-
izes the corresponding result of Ray [29] for the Wiener process. The interest
of this result lies in the fact that it provides a rigorous foundation for the
so–called WKB estimates.

Dealing with the classical case we develop the theory for a general state
space S since we want our results to be applicable to the case in which S
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is a differentiable manifold. However we consider only scalar valued func-
tionals of the process motivated earlier approaches to the non–commutative
Feynmann–Kac formula (cf. [17], [28], [34]), whose results have been applied
by Malliavin [25] to the diffusion theory of differential forms.

In the particular contexts of Euclidean fermion quantum field theory, of
Clifford algebras over real Hilbert spaces, and of the quantum Wiener process,
non–commutative generalizations of the Feynmann–Kac formula have been
discussed respectively by K. Osterwalder and R. Schrader [27], R. Schrader
and D.A. Uhlenbrock [31], R. Hudson and P. Ion [19].

2 Stochastic processes and local algebras

Following J.L. Doob [10] we define a stochastic process indexed by a set T
and with values in a measurable space (S,B) a s family of µ–equivalence
classes of random variables xt : (Ω, θ, µ) → (S,B) defined on a probability
space (Ω, θ, µ) and with values on (S,B).

The space S is called the state space of the process and stochastic pro-
cesses are classified according to their finite dimensional distributions. As
shown in [2] this amounts to the following: let F be the family of finite sub-
sets of T ; denote, for F ∈ F , θF the σ–algebra generated by the random
variables xt (t ∈ F ), i.e.

θF =
∨
t∈F

x−1
t (B)

let µF be the restriction of µ on θF and denote

AF = L∞(Ω, θF , µF )

A = norm closure of
⋃
{AF : F ∈ F}

the norm closure being meant in the sense of the usual norm on L∞(Ω, θ, µ).
The measure µ induces a state (i.e. a positive normalized linear func-

tional), still denoted µ, on the C∗–algebra A, defined by:

ν(f) =

∫
Ω

fdµ ; f ∈ A

(throughout the present paper we shall adopt, for what concerns C∗– and
W ∗–algebras, the notations and nomenclature of S. Sakai’s monograph [20]).
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The state µ on A is locally normal in the sense that for each F ∈ F the
state µF = µ|AF is normal.

Two stochastic processes indexed by the same set T are called stochasti-
cally equivalent if, denoting there exists an isomorphism of C∗–algebras

u : A → A′

such that
u(AF ) = A′F ; F ∈ F

u|AF is normal; F ∈ F

µ′ · u = µ

If (xt), (x′t) are the random variables defining the two processes, an ex-
plicit form of the isomorphism u is given by the map

F (xt1 , . . . , xtn) 7→ F (x′t1 , . . . , x
′
tn)

for any bounded measurable function F : Sn → C, and for any t1, . . . , tn ∈ T .
It is possible to characterize, up to equivalence, those triples {A, (AF ), µ}

which come from stochastic processes in Doob’s sense (cf. [2]) and, more
generally, every triple {A, (AF ), µ} such that

– A is a C∗–algebra (commutative)
– AF is a W ∗–algebra ⊆ A
– A = norm closure of

⋃
{AF : F ∈ F}

– F ⊆ G⇒ AF ⊆ AG
– µ is a locally normal state on A
defines a stochastic process in the sense of I.E. Segal [32].
An element ϕ ∈ AF (F ∈ F) is a bounded measurable functional of the

random variables xt (t ∈ F ). Often one has to deal with bounded measurable
functionals of infinitely many of the random variables xt.

This leads to the consideration of local algebra AI where I is no longer
a finite subset of T . The following definitions are often used (when T is a
topological space):

AI = L∞(Ω, θI , µI)

θI = ∨t∈Ix−1
t (B) ; µI = µ|θI

when I is an open set, and

AI = ∩{AB : B open ⊇ I}
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when I is an arbitrary set. Sometimes a more delicate definition is useful
(cf. [4]), but in the present paper the general definition of the algebras AI
will not be discussed and we shall simply assume that the algebra AI or,
equivalently, the σ–algebras θI , for an arbitrary set I ⊆ T , are defined in
such a way as to satisfy the conditions of Definition (1.1) (cf. § 1), and:

F (xt1 , . . . , xtn) ∈ AI

whenever F : Sn → C is a bounded measurable function and t1, . . . , tn are
in I (n ∈ R) (or, at least, for a weakly dense set of such functions).

The choice of a family of local algebras associated to a stochastic process
is not canonical but depends on the process. One might consider bounded
continuous functions if S is a topological space, bounded C∞–functions if S
is manifold, or even unbounded functions (for example the algebra of poly-
nomials of a gaussian process). All these choices are sufficient to determine
the class of stochastic equivalence of the process in the sense that their weak
closure in the GNS representation associated to the state are algebraically
isomorphic (cf. [3] for a precise formulation).

Two important classes of maps of the algebra A into itself are associated
to stochastic processes:

i) conditional expectations
ii) automorphisms induced by symmetries of T .
The conditional expectations associated to µ

EI : A → AI = L∞(Ω, θI , µI)

are always defined and satisfy

I ⊆ J ⇒ E1EJ = E1 (projectivity)

An injective map g : T → T induces an endomorphism of A with a left
inverse if and only if the maps

G(xt1 , . . . , xtn) 7→ G(xgt1 , . . . , xgtn) (1)

(G : Sn → C, bounded measurable, t1, . . . , tn ∈ T ) are well defined as maps,

AF = L∞(Ω, θF , µF )→ AgF = L∞(Ω, θgF , µgF )

(F = {t1, . . . , tn}); i.e. if and only if the measure µF are quasi–invariant for
such maps.
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If, moreover, the measures µF are invariant for the maps above, then one
easily verifies that

u∗g · EgI · ug = EI

where ug : A → A is the endomorphism induced by (1) and u∗g its left inverse.
In the following we will be mainly concerned with the case in which

T = R or R+

and the maps g : T → T are translations

gt = t+ s ; t ∈ T (for some s; s ≥ 0 if T = R+)

or reflections
gt = s− t (for some s; s ≥ t if T = R+)

3 Local algebras on R(R+)

In this § we establish some notations which will be used throughout the
paper.

Let T be R or R+; let F be a family of T containing the finite parts and
the intervals (open, half–open, bounded or not) of T .

Definition 1 A family of local algebras on T is a couple {A, (AI)}, (I ∈ F)
such that

i) A, AI are involutive complex algebras with unit.
ii) AI ⊆ AJ if I ⊆ J
iii) AR = A
iv) AI = ∨{AJ : J ⊆ I; J ∈ F} if I is open.

A conditional expectation A → AI is a linear map EI : A → AI such
that

a ≥ 0 ; a ∈ A, ⇒ EI(a) ≥ 0

EI(1) = 1

EI(aIa) = aIEI(a) ; aI ∈ AI ; a ∈ A

EI(a
∗) = EI(a)∗ ; a ∈ A
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A family of conditional expectations (EI), EI : A → AI , is called projec-
tive if

I ⊆ J ⇒ E1EJ = EI (2)

We shall assume that there is an action

t ∈ T 7→ ut ∈ End (A)

of T on A by ∗–endomorphisms which satisfies

utAI = AI+t (covariance) (3)

ut has a left inverse denoted u∗t (u∗t is the inverse of ut if T = R) (4)

utus = ut+s (5)

A projective family (EI) of conditional expectations is called covariant if

u∗tEI+tut = EI (6)

this is equivalent to

utEIu
∗
t |A[t,+∞[ = EI+t|A[t,+∞[ (7)

Time reflections also will play an important role in our exposition.
Let T = R+; a 1–parameter family of time reflections is a family of

automorphism (or anti–automorphisms)

rt : A[0,t] → A[0,t], t > 0

such that
r2
t = id; t > 0 (8)

rtus = ut−s ; 0 ≤ s ≤ t (9)

If T = R a time reflection is an automorphism (anti–automorphism)
r : A → A such that

r2 = id (10)

rut = u−tr (11)

If, moreover,
r|A0 = id (12)
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then we say that the system {A, (AI), (ut)} enjoys the reflection property.
A triple {A, (AI)I∈F , µ} where {A, (AI)} is a family of local algebras

and µ is a state on A will be called a stochastic process (quantum stochastic
process if A is not abelian). If the AI are W ∗–algebras µ is required to be
locally normal. This definition is justified by the discussion in § (0) (cf. [2],
[3] for a more detailed discussion). Remark that the triple {A, (AI)I∈F , µ}
determines an equivalence class of stochastic processes. In many circum-
stances it is usefull to single out a set of functions (or operators) which in
some specified sense generate the local algebras AI . Usually in the literature
it is such a set of generators which is called a stochastic process and, in such
a case, one usually requires that the two sets of generators are identified by
the relation of stochastic equivalence described above.

