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ABSTRACT

In the present paper, the basic ideas of the stochastic limit of quantum
theory are applied to quantum electro-dynamics. This naturally leads to the
study of a a new type of quantum stochastic calculus on a Hilbert module.
Our main result is that in the weak coupling limit of a system composed
of a free particle (electron, atom,...) interacting, via the minimal coupling,
with the quantum electromagnetic field, a new type of quantum noise arises,
living on a Hilbert module rather than a Hilbert space. Moreover we prove
that the vacuum distribution of the limiting field operator is not Gaussian,
as usual, but a nonlinear deformation of the Wigner semi—circle law. A third
new object arising from the present theory, is the so called interacting Fock
space. A kind of Fock space in which the n quanta, in the n-particle space,
are not independent, but interact. The origin of all these new features is
that we do not introduce the dipole approximation, but we keep the expo-
nential response term, coupling the electron to the quantum electromagnetic
field. This produces a nonlinear interaction among all the modes of the limit
master field (quantum noise) whose explicit expression, that we find, can be
considered as a nonlinear generalization of the Fermi golden rule.

1 Introduction

Quantum electro-dynamics (QED) studies the interaction between matter
and radiation. Due to the nonlinearity of this interaction (c.f. (2) below),
an explicit solution of the equations of motion is not known and, for their
study, several types of approximations have been introduced.

Probably the best known of these approximations is the dipole approxima-
tion in which the so called response term (e?*? in (2)) which couples matter,
represented by a electron in position ¢, to the k-th mode of the EM-field, is
assumed to be 1. The dipole approximation has its physical motivations in
the fact that, at optical frequencies and for atomic dimensions one estimates
that k- g ~ 107 (cf. [10] ) and therefore very small. Most of the concrete
applications of QED (e.g. in quantum optics, laser theory, ...) have been ob-
tained under the dipole approximation or by replacing the response term by
the first few (at most 3) terms in its series expansion (the so—called multipole
terms).

The first step towards the elimination of the dipole approximation was
done in [2], [3], where the quasi-dipole approxzimation was introduced. In the



present investigation this approximation is not assumed: we shall just keep
the response term.

The most surprising consequence of this more precise analysis is that the
limiting noise, which approximates the quantum electromagnetic field is no
longer a quantum Brownian motion, but a nontrivial generalization of the
free noises, introduced by Kiimmerer and Speicher [9], [16] who were inspired
by Voiculescu’s free central limit theorems [17], and developed by Fagnola in
[7]. This free noise has been generalized by Bozejko and Speicher [5], [6] and
the quantum noise which, according to the present paper, arises canonically
from QED is a further generalization in this direction.

The main difference between the usual gaussian and the so—called free
gaussian fields is that the vacuum expectation values of products of creation
and annihilation fields are obtained, in the free gaussian case, by summing
the products of pair correlation functions not over all the pair partitions, as
in the usual (boson or fermion gaussian) case, but only on the so—called non
crossing pair partitions, defined in Section 5 of the present paper. In
terms of graphs this means that the summation does not run over all graphs,
but only over the so—called rainbow (or half-planar — cf. [20]) graphs.
However it seems that the connection between these graphs and the Wigner
semi—circle law was not realized in the previous physical literature.

Another novel feature, arising from the present analysis (and which al-
ready emerged at the level of quasi-dipole approximation (cf. [3])) is that
the noise does not live on a Hilbert space, but on a Hilbert module over
the momentum algebra of the electron. This Hilbert module is described in
Section §7 of the present article. The general notion of Hilbert module was
introduced for purely mathematical reasons and up to now this notion had
found its main applications in K-theory for operator algebras (we refer to [4],
8], [14], [15], for the general theory of Hilbert modules). This circumstance
has required the developement of a theory of quantum stochastic calculus
over a Hilbert module (see [11], [12], [13]).