There are many examples of classical stochastic processes whose associ-
ated local algebras satisfy the above listed conditions. Using Clifford alge-
bras, or the representation theory of the CCR, it is not difficult to construct
examples of non–commutative local algebras with the above listed properties
(cf., for example, [37]).

4 Markovianity and semi–groups

To avoid circumlocutions, we adopt the convection that, if T = R+, the
symbols

E]−∞,0], E]−∞,t] , A]−∞,t], . . .

stand for
E[0,t], E{0}, A[0,t], . . .

respectively.

Definition 2 The family (EI) is said to be Markovian if ∀ t ∈ T

E]−∞,t](A[t,+∞[) ⊆ At (13)

The properties of the conditional expectations easily imply that (13) is
equivalent to

E]−∞,t](a) = E{t}(a) ; ∀ a ∈ A[t,+∞[ (14)

There are many equivalent ways of formulating the Markov property. The
formulation (13) (and its multi–dimensional analogues, cf. [1]) underlines the
locality aspect of the Markov property and is particularly well suited for the
quantum generalization.
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Proposition 1 In the above notations, let (EI) be a projective, covariant,
markovian family of conditional expectations, and define

P t = E]−∞,0]ut|A0 ; t ≥ 0 (15)

then P t is a 1–parameter, positivity preserving semi–group A0 → A0 such
that

P t(1) = 1 ; t ≥ 0 (16)

Proof . P t is positivity preserving and P t(1) = 1 since E]−∞,0] and ut have
this properties; because of the Markov property

P t = E{0}ut

hence
P tA0 ⊆ A0

and

P tP s = E{0}utE{0}us = E{0}E{t}ut+s = E{0}E]−∞,t]ut+s = E{0}ut+s = P t+s

hence P t is a semi–group.
A semi–group P t : A0 → A0, positivity preserving and such that P t(1) =

1, is called a markovian semi–group (on A0).
The relation (13) can be called the “foreward” Markov property (the

past conditioning the future). The “backward” Markov property (the future
conditioning the past) is expressed by

E[t,+∞[(A]−∞,t]) ⊆ At (17)

Reasoning as in the proof of Proposition (2.2) one verifies that, if (EI) is
backward Markovian, covariant, projective, then

P t = u∗tE[t,+∞[|A0; t ≥ 0 (18)

is a Markovian semi–group on A0.
The definitions of the semi–groups (1) and (18) can be schematically

illustrated by the diagrams

If T = R and the system {A, (AI), (EI)(ut)} admits a reflection, then it
is easy to verify that the two definitions coincide.
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Remark 1. The proof of the semi–group property makes use only of
covariance and projectivity, and the fact that P t maps A0 into itself fol-
lows from the Markov property. Thus the construction above holds for any
covariant, projective, markovian, normalized family (E]−∞,t]) of completely
positive maps.

Remark 2. The relation (1) shows he deep connection between sta-
tionary (or, more generally, covariant) Markov processes and the theory of
unitary dilations of semi–groups. We refer to [12] for a discussion of this
topic and bibliographic references.

5 Semi–groups and markovianity

In the previous § we have seen that every covariant stochastic process, as
defined in § (1), determines a markovian semi–group P t. If the process has
an initial distribution w0 (resp. is stationary with invariant distribution
w0), then the couple {w0, P

t} uniquely determines the stochastic equivalence
class of the process. It is important to remark that the equivalence class of
the process is meant here with respect to the localization given by the finite
subsets of the index set T ⊆ R. Without this clarification the above assertion
is, in general, false (this is the case, for example, for Markov fields — i.e.
generalized processes — on the real line, for which the natural equivalence
relation is not based on the finite subsets of R but on the open intervals).

In the following we shall use the term process to imply that the localiza-
tion is based on the finite subsets if the set of indices, and the term field for
the more general situation.

There is a well known procedure which allows to associate a stochastic
process (resp. stationary stochastic process) with initial (resp. stationary)
distribution w0, uniquely determined up to equivalence, to a couple {w0, P

t},
where w0 is a probability distribution on a measurable space (S,B), and P t

is a markovian semi–group acting on some subspace of L∞(S,B) with ap-
propriate continuity properties (cf. [10], [14], for example). The equivalence
class of the process, i.e. the joint expectations, are determined by:

µ0,t1,...,tn((f0 ◦ x0) · (f1 ◦ xt1) · . . . · (fn ◦ xtn)) =

= w0(f0 · [P t1 [f1 · [P t2−t1 · . . . · [P tn−tn−1ftn ]]] . . .])

where f0, . . . , fn ∈ L∞(S,B), (xt) are the random variables of the process,
0 < t1 < . . . < tn, n ∈ R and the dot denotes pointwise multiplication.
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Thus all classical covariant Markov process are determined up to the
initial (resp. stationary) distribution and up to stochastic equivalence, by a
markovian semi–group. As shown in [1], [2], [3], the situation in the quantum
case is more delicate; in particular, the extrapolation of the above assertion
to the quantum case is wrong.

Probably the most studied Markov process is the Wiener process (or
Brownian motion) which is obtained when S = RN with the Borel σ–algebra
and

P tf(x) = e1/2t∆f(x) =

∫
RN

e−|x−y|
2/2t

(2πt)N/2
f(y)dy

(dy–Lebesgue measure on RN , |x|2 =
∑N

J=2 x
2
J , if x = (x1, . . . , xN)), and w0

is any probability measure on RN (if w0 = δx = Dirac measure on x, one
speaks of Wiener process with initial condition x). All the results expounded
in the present paper extend some results obtained in the framework of the
Wiener process.

6 Local perturbations

In the notations of the preceedings §’s, let

P t
0 = E]−∞,0]ut : A0 → A0 (19)

be a Markovian semi–group and let, for each t ≥ 0

M̃t : A → A (20)

be a positivity preserving operator (completely positive if A is a C∗–algebra).
Define, of t ≥ 0

P t = E]−∞,0]M̃tut|A0 (21)

Remark that P t(A0) ⊆ A0 if and only if ∀ a0 ∈ A0

P ta0 = E{0}P
ta0 = E{0}M̃tuta0 = E]−∞,0]E[0,t]M̃tE[0,t]uta0

This means that if P t(A0) ⊆ A0 then we can always assume, without chang-
ing the action of P t, that

M̃t = E[0,t]M̃tE[0,t] (22)
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or, equivalently, that
M̃t(A[0,t]) ⊆ A[0,t] (23)

and that, conversely, if (23) holds, then P t maps A0 into itself.
In the following we shall assume that (23) holds. Since ∀ a ∈ A0:

P tP sa0 = E]−∞,0]M̃tutE]−∞,0]M̃susa0 =

= E]−∞,0]M̃tE]−∞,t]utM̃su
∗
t · ut+sa0 =

= E]−∞,0]E]−∞,t]M̃t(utM̃su
∗
t )ut+sa0 =

= E]−∞,0]M̃t(utM̃su
∗
t )ut+sa0

we have that, if P t : A0 → A0 is a semi–group then we can always assume,
without changing the action of P t on A0, that

M̃t+s = M̃t(utM̃su
∗
s) (24)

Conversely, if (24) holds, then P t is a semi–group on A0.

Remark 1. If A is abelian, a simple form for the operator M̃t is

M̃t(a) = Mt · a ; a ∈ A (25)

where Mt is a positive element in (or affiliated to) A. In this case the condi-
tions (23), (24) are equivalent to

Mt ∈ A[0,t] (26)

Mt+s = Mtus(Ms) (27)

Remark 2. If A is not abelian, the choice (25) for the operator M̃t

will not give rise, in general, to a positivity preserving semi–group P t. This
is not the case, however, if Mt lies in the center of A (or, more generally,
commutes with At). In such a situation the derivation of the generator is
exactly the same as in the classical case (cf. § (6)). This remark has been
used by K. Osterwalder and R. Schrader to prove a Feynman–Kac formula
for boson–fermion models in euclidean quantum field theory [27].

Remark 3. The proof of the semi–group property carries over, with-
out difficulties, in the assumptions of Remark (1) after Proposition (2.2),
provided the operator M̃t commutes with E]−∞,t].

Definition 3 A 1–parameter family (Mt) of operators in A (resp. affiliated
to A) satisfying (26) and (27) will be called a markovian cocycle.

A markovian cocycle will be called positive (resp. hermitian, unitary,...)
if for each tMt is positive (resp. hermitian, unitary,...).
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7 Markovian cocycles: classical case

The results of § (1), (2), (4) do not depend on the structure of the algebra
A. From now, till to § (13) included, we shall assume that the algebra A is
abelian and, to fix the ideas, we shall assume that the algebras AI , I ⊆ R
(or R+), the endomorphisms ut and rt, the conditional expectations EI come
from a Markov process (xt)–t ∈ R or R+ — on a probability space (Ω, θ, µ)
and with state space (S,B), in the way described in § (0).

The action of ut, rt, EI is extended to all positive measurable functions
on Ω and to all measurable functions for which it makes sense.

We shall freely use the notations of § (0), and use the notation

F ∈̂θI or equivalently F ∈̂AI

to mean that the function F is θI–measurable.
The discussion in § (4) implies that, if Mt is a positive markovian cocycle,

then
P t = E]−∞,0]Mtut (28)

is a positivity preserving semi–group on A0 and, conversely, if P t, defined
by (28), is a positivity preserving semi–group on A0 then we can assume,
without modifying P t, that Mt is a positive markovian cocycle.

Denote χΩ[0,t] the support of Mt. Because of (26) χΩ[0,t] is the character-
istic function of a set Ω[0,t] ⊆ Ω and Ω[0,t] ∈ θ[0,t].

One has
M t = χΩ[0,t]

e−U[0,t] (29)

where U[0,t]∈̂θ[0,t] is a real valued function and one can assume that supp
U[0,t] = Ω[0,t]. Denoting

χΩ[s,t+s]
= us(χΩ[0,t]

) (30)

U[s,t+s] = us(U[0,t])

the cocycle property (27) is easily seen to be equivalent to the relations

Ω[0,t+s] = Ω[0,t] ∩ Ω[t,t+s] (31)

U[0,t+s] = U[0,t] + U[s,t+s] (32)

Conversely, if χΩ[s,t], U[s,t]∈̂Ω[s,t] satisfy (30), (31), (32), then Mt, defined by
(29), is a positive Markovian cocycle. A map

[s, t] ⊆ R 7→ U[s,t]∈̂θ[s,t]
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satisfying (30) and (32) is called a covariant additive functional with respect
to the family of σ–algebras θ[s,t].

A typical example of additive functional is given by

U[0,t] =

∫ t

0

Vsds (33)

where
V0∈̂A0 ; Vs = us(V0) (34)

and the integral is meant in measure.
The problem of classifying the additive functionals of a given Markov

process has been widely studied in the literature (cf. for example, [1]).
An example of a family Ω[s,t] of sets in θ[s,t] satisfying (30) and (31) can

be constructed as follows: choose a separable realization of the process (xt)
(cf. [35]) and, for some set S0 ⊆ S (the state space of the process) define

Ω[s,t] =
⋂
s≤r≤t

x−1
r (S0)

then Ω[s,t] is in θ[s,t] and, clearly, conditions (30) and (31) are satisfied.

8 Formal generators

Let {A, (AI), (EI), (ut)} be as in the preceeding paragraph, and (Mt) be a
markovian cocycle. Denote

P t
0 = E]−∞,t]ut : A0 → A0 (35)

P t = E]−∞,t]Mtut : A0 → A0 (36)

In this § we show that there is a simple connection between the formal
generators of P t

0 and P t. This connection constitutes the essence of the
“Feynmann–Kac formula”. Under various analytical assumptions on P t

0 and
on Mt, some of which will be considered later, this connection becomes a rig-
orous one. The main idea is contained in the following formal manipulations.

Let us denote:

H0 = lim
t↓0

1

t
(P t

0 − 1) (37)

H = lim
t↓0

1

t
(P t − 1) (38)

15



(here and in the following we shall not specify neither the topologies in which
the limits are taken, nor the subsets of A0 in which such limits exist). Let
f0 ∈ A0, then

Hf0 = lim
t↓0

1

t
{P tf0 − f0} = lim

t↓0

1

t
{E]−∞,0]Mtutf0 = f0} =

= lim
t↓0

1

t
{E]−∞,0]utf0 − f0}+

+ lim
t↓0

1

t
{E]−∞,0]Mtutf0 − E]−∞,0]utf0} =

= lim
t↓0

1

t
{P t

0f0 − f0}+ E]−]∞,0]

{
lim
t↓0

1

t
[Mt − t]utf0

}
=

= H0f0 + A0f0

where A0 denotes the operator of multiplication by the function

A0 = lim
t↓0

1

t
(Mt − 1) =

d

dt

∣∣∣
t−0
Mt (39)

thus the required connection is given by

H = H0 + A0 (40)

where A0 is given by (39). For example, if

Mt = e−
∫ t
0 Vsds (41)

a formal derivation of the right hand side gives

A0f = −V0f ; H = H0 − V0

One can prove that, whenever H0 − V0 makes sense as a well defined
operator on a certain domain, the semi–group (36), with Mt given by (41),
can be defined. There are, however, situations in which the semi–group is
well defined even if the operator H0−V0 is not. In such cases the right hand
side of (40) is well defined by (38), while the left hand side is not and the
above procedure can be considered as defining a “generalized sum” of the
operators H0 and −V0.
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9 Kernels

Let us show that if the semi–group P t
0 defined by (35) has an integral kernel

then the perturbed semi–group P t, defined by (36), has an integral kernel
too, of which we give a functional representation. The existence of such a
functional representation of the integral kernel of the perturbed semi–group
is what makes the Feynman–Kac formula such a powerfull tool in estimates
on eigenvalues or eigenvectors of the perturbed generator H = H0 + A0.

Let us consider the conditional expectation

E{t,0} : A → A{0,t} = A0 ∨ At

If f0 ∈ A0, then

P tf0 = E]−∞,0]Mtutf0 = E{0}Mtutf0 = (42)

= E{0}E{0,t}(Mtutf0) = E{0}E{0,t}(Mt)ut(f0)

Recall, from § (5), that we have introduced the identification

A0
∼= L∞(S,m0) (43)

where S = (S,B) is a measurable space and m0 is a positive, finite or σ–finite
measure. Assume, moreover, that P t

0 has an integral kernel:

(P t
0f0)(x0) =

∫
S

pt(x0, y)f0(y)m0(dy) (44)

This implies that, if F ∈̂A+
{0,t}, then

E{0}(F )(x0) =

∫
S

pt(x0, y)F (x0, y)m0(dy)

in particular (42) implies that

(P tf0) = E{0}(E{0,t}(Mt)ut(f0)) = (45)

=

∫
S

pt(x0, y)E{0,t}(Mt)(x0, y)f0(y)m0(dy)

thus, if P t
0 has a kernel Pt(x, y), then P t has a kernel kt(x, y) given by

kt(x, y) = pt(x, y)E{0,t}(Mt)(x, y) (46)

17



where, s remarked in § (5), we have identified the elements of L∞(Ω, θ{s,t}, µ{s,t})
with (µ{s,t}–classes of) functions S×S → C. In the following we shall assume
that

pt(x, y) > 0 m0 ⊗m0 a.e. (47)

Since E{0,t} is the conditional expectation, on A{0,t}, of the measure µ =
m0. E{0}, one can easily verify that the action of E{0,t} on a functional
F = F (x0, xt1 , . . . , xtn , xt) depending on the finite set of random variables
x0, xt1 , . . . , xtn , xt, with 0 < t1 < . . . < tn < t is given by

E{0,t}(F )(y0, yt) =
1

pt(y0, yt)

∫
S

m0(dyt1)

∫
S

. . .

∫
S

m0(dytn)·

·F (y0, yt1 , . . . , ytn , yt) · pt1(y0, yt1)pt2−t1(yt1 , yt2) · . . . · pt−tn(ytn , yt)

for example, if F = F (xs) depends only on the random variable xs, one has

E{0,t}(F )(y0, yt) = (48)

=
1

pt(y0, yt)

∫
S

m0(dys)ps(y0, ys)pt−s(ys, yt) · F (ys)

Useful estimates on the kernel kt(x, y) can be obtained by using its explicit
form, given by (46) and the considerations above. For example, let Mt be of
the form

Mt = e−
∫ t
0 Vsds ; Vs = us(V )

for some measurable function V : S → R (recall that

A0
∼= L∞(S,B))

We can always write V in the form

V = V (c) − V (−c) ; with V (c) ≥ −c ; V (−c) ≥ c

where c is some constant. From (46) we obtain

kt(x, y) ≤ ectpt(x, y)E{0,t}(e
∫ t
0 V

(−c)
s )(x, y) (49)

and, applying Jensen’s inequality:

kt(x, y) ≤ ectpt(x, y)
1

t

∫ t

0

dsE{0,t}(e
tV

(−c)
s )(x, y) (50)
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or, equivalently:

Kt(x, y) ≤ ect
1

t

∫ t

0

ds

∫
S

m0(dz)ps(x, z)pt−s(z, y)etV
(−c)(z) (51)

The estimates (50), (51) are useful to derive from the properties of pt(x, y)
the corresponding, or slightly weaker, properties of kt(x, y).