A third result of the present analysis is the emergence of a new type of
Fock space, which we call the interacting Fock space because the quanta
in the n-particle space are not independent but interact in a highly nonlin-
ear way (cf. Section 7 below and in particular Theorem 4). The vacuum
distribution of the field operators in this space is not Gaussian but a non-
linear modification of the Wigner semicircle law to which it reduces exactly
when the nonlinear factor arising in the interacting Fock space is put equal to
zero. The Wigner semicircle law was discovered by Wigner [18] starting from
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a purely phenomenological model to mimic the behaviour of Hamiltonians of
heavy nuclei. It is rather surprising that it arises naturally in QED and that
its appearance is accompanied by the emergence of some new mathematical
structures whose properties make them natural candidates for the description
of those phenomena in which the self-interaction of quantum fields plays an
essential role.

Since the dipole approximation is effective at low frequencies and small
atomic dimensions, it is reasonable to hope that the results of the present
paper might shed some light on a class of phenomena in which high fre-
quencies or finite atomic dimensions play an essential role. The systematic
investigation of this possibility seems to deserve further attention.

The outline of the present paper is as follows: in Sectionl we describe the
Hamiltonian model: it is essentially a generalization of the Frolich polaron
Hamiltonian, to which it reduces when one puts p = 1 and replaces the fac-
tor 1/Sectiongrt| k| by 1/ | k | in formula (2) below, which describes the
interaction Hamiltonian. In Section2 we describe the collective vectors and
determine the 2-point function of the quantum noise, to which the initial
quantum field converges when A\ — 0. Section Sectiond is devoted to prove
the non Gaussianity of the limit noise. It describes, in the simplest possible
case of the 4-point function, the mechanism through which only the non
crossing pair partitions (rainbow graphs) survive in the limit. This essen-
tially results from a combined effect of the CCR plus the Riemann—Lebesgue
Lemma. The full limit space of the quantum noise is obtained in Section4.
In Section5 we introduce some combinatorial properties of the non crossing
pair partitions which shall be used in the following sections. The technical
core of the paper is Section6, where we obtain the limit of the joint correla-
tions of arbitrary products of collective creation and annihilation operators,
i.e. we prove the convergence, in the sense of mixed vacuum moments, of the
collective process to the quantum noise which shall be described in Section
7.

This allows to obtain our main goal, i.e. to compute the limit of the
matrix elements of the wave operator in arbitrary collective vectors.

In Section7 we identify the limit noise space to a Hilbert module over the
momentum C*—algebra of the electron (the small system in our terminology).
This is the interacting Fock space (more precisely — Fock module) mentioned
above. In Section8 we compute the vacuum distribution of the noise field
and we show that, if the interaction among the field modes is neglected, it
reduces to a convex combination of Wigner semi—circle laws parametrized by



the momentum of the electron. Finally, in Section 9, we describe, without
proof, the quantum stochastic differential equation (cf. (121)) satisfied by the
weak coupling limit of the wave operator at time ¢ (the unitary Markovian
cocycle, in the language of quantum probability). This has to be meant in
the sense of stochastic calculus on Hilbert modules, as developed in [11], [12],
[13]. This Section has been included for completeness. We did not include
the proof because, although long and elaborated from the technical point of
view, it does not need new ideas and techniques, being based on a procedure
which has now become standard in the stochastic limit of quantum theory,
namely: one considers the matrix elements, in some collective vectors, of
the wave operator at time ¢ and show that, in the limit A — 0, they satisfy
the same ordinary differential equation, with the same initial condition, as
the corresponding matrix elements of the solution of the stochastic equation,
which is known to be unique from the general theory [11].

In the revised version of the present paper we have enlarged the introduc-
tion, added several comments and corrected several notational and linguistic
misprints. No statement or proof has been changed with respect to the orig-
inal version of the paper (submitted for publication in November 1992).