Examples of the use of these estimates will be given in the following §’s.
For example, if pt(x, y) is the Wiener kernel and m0(dy) = dx is the Lebesgue
measure, then, if V (−c) ∈ Lp(R, dx) for some p ≥ 1, the right hand side of
(51) is finite.

10 Action on Lp(S,m0)

In the following we shall denote ‖ · ‖P,q the norm of a linear operator from
Lp(S,m0) to Lq(S,m0). By construction, on L∞(S,m0):

P t
0f = E{0}utf (52)

Hence ‖P t
0‖∞,∞ = 1. If f ∈ L1 ∩ L∞(S,m0), f ≥ 0, then

‖P t
0f‖1 =

∫ ∫
pt(x, y)f(y)m0(dx)m0(dy)

Therefore, if

sup
y∈S

∫
S

pt(x, y)m0(dx) < +∞ (resp. ≤ 1) (53)

by interpolation P t
0 can be extended to a bounded operator (resp. a contrac-

tion) Lp(m0) → Lp(m0) for each p ∈ [1,+∞]. Remark that, if the kernel is
symmetric, i.e.

pt(x, y) = pt(y, x)

then ‖P t
0‖1,1 = ‖P t

0(1)‖∞ = 1.
We shall not discuss here the important property of hypercontractivity

(resp. supercontractivity) of P t
0, i.e. ‖P t

0‖P,q ≤ 1 for appropriate t and
q > p > q (resp. for all t > 0 and all q > p > 1). These are a far–reaching
generalization of the property of “instantaneous smoothing” of the Wiener
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semi–group (P t
0{Lp(R, dx)} ⊆ C∞(R, dx)) and have played a fundamental

role in recent researches (cf. [7], [16], [22], and the bibliography therein).
Assuming ‖P t

0‖1,1 < +∞, from the explicit form (46) of the kernel of P t

one immediately deduces that

‖E‖{0,t}(Mt)‖∞ < +∞ (54)

is a sufficient condition for P t to be a bounded operator Lp(S,m0)→ P P (S,m0)
for every p ∈ [1,+∞]. For example, if Mt has the form

Mt = e−
∫ t
0 Vsds

then, by Jensen’s inequality

E{0,t}(e
−

∫ t
0 Vsds) ≤ 1

t

∫ t

0

dsE{0,t}(e
−tV s) = (55)

=
1

pt(x0, xt)
· 1

t

∫ t

0

ds

∫
S

m0(dxs)e
−tV (xs)ps(x0, xs)pt−s(xs, xt)

and the uniform boundedness of the right hand side of (55) (mod. m0) gives a
sufficient condition for (54) to be verified. If S = R, m0(dx) = dx (Lebesgue
measure) and pt(x, y) is the Wiener kernel, a simple computation shows that

e−tV (−c) ∈ Lp(R, dx) (56)

for some t > 0 and p > 1, is a sufficient condition for the uniform boundedness
of the right hand side of (55). In some cases instead of (56) one can derive a
weaker condition of the form

e−tV (−c) ∈ LPloc(R, dx)

by coupling the above mentioned estimate with a probabilistic argument
(with very low probability a particle goes outside a sufficiently large region
in the finite interval [0, t] (cf. [7] for the case of the Wiener measure).

If m(S) < +∞ then one can deduce the continuity of the action of P t
0

(resp. P t) from P P (S,m) to Lq(S,m), using the explicit form of the kernels
and a general criterion due to L.V. Kantorovich (cf. [20], pg. 417) according
to which if, for τ , σ > 0, there are constants c1, c2 such that∫

S

|k(x, y)|τm(dy) ≤ c1
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∫
S

|k(x, y)|σm(dx) ≤ c2

then pt : Lp → Lq is bounded of each p, q ≥ 1 such that q ≥ p; q ≥ σ;
(1 − σ/q)p′ ≤ r (here and in the following we shall use the notation: p′ =
p/p− 1 for p > 1, p 6=∞).

11 Self–adjointness and reflections

Self — adjointness properties of the semi–groups P t
0, P t are related to time

— reflections, as shown by the following results.

Proposition 2 Let T = R+; assume that {A, (AI)} admits a 1–parameter
family of reflections (rt) which leave µ invariant; then

i) P t
0 is self–adjoint

ii) P t∗ = E{0}rt(Mt)ut
in particular, if rt(Mt)

∗ = Mt, then P t is self–adjoint.

Remark. By self–adjointness of an operatorA : L∞(S,m0)→ L∞(S,m0),
here we mean that

〈f, Ag〉 = µ(f ∗ · [A g]) = µ([A f ]∗ · g) = 〈Af, g〉

for each f, g ∈ L1 ∩ L∞(S,m0), (* means complex conjugation).

Proof . Let a0, b0 ∈ L1 ∩ L∞(S,m0), then

〈a0, P
tb0〉 = µ(a∗0E{0}Mtut(b0)) = µ(a∗0Mtut(b0)) =

= µ(rt(a
∗
0)rt(Mt)b0) = µ(ut(a

∗
0)rt(Mt)b0) =

= 〈E{0}rt(Mt)
∗uta0, b0〉

which proves (ii). For Mt = 1 we have (i).

Proposition 3 Let T = R; assume that {A, (AI)} admits a reflection r
which leaves µ invariant. Then

i) P t
0 is self–adjoint

ii) P t∗ = E{0}utr(Mt)
∗

in particular, if utr(Mt)∗ = Mt, then P t is self–adjoint.
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Proof . Let a0, b0 ∈ L∞ ∩ L1(S,m0), then

〈a, P tb0〉 = µ(a∗aMtut(b0)) = µ(a∗0r(Mt)u−t(b0) =

= µ([r(Mt)
∗a0]∗ · u−t(b0)) =

= 〈E{0}ut[r(Mt)
∗a0], b0〉

which proves (ii) and, for M = 1, (i).

Remark 1. In the proofs above no use has been made of the commuta-
tivity of the algebras AI ; rt, r above are automorphisms of A. In the classical
case, Mt is a positive function, and M∗

t = Mt.

Remark 2. The typical example of Mt, in the classical case:

Mt = exp−
∫ t

0

Vsds = exp−
∫ t

0

usV0

satisfies both the conditions of Proposition (9.1) and (9.2).

Remark 3. Assertion (i) in both Proposition (9.1) and (9.2) admits a
partial converse, in the sense that, if P t

0 is the semi–group associated to a
Markov process and P t

0 is self–adjoint, then one can construct a 1–parameter
family of reflections (resp. a reflection in case T = R) for the local algebras
of the process.

12 Strong continuity in Lp(S,m)

Let (Σ,H, ν) be a finite or σ–finite measure space. A semi–group Qt is said
to be strongly continuous on L1 ∩ L∞(Σ, ν) if

lim
t↓0

Qtf = f ∀ f ∈ L1 ∩ L∞(Σ, ν) (57)

the limit being meant in ν–measure. In the analysis of this notion, we shall
follow [22].

Lemma 1 If Qt is strongly continuous in measure on L1∩L∞(Σ, ν) and the
map

t ∈]0, b[→ ‖Qt‖q,q (58)

is bounded for every 0 < b < +∞ and q ∈ [1,+∞], then Qt is strongly
continuous on Lp(Σ, ν) for every p ∈]1,+∞[. If, moreover, m(S) < +∞,
then the result holds for p = 1 too.

22



Proof . Let p ∈ [1,+∞[. It will be sufficient to prove that Qtf → f as
t ↓ 0 for every f ∈ L1 ∩ L∞(Σ, ν), since t 7→ ‖Qt‖p,p is locally bounded.

Let ε, δ > 0 be given. For f ∈ L1 ∩ L∞(Σ, ν) let B ⊆ Σ be a measurable
set such that:

ν(Σ−B) < δ ; |Qtf(x)− f(x)| < ε

for x ∈ B and t small enough. Such a B exists by strong continuity in
measure. One has:

‖Qtf − f‖P ≤ χlB(Qtf − f)‖P + ‖χB(P tf − f)‖P ≤

≤ Qtf − f‖∞ν(Σ−B)1/P +

{∫
B

|Qtf − f |Pdν
}1/P

≤

≤ {Qtf‖∞ + ‖f‖∞}δ1/P + ε
P−1
P {‖Qt‖1 + ‖f‖1}1/P

Since ε, δ are arbitrary, (58) implies the result.
If ν(Σ) < +∞, the assertion for p = 1 follows from

‖Qtf − f‖1 ≤ {‖Qtf‖∞ + ‖f‖∞}δ + εν(S)

Remark. The result of Lemma (10.1) is false, in general, for p = +∞,
even if M(S) < + +∞. The Wiener semi–group is a well–known conerex-
ample. In this case, in fact,

P tf(x) =

∫
R

e−(x−y)2/2t

(2π)1/2
f(y)dy ; x ∈ [0, 1]

thus P tf is continuous for every f ∈ L1 ∩ L∞([0, 1], dx) and there–‖P tf −
f‖∞ → 0, as t ↓ 0, if and only if f coincides with a continuous function out-
side a set of Lebesgue measure 0. This fact implies that P t is not strongly
continuous on L∞([0, 1], dx), but, being P t a contraction semi–group on
Lp([0, 1], dx) for p ∈ [1,∞], that it is strongly continuous on Lp([0, 1], dx)
for p ∈ [1,+∞[.

The assumptions made in § imply that (ut) acting on Lp(Ω, θ, µ) satisfies
the conditions of Proposition (10.1). Therefore also

P t
0 = E{0}ut
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satisfies these conditions. Concerning the perturbed semi–group P t = E{0}Mtut,
an obvious sufficient condition for strong continuity in measure on L1 ∩
L∞(E,m0) is that

lim
t↓0
|P tf − P t

0f | = lim
t↓0
|E{0}([Mt − 1]ut(f))| = 0 (59)

in measure for each f ∈ L1 ∩ L∞(S,m0).

Lemma 2 The condition (59) is satisfied if

lim
t↓0

E{0}(Mt) = 1 ; mq a.l. (60)

and if, for some a > 0 and M = M(a) ∈ R, one of the following conditions
is satisfied:

‖Mt‖L∞(Ω,µ) ≤M ; ∀ t ∈]0, a[ (61)

‖E{0}(MP
t )‖∞ ≤M ; ∀ t ∈]0, a[, for some p ∈]1,+∞[ (62)

‖E{0,t}(Mt)‖L∞(Ω,µ) ≤M ; t ∈]0, a[ (63)

‖E{0}(MP
t )‖1 ≤M, ∀ t ∈]0, a[, for some p ∈]1,+∞[ (64)

Proof . Let f ∈ L1 ∩ L∞(S,m0); one has:

|P tf − P t
0f | = |E{0}([Mt − 1]ut(f))| ≤ (65)

≤ |E{0}(Mt[utf−])|+ |E{0}(Mt) · f − P t
0f |

Now, |E{0}(Mt[utf−f ])| is ≤ 1 than any of the following three quantities:

‖Mt‖∞ · E{0}(|utf − f |)

E{0}(M
P
t )1/PE{0}(|ut − f |P

′
)1/P ′

‖E{0,t}(Mt)‖∞ · E{0}(|utf − f |)

hence, if any of the conditions (61), (62), (64), is satisfied, it tends to zero
as t ↓ 0.

Moreover |E{0}(Mt)f | is ≤ then any of the following three quantities;

‖Mt‖∞ · |f | ; E{0}(M
P
t )1/P |f | ; ‖E{0,t}(Mt)‖∞ · |f |
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Thus, if any of the conditions (61), (62), (63) is satisfied, it tends to zero
in L1(S,m) by (60) and dominated convergence; hence in measure.

Concerning the condition (64), we remark that, if f ∈ L1 ∩ L∞(S,m),
then

m|E{0}(Mt[utf−f ])| ≤ µ(Mt|utf−f |) ≤ ‖Mt‖P‖utf−f‖P ′ = ‖E{0}(MP
t )‖1/P

1 ·‖utf−f‖P ′

Moreover, if B ⊆ S, then

m(E{0}(Mt)fχB
) ≤ ‖E{0}(MP

t )‖1/P
1 ‖f‖P

′/1
∞ m(|f |χB

)

therefore, if (64) holds, the family of functions

{E{0}(Mt)f : t ∈]0, a[}

is uniformly integrable with respect to m. Hence by Vitali’s theorem and
(60), E{0} (Mt)f → f in L1(m) as t ↓ 0.

Remark. The conditions (61), (62), (63) also imply that (58) is satisfied;
hence that P t is strongly continuous on LP (S,m0).

There are many sufficient conditions which assure that the H0 + V0 is
well defined as an operator (or as a quadratic form), and that the equality
H = H0 − V0 holds on a core for these operators (resp. in the sense of
quadratic forms). We shall not discuss these conditions here, and refer to
the papers [7], [11], [22], and the bibliography therein.

13 Compactness conditions

The knowledge of he explicit form of the kernel kt(x, y) of the semi–group P t

allows one to apply to P t the known compactness criteria for linear operators
from LP (S,m0) to Lq(S,m0). For example, if

m0(S) < +∞ (66)

then a sufficient condition for the compactness of P t : LP (S,m0)→ Lq(S,m0)
is that ∫ ∫

|kt(x, y)|r′m0(dx)m0(dy) < +∞ (67)

with 1 ≤ q < +∞, r = min(p, q′), 1/r + 1/r′ = 1 (cf. [20], pg. 425).
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Therefore, if m0(S) < +∞ and if∫ ∫
|pt(x, y)|r′m0(dx)m0(dy) < +∞ (68)

the same kind of conditions which guarantee the continuity of P t : LP (S,m0)→
Lq(S,m0) (cf. § (8)) will guarantee the compactness. For example, under
the assumptions (66) and (68, the condition

‖E{0,t}(Mt)‖∞ < +∞

is a sufficient condition for the compactness of P t : LP (S,m0)→ Lq(S,m0).
If m0(S) = +∞, the compactness of P t : Lp(S,m0) → Lq(S,m0) is

equivalent to compactness on regions of finite measure, plus a “tail condition”
which is formalized as follows:

Lemma 3 A linear operator A : Lp(S,m0) → Lq(S,m0) is compact if and
only if there exists a sequence (Sn) such that

Sn ⊆ Sn+1 ⊆ S ; m0(Sn) < +∞ ;
⋃
n

Sn = S (69)

χSN
A is compact for each n; χSn(x) = { 0 x /∈ Sn1x ∈ Sn (70)

lim
n
‖χS−SnA‖p,q = 0 (71)

Proof . Sufficiency . χS−SnA = A−χSnA. Hence, if conditions (69), (70),
(71) are satisfied, A is norm limit of compact operators, therefore compact.

Necessity . If A is compact, χS′A is compact for each S ′ ⊆ S. Let ε > 0;
B1–the unit ball in LP (S,m0); f1, . . . , fn an ε/3 net for A(B1) ⊆ Lq(S,m0).
Let S1 ⊆ S be such that m0(S1) < +∞, and

‖chiS−S1fj‖q < ε/3 ; j = 1, . . . , n

Then, for each g ∈ B1, one has

‖χS−S1Ag‖q ≤ ε (72)

In fact, if g ∈ B1 is such that (72) is false, then for some j = 1, . . . , n:

ε/3 ≥ ‖fj − Ag‖q ≥ ‖chiS−S1(fj − Ag)‖q ≥
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≥ | ‖χS−S1Ag‖q − ‖χS−S1fj‖q| ≥ ε− ε/3 = 2/3ε

which is absurd. And this ends the proof.
Let us consider the “tail estimate” (71) for the semi–group P t. We shall

deal only with the estimate of ‖χS−S1P
t‖q,q; the method for the estimate of

‖χS−S1P
t‖p,q, p 6= q, is similar.

Let f ∈ Lq(S,m0). Then if S1 ⊆ S

‖χS−S1P
tf‖qq ≤

∫
χS−S1(x)m0(dx)

∫
kt(x, y)q|f(y)|qm0(dy) =

=

∫
|f(y)|qm0(dy)

∫
χS−S1(x)kt(x, y)qm0(dx)

therefore

‖chiS−S1P
t‖q,q

{
sup
y∈S

∫
S−S1

kt(x, y)qm0(dx)

}1/q

≤ (73)

≤
{

sup
y∈S

∫
S−S1

pt(x, y)qE{0,t}(M
q
t )(x, y)m0(dx)

}1/q

If Mt has the form
Mt = e−

∫ t
0 Vsds (74)

or is majorized by a functional of this form, then, using Jensen’s inequality
as in formula (51) we obtain, using (48):

‖χS−S1P
t‖qq,q ≤ sup

y∈S

∫
S−S1

m0(dx)
1

t

∫
0

ds

∫
S

m0(dz) · ps(x, z)pt−s(z, y)e−tqV (z)

(75)
In order to estimate∫

S−S1

m0(dx)

∫
S

m0(dz)ps(x, z)pt−s(z, y)e−tqV (z)

let us write it in the form:∫
S2

m0(dz)ps(S − S1, z)pt−s(z, y)e−tqV (z)+

+

∫
S−S2

m0(dz)ps(S − S1, z)pt−s(z, y)e−tqV (z)
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where S2 ⊆ S1 and we use the notation

ps(S − S1, z) =

∫
S−S1

m0(dx)ps(x, z)

The first integral is majorized by

ε(S2, S − S1; s)

∫
S

m0(dz)pt−s(z, y)e−tqV (z)

where
ε(S2, S − S1; s) = sup{ps(S − S1, z) : z ∈ S2}

and the second integral is majorized by

δ(V, S − S2)

∫ t

0

ds

∫
S

m0(dz)ps(S − S1, z)pt−s(z, y) =

= δ(V, S − S2)t · pt(S − S1, y)

where
δ(V, S − S2) = sup{etqV (z) : z ∈ S − S2} .