2 The QED Model

We consider a free particle, called, the system, and characterized by:

— its Hilbert space L*(R?) with d > 3
— its Hamiltonian

Hg = —A/2=p*/2

where A is the Laplacian and p = (p1, po, .., p4) the momentum operator.
This system interacts with a quantum field in Fock representation whose
free Hamiltonian is informally written as:

Hp:=> |k|afay (1)

keZd

where to each mode k € Z¢ is associated a representation of the CCR with

creation and annihilation operators a;, ay respectively (ax = (ay , G2k, -, Qax))-
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The interaction between the system and the field is informally written as:
a
VIE]

where A(q) is the vector potential, the tensor product p ® a; means

+
k

M =2Y etpe + h.e. = MA(q) -p+p- Alg)) (2)

d
P®akzz D; ® ajk (3)

J=1

and the factor A is a small scalar (coupling constant). This interaction is
obtained from the usual minimal coupling interaction by neglecting the term
of order \2.

Notice that, dropping the A\?>-term, breaks the gauge invariance of the
theory. The realization of the present program without dropping the \%-
term is a nontrivial problem.

We conjecture that the limit should be the same. Even more difficult is
the problem of realizing the present program for a non free particle.

There are indications that this program should be realizable for some
classes of potentials. These topics will be discussed elsewhere. They are
mentioned here only to indicate some possible lines of development. The

total Hamiltonian we are going to consider is H = Hg + Hr + AH;. The
most important object for such interacting model is the wave operator at

time t. In the interacting picture it can be written as
Ut()\) = eit(Hs-‘rHR)e—it(Hs-‘rHR—i-)\H]) (4)

where Ut(A) is the solution of the Schrodinger equation:

d
%Ut(” = —iNH; () U | uM =1 (5)

and the evolved interaction Hamiltonian H;(t) is given by
H](t) — eit(Hs+HR)HIe—it(Hs+HR) (6)

Replacing in (1), (2) the sum by a continuous integral and the factor 1/4/] & |
by a cut-off function g(k), H;(t) is given by the expression:

Hy(t) = z[ /R dke P (—ip) @ (S,9) (R)a h.c.] (7)
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where g is a good function (e.g. a Schwartz function) and {S?}:¢ is the
unitary group on L?(R?) given, in momentum representation, by

(SP9)(k) = e~ ""lg(k) (8)

By the CCR, we have
e—itp2/2€—ik~qeitp2/2 _ e—ik~qe—itk~pe—it|k|2/2 (9)
6—ik~q€—itk~p _ e—itk-pe—ik~qeit\k\2 (10)

Therefore, one can rewrite (7) in the form
H(t) = z[/ dke~ = re=ith/2(_jp) @ (S%) (k)a — h.c. (11)
R4

Without loss of generality we can simply forget the factor e=**/2 by trans-

fering it into SY. More precisely, form now on, the 1-particle free evolution
shall not be the original one (8), but the modified one

(Sig) (k) = e~ MIFHE/2) g (k) (12)

The integrals (7), (11), should be meant in the weak topology on the
subspace S(RY) ® € (of L?(R%) ® I'(L?(R%))), algebraic tensor product of
the Schwartz functions and the (algebraic) linear span of the exponential
and number vectors. This means that the matrix elements of H;(t) in these
vectors are well defined (and this is the only thing that shall be used in the
following). More precisely, if f and h are in S(R?) and t € R, then the
functions

Tf’h,jﬂg ke Rd =< f, 6itp2/2€ik.q€7itp2/2(—ipj)h >L2(Rd) ; j = 1, 2, e d
(13)
are also in S(R?) and the integrals

A (Typ54509) = / dk < f, e e ae="2(_ip )b > (Seg)(k)al, (14)

Rd

(j = 1,2,..., d) define independent copies of the Boson Fock creation field
over L?(RY) (notice that the Schwartz functions are an algebra, thus the
product of two of them is still a test function) and therefore, for f,h as



above and 1,v¢’ € £ the matrix element < f ® v, Hy(t)h ® ' > can be
interpreted as

d
D < A