Now, if V (z) → +∞ as z → +∞ (in the sense that ∀λ > 0 there exists
S2 ⊆ S, m0(S2) < +∞, such that V (x) > λ for x ∈ S−S2), δ(V, S−S2) can
be made arbitrarily small by choosing S2 large enough.

The condition that ε(S2, S − S1; s)→ 0 uniformly in s ≤ t, for S2 and S1

sufficiently large has a simple probabilistic interpretation: let, for simplicity,
S be a metric space and interpret the Markov process defined by m0 and P t

0

(according to § (3)) as describing the motion of a particle in the “position
space” S. Then ps(x, y) is the probability density that the particle jumps
from position x at time 0 to position y at time s. If S2 is the ball centered at
an arbitrary point x0 ∈ S and with radius a > 0, and S1 is the ball centered
at x0 and with radius a+ d, then the condition

sup
s≤t

ε(S2, S − S1, s)→ 0 as a→ +∞, d→ +∞

means that the probability that in a time ≤ t the particle makes a jump of
“lenght” ≥ d becomes negligible asd→ +∞.
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14 Asymptotic estimates

Assume that P t : L2(S,m0) → L2(S,m0) is compact self–adjoint. Then
there is an orthonormal basis (Φn) in L2(S,m0) and an increasing divergent
sequence λ0 ≤ λ1 ≤ . . . ≤ λn . . . of real numbers such that

kt(x, y) =
∑
n

e−λntΦn(x)Φn(x) (76)

The fundamental idea of M. Kac (cf. [18], [29]) is to compare the classical
expansion (76) to the representation of kt(x, y) in terms of functional integrals

kt(x, y) = pt(x, y)E{0,t}

(
e−

∫ t
0 Vsds

)
(x, y) (77)

in order to obtain informations on the asymptotic behaviour, as λ → +∞,
of the quantity

N(λ) =
∑
λn<λ

1 (78)

representing the number of eigenvalues of the generators of P t.
Remark that

kt(x, x) =
∑
n

e−λnt|Φn(x)|2 =

∫ ∞
0

e−λ
t

dNx(λ) (79)

where
Nx(λ) =

∑
λn<λ

|Φn(x)|2 (80)

and, because of (77)

kt(x, y) = pt(x, x)E{0,t}(e
−

∫ t
0 Vsds)(x, x) (81)

Thus, if

E{0,t}(e
−

∫ t
0 Vsds)(x, x)→ 1, as t→ 0 (82)

and this is surely the case if, for example, V0 ∈ Lp(S,m0) for some p ∈ [1,+∞]
(cf. [22], Lemma (3.2)), then∫ ∞

0

e−λtdNx(λ) ∼ pt(x, x), as t→ 0
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where, here and in the following, at ∼ bt, as t→ 0, means

lim
t→0

at/bt = 1

Therefore, if pt(x, y) (i.e. the kernel of P t
0) satisfies

pt(x, x) ∼ A

ty
, as t→ 0+ (83)

for A > 0 and γ > 0, the Hardy–Littlewood–Karamata theorem ([36], pg.
192) implies that

Nx(λ) ∼ Aλγ

Γ(γ + 1)
, as λ→ +∞ . (84)

Now assume that m0(S) < +∞, and that the convergence in (82) is
dominated (for example: V0–bounded below), then (81) and (83) imply that∫

S

kt(x, x)m0(dx) =
∑
n

e−λnt =

∫ ∞
0

e−λtdN(λ) ∼ (85)

∼ A

ty
m0(S) as t→ 0

therefore, again by Hardy–Littlewood–Karamata’s theorem

N(λ) ∼ m0(S)A

Γ(y + 1)
λγ as λ→ +∞ (86)

In the case of he Wiener kernel

pt(x, y) =
e−|x−y|

2/2t

(2πt)N/2
; x, y ∈ RN

pt(x, x) ∼ 1

(2πt)N/2
, as t→ 0

If m0(S) = +∞, the estimate of N(λ), for λ→ +∞, will depend on the
behaviour at infinity of V = V0. The form of this dependence is deduced
from the estimates in the following Lemma:
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Lemma 4 In the above notations, one has:∫
S

kt(x, x)m0(dx) ≤ (87)

≤
∫
S

m0(dx)pt(x, x)
1

t

∫ t

0

dsE{0,t}(e
−tV )(x, x)∫

S

kt(x, x)m0(dx) ≤ (88)

≤
∫
S

m0(dx)pt(x, x)e−
∫ t
0 E{0,x}(Vs)(x,x)ds

Proof . Immediate consequence of (77) and Jensen’s inequality.
A corollary of the Lemma above is that, if the kernel pt(x, y) (of P t

0) is
symmetric (i.e. if P t

0 is self–adjoint), then∫
S

kt(x, x)m0(dx) ≤
∫
S

m0(dx)pt(x, x)
1

t

∫ t

0

dsE{0,t}(e
−tVs)(x, x) =

=

∫
S

m0(dx)
1

t

∫ t

0

ds

∫
S

m0(dz)ps(x, z)pt−s(z, x)e−t(z) =

=

∫
S

m0(dz)pt(z, z)e−tV (z)

Thus for symmetric pt(x, y) one has∫
S

kt(x, x)m0(dx) ≤
∫
S

m0(dz)pt(z, z)e−tV (z) (89)

In the following we shall always assume the pt(x, y) is symmetric. Our aim
is now to prove the following basic estimate:∫

S

kt(x, x)m0(dx) ∼(t→0)

∫
S

pt(x, x)e−tV (x)m0(dx) (90)

which is the main tool in the estimates of WKB type. This estimate will be
established under certain assumptions on the “potential” V , which have a
natural probabilistic interpretation. We will prove, using an idea of D. Ray
[29], that ∫

S

m0(dx)pt(x, x)e−
∫ t
0 E{0,t}(Vs)(x,x)ds (91)
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∼(t→0)

∫
S

m0(dx)pt(x, x)e−tV (x)

and this, together with (88) and (87) implies (90). In the course of the proof
we will assume that there is a T > 0 such that, for each 0 < t < T

0 <

∫
S

m0(dx)pt(x, x)e−tV (x) < +∞

To prove (91), first remark that∫
S
m0(dx)pt(x, x) exp

{
−
∫ t

0
E{0,t}(Vs)(x, x)ds

}
∫
S
m0(dx)pt(x, x) exp{−tV (x)}

≤ 1 (92)

because of (88) and (89). Denoting It the right hand side of (92), (91) is
equivalent to

lim
t→0

It = 1 (93)

Let us introduce the notation, for A ⊆ S

νt(A) =

∫
A
pt(x, x)e−tV (x)m0(dx)∫

S
pt(x, x)e−tV (x)m0(dx)

(94)

The νt is a probability measure and

It =

∫
S

νt(dx)e−{
∫ t
0 dsE{0,t}Vs)(x,x)−tV (x)} (95)

Fix a number 0 < α < 1, and define, for x ∈ S

Ut(x) = {z ∈ S : |V (z)− V (x)| < 1/ta} (96)

One has:∫
S

νt(dx) exp

{
−(1/ta)

∫ t

0

ds

∫
Ut(x)

m0(dz)
ps(x, z)pt−s(x, z)

pt(x, x)

}
(97)

· exp

{
−
∫ t

0

ds

∫
S−Ut(x)

ps(x, z)pt−s(z, x)

pt(x, x)
[V (z)− V (x)]

}
≤ It

or, equivalently∫
S

νt(dx) exp

[
−t1−a

{
1− 1/t

∫ t

0

ds

∫
S−ιt(x)

m0(dz)
ps(x, z)pt−s(z, x)

pt(x, x)

}]
·

(98)
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· exp

[
−
∫ t

0

ds

∫
S−Ut(x)

ps(x, z)pt−s(z, x)

pt(x, x)
[V (z)− V (x)]

]
≤ It

Since clearly ∫ t

0

ds

∫
S−Ut(x)

m0(dz)
ps(x, z)pt−s(z, x)

pt(x, x)
≤ t

it follows that

e−t
1−a ·

∫
S

νt(dx)e
−

∫ t
0 ds

∫
S−Ut(x)

ps(x,z)pt−s(z,x)

pt(x,x)
[V (z)−V (x)]m0(dz) ≤ It (99)

Let us introduce the assumption (we shall prove elsewhere that it can be
weakened)

V (x) ≥ 0 ; m− ∀x ∈ S (100)

Then (99) and (100) imply that

It ≥ e−t
1−a

∫
S

νt(dx)e
−

∫ t
0 ds

∫
S−Ut(x)

ps(x,z)pt−s(z,x)

pt(x,x) V (z) = (101)

= e−t
1−a

+

∫
S

νt(dx)

[
e
−

∫ t
0 ds

∫
S−Ut(x)

m0(dx)
ps(x,z)pt−s(z,x)

pt(x,x)
V (z) − 1

]
Therefore we see that, if V satisfies the “diffusion type” condition

label12.27 sup
x∈S

∫ t

0

ds

∫
S−Ut(x)

m0(dz)
ps(x, z)pt−s(z, x)

pt(x, x)
V (z) ≤ %(t) (102)

with %(t) → 0 as t→ 0, then

lim
t→0

∫
S

νt(dx)

[
e
−

∫ t
0 ds

∫
S−Ut(x)

m0(dx)
ps(x,z)pt−s(z,x)

pt(x,x)
V (z) − 1

]
= 0

therefore
lim
t→0

inf It ≥ 1

hence, because of (??)
lim
t→0

It = 1

which is our thesis. Summing up
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Theorem 1 In the assumptions of this §, if
i) 0 <

∫
S
m0(dx)pt(x, x)e−tV (x) < +∞; 0 < t < T

ii) V ≥ 0

iii) supx∈S
∫ t

0
ds
∫
S−Ut(x)

m0(dz)ps(x,z)pt−s(z,x)
pt(x,x)

V (z) ≤ %(t)
→0

(t→ 0)

then the estimate (91), hence (90), holds.

Proof . From the above discussion.
Condition iii) has a simple probabilistic interpretation. First of all, re-

mark that it can be written in the form:

sup
x∈S

∫ t

0

dsE{0,t}(χ
(s)
S−Ut(x)Vs)(x, x) ≤ %(t)

→0

(t→ 0)

where χA is the characteristic function of the set A, and χ
(s)
A = us(χA) where

us is the shift (cf. § (0) and (1)). Now, the quantity

E{0,t}(χ
(s)
S−Ut(x)Vs)(x, x)

defines the expectation value of the observable Vs computed along the tra-
jectories which begin at x at time 0, end up in x at time t, and such that at
time s the “particle” has a “position” z, whose “potential energy” satisfies:

|V (z)− V (x)| ≥ 1/ta (103)

Thus, condition iii) means that these trajectories give contribution to the
expectation value the more negligible, the smaller t.

In order words: it is very unlikely that, within an interval of time t, very
small, a particle starting from x at time 0 reaches a level of “potential energy”
V (z) which differs from V (x) more than 1/ta.

15 Quantum case: L∞–theory

From now on {A, (AI)} will be a system of local C∗–algebras. We keep the
notations and assumptions of § (1); then the results of § (2) yield a completely
positive, identity preserving semi–group

Z0(t) = E]−∞,0]ut : A0 → A0 (104)

Such a semi–group will be called a quantum markovian semi–group.
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Applying the perturbation theory of § (4) with a completely positive
perturbation M̃t, we obtain a completely positive semi–group

Z(t) = E]−∞,0]M̃tut : A0 → A0 (105)

For a large class of algebras A0 the infinitesimal generators of completely
positive semi–groups (also called quantum dynamical evolutions) have been
characterized in a series of papers started with the important results of Gorini
– Kossakowski – Sudarshan (A0–finite dimensional) [15] and Lindblad [23]
(A0 = B(H) for some Hilbert space H, and bounded generator), which have
been generalized to more general algebras [24], and to the case of unbounded
generator [9].

A simple example of completely positive map Mt : A → A is given by

M̃t(a) = MtaM
∗
t , a ∈ A (106)

For such a map the conditions (23), (24) are easily seen to be equivalent
to

MtaM
∗
t ∈ A[0,t] , ∀ a ∈ A[0,t] (107)

Mtut(MsautMs)
∗M∗

t = Mt+saM
∗
t+s ; ∀ a ∈ A[0,t] (108)

Therefore, for such a map, if conditions (107) and (108) are satisfied, one
can assume, without changing the action of Z(t) on A0, that

Mt ∈ A[0,t] (109)

Mt+s = Mtut(Ms) (110)

Conversely it is obvious that (109) and (110) imply (23), (24) for M̃t given
by (106). Remark that (109) and (110) are the conditions which, according
to Definition (4.1), define a markovian cocycle.

Assuming Ms invertible for each t, we will consider two families of marko-
vian cocycles:

– hermitian markovian cocycles: Mt = e−V[0,t]

– unitary markovian cocycles: Mt = eiV[0,t]

where in both cases V[0,t] is an hermitian operator in A[0,t] (if A is realized
as an algebra of operators on some Hilbert space H, then we can allow V[0,t]

to be an unbounded self–adjoint operator affiliated to A[0,t]. In the hermitian
case we shall therefore add the regularity condition

E{0}(e
−2V[0,t]) ∈ A0
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where the left hand side is defined by normality).
Introducing the notation

V[s,t+s] = us(V[0,t]) (111)

the cocycle condition (110) becomes

e−V[0,t+s] = eiV[0,t]e−V[t,t+s] (112)

in the hermitian case and, in the unitary case,

eiV[0,t+s] = eiV[0,t]eiV[t,t+s] (113)

In the hermitian case the operator Mt and ut(Ms) must commute.
Therefore condition (112) is equivalent to

V[0,t+s] = V[0,t] + V[t,t+s] (114)

Thus, under suitable regularity conditions, the generic form of a hermitian
markovian cocycle is

Mt = e−
∫ t
0 Vsds ; Vs = us(V0) (115)

for some operator valued distributions Vs. More precisely we can say that
the structure theory of hermitian markovian cocycles is reduced to the clas-
sical structure theory of multiplicative functionals. The situation is different
for unitary markovian cocycles. Under suitable regularity conditions, their
generic form is given by a time–ordered exponential

Mt = T (e−
∫ t
0 Vds) ; Vs = us(V0) (116)

(for the definition and properties of time–ordered exponentials, cf. [6], [26]).
As in the classical case, one can express the formal generator of Z(t) as

a “perturbation” of the formal generator of Z0(t). In fact, let

δ0 = lim
t↓0

1

t
{Z0(t)− 1}

δ = lim
t↓0

1

t
{Z(t)− 1}
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where, here and in the following, all the limit are meant in a formal way.
Since, for a0 ∈ A0,

Z(t)a0 − a0 = E{0}M̃tut(a0)− a0 =

= {E{0}uta0 − a0}+ E{0}([M̃t − 1]ut(a0)) =

= {Z0(t)a0 − a0}+ E{0}([M̃t − 1]ut(a0))

it follows that
δ(a0) = δ0(a0) + Ã0(a0) (117)

where

Ã0(a0) =
d

dt

∣∣∣
t=0
M̃t(a0) = lim

t↓0

1

t
{M̃t(a0)− a0}

In particular, if M̃t has the form

M̃ta = MtaM
∗
t (118)

one has
Ã0(a0) = A0a0 + a0A

∗
0

A0 =
d

dt

∣∣∣
t=0
Mt = lim

t↓0

1

t
{Mt − 1}

For an hermitian (resp. unitary) markovian cocycle of the form (115)
(resp. (116)) the formal derivative can be explicitly performed, giving:

A0a0 = −V0a0 (resp. A0a0 = iV0a0)

therefore, in this cases, one has, for hermitian markovian cocycles of the form
(115

δa0 = δ0a0 − {V0, a0}

— where {·, ·} denotes the anti–commutator — and, for unitary markovian
cocycles of the form (116)

δa0 = δ0a0 + i[V0, a0]

where [·, ·] denotes the commutator.
Using a perturbation M̃t of more general form one can obtain the full

Lindblad’s form of generators of quantum dynamical evolutions, according
to the equality (117).
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16 Quantum case: L2–theory

Let A, (AI), (ut), (EI) be as in § (1). We hall now assume that the AI are
W ∗–algebras and that on A a locally normal state ϕ has been given which is
ut–invariant and EI–invariant, namely:

ϕ · ut = ϕ, ∀ t (119)

ϕ · EI = ϕ , ∀ I ∈ F (120)

Let H, π, 1ϕ denote the GNS triple associated to A and ϕ (cf. [30]) and
denote, for I ∈ F

HI = [π(AI) · 1ϕ] = norm closure in H of π(AI) · 1ϕ .

(119) implies that there is a 1–parameter unitary group (Ut) on H such that

π(uta) · 1ϕ = Utπ(a) · 1ϕ ; a ∈ A (121)

and (120) implies that, denoting eI the orthogonal projection H → HI , one
has

π(EIa) · 1ϕ = eIπ(a) · 1ϕ ; a ∈ A (122)

In these notations, the covariance condition (7) is equivalent to

UtHI = HI+t ⇔ uteIu
∗
t = eI+t (123)

and the Markov property (13) to:

e]−∞,t]H[t,+∞[ ⊆ H{t} (124)

The locality condition I ⊆ J ⇒ AI ⊆ AJ implies that

I ⊆ J ⇒ eIeJ = eI (125)

One easily verifies that conditions (123), (124), (125) imply that P t
0, de-

fined by
P t

0 = e{0}Ut ⇀ H{0} ; t ≥ 0 (126)

is a semi–group H{0}, whose adjoint in H{0} → H{0} is given by:

P t∗
0 = e{0}U

∗
t ⇀ H{0} (127)

The semi–group P t
0 is positivity preserving, in the sense that the positive

cone H+
{0} = closure of π(A+

{0}) ·1 in H is mapped into itself by P t
0. Moreover

P t
0(1ϕ) = 1ϕ. For the positivity of P t

0 in the Hilbert space sense, cf. the
remark after Proposition (14.5).
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Proposition 4 The following conditions are equivalent:
i) P t

0 : H{0} → H{0} is self–adjoint; t > 0
ii) e{0}Ute{0} is self–adjoint; t > 0
iii) ϕ(a0ut(b0)) = ϕ(ut(a0)b0); ∀ a0, b0 ∈ A0.

Proof . The equivalence i) ⇔ ii) follows from

〈e{0}, P t
0e{0}η〉 = 〈ξ, e{0}Ute{0}η〉 ; ξ, η ∈ H

The equivalence ii) ⇔ iii) follows from

〈π(a0) · 1ϕ, Utπ(b0) · 1ϕ〉 = ϕ(a∗0Ut(b0)) ; a0, b0 ∈ A0

and the fact that π(A0) · 1ϕ is dense in H{0}.
Remark that property iii) is a weak form of reflection invariance. Thus

Proposition (14.1) implies that, also in the quantum case, reflection invari-
ance is a sufficient condition for self–adjointness. We shall only consider the
case in which the set of indices in R and the reflection is t 7→ −t (in the case
of R+ one has to consider a 1–parameter family of reflections, but the proof
is similar).

Corollary 1 Let R be the set of indices. Assume that there is an automor-
phism r : A → A such that:

r ⇀ A{0} = id (128)

r · ut = u−tr (129)

ϕ · r = ϕ (130)

Then P t
0 is self–adjoint.

Proof . Under our assumptions, ∀ a0, b ∈ A0

ϕ(a0ut(b0)) = ϕ(u−t(a0)b0) = ϕ(r[u−t(a0)b0]) = ϕ(ut(a0)b0)

thus condition ii) of Proposition (14.1) is satisfied.
More generally, we have:
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Corollary 2 Assume that there exists an operator R:

R : H → H such that:

R∗UtR = U∗t (131)

Re{0} = e{0} (132)

then P t
0 is self–adjoint.

Proof . Under our assumptions, one has

(e{0}Ute{0})
∗ = e{0}U

∗
t e{0} = e{0}R

∗UtRe{0} = e{0}Ute{0}

thus condition (ii) of Proposition (14.1) is satisfied.
In the classical case a markovian semi–group is unitary if and only if it is

induced by a point transformation. The situation is similar in the quantum
case.

Proposition 5 The following assertions are equivalent:
i) P t

0 is unitary
ii) e{0}Ute{0} is unitary
iii) e{0}e{t}e{0} = e{0} = e{0}e{−t}e{0}.

Proof . Clearly i) ⇔ ii) and

P t∗
0 P

t
0 = e{0}U

∗
t e{0}Ute{0} = e{0}e{−t}e{0}

P t
0P

t∗
0 = e{0}Ute{0}U

∗
t e{0} = e{0}e{t}e{0}

thus i) ⇔ iii).
Remark that, if the conditions of Corollary (14.3) are verified, then the

two equalities in condition iii) are equivalent.
Perturbations of P t

0 can be introduced at a Hilbert space level. Let M t :
H → H be a linear operator localized in H[0,t], in the sense that

M te[0,t] = e[0,t]M t ; (133)

defining
P t = e{0}M tUt (134)

one again verifies that the cocycle property

M t+s = M tUt(M s)U
∗
t (135)
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is sufficient for P t to be a semi–group and that, conversely, if P t is a semi–
group, one can assume that (135) holds without changing the action of P t.

Remark. In general P t will not be positivity preserving in the sense that
the positive cone H+

{0} = [π(A+
{0}) · 1ϕ] is mapped into itself. Moreover, while

P t
0π(a0)1ϕ = π(Z0(t)[a0]) · 1ϕ

no such relation holds for P t even if M t has the form

M t = π(Mt) (136)

for some Mt ∈ A[0,t]. In fact, as one easily verifies, if (136) holds, then,
∀ a0 ∈ A0

P tπ(a0)P t∗ = π(E{0}(Mtut(a0)M∗
t )) = π(Z(t)[a0]) (137)

However, if Mt is “well behaved” with respect to time reflections, then for
each t, P t is a positive operator in the Hilbert space sense. More precisely
(cf. [28] and [31], theorem (5.4)):

Proposition 6 Let R be as in Corollary (14.3). Then
i) a sufficient condition for the self–adjointness of P t is

RM∗
t R = U ∗tMtUt (138)

ii) if, moreover, R is an involution and

ReI = e−IR ; I − interval in R (139)

then P t is positive in the Hilbert space sense.

Proof . i) is obvious since, in this case

P t∗ = e{0}U
∗
tM

∗
t e{0} = e{0}R

∗UtRM
∗
t Re{0} =

= e{0}UtU
∗
tMtUte{0} = P t .

Under the assumption ii) one has, for ξ ∈ H{0}2 :

〈ξ, P tξ〉 = 〈ξ,MtUtξ〉 = 〈ξ,Mt/2(Ut/2Mt/2U
∗
t/2)Utξ〉 =

= 〈U∗t/2ξ, (U∗t/2Mt/2Ut/2)Mt/2Ut/2ξ〉 =

= 〈R∗Ut/2Rξ,RM∗
t/2R(Mt/2Ut/2)ξ〉 =

= 〈Mt/2Ut/2ξ, R(Mt/2Ut/2)ξ〉 = ‖P t/2ξ‖2
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the last equality being due to the fact that

e[0,t/2]Re[0,t/2] = Re[−t/2,0]e[0,t/2] =

= Re[−t/2,0]e[−∞,0]e[0,t/2] = Re{0} = e{0}

Remark 1. In particular, under the assumptions of Corollary (14.5),
with Ms = 1 for each s, P t

0 is always a positive operator in H{0}.
Remark 2. If the process {A, (AI), ϕ} admits a time reversal, i.e. an

automorphism or anti–automorphism) r : A → A such that: i) ϕ ◦ r = ϕ; ii)
r ◦ ut = u−t ◦ r; iii) r ⇀ A0 = id; iv) r2 = id; v) rAI = A−I(I ⊆ R); then
an involution R : H → H satisfying (131), (132) and (139) can be defined by
Rπ(a)1ϕ = π(r(a))1ϕ (a ∈ A).

Remark 3. If M t has the form (136) then the semi–group P t can be
characterized by the property

ϕ(a0Mtut(b)) = ϕ0(a0P
tb0) (140)

∀ a0, b0 ∈ A0, (ϕ0 = ϕ ⇀ A0)

An equality of type (140) is frequently called a “Feynman–Kac–Nelson
formula”. R. Schrader and D.A. Unhlenbrock [31] prove such an equality in
the context of Clifford algebras over real Hilbert spaces and for a particular
choice of the perturbation Mt, using the Trotter product, or the Duhamel,
formula.

The point of view advocated in the present paper is that, just as in the
classical case, a quantum Feynman–Kac formula can be used to construct
a perturbed semi–group, for a given local perturbation Mt, even in cases in
which the above mentioned formulae are not applicable.

Since, for y ∈ H{0}
1

t
{P ty − y} =

1

t
{e{0}MtUty − y} =

=
1

t
{e{0}Uty − y}+

1

t
{e{0}[Mt − 1]Uty}

denoting H0 (resp. H) the generator of P t
0 (resp. P t), one has the formal

identity
Hy = H0y + V0y

where

V0 = lim
t↓0

1

t
{Mt − 1} =

d

dt

∣∣∣
t=0
Mt
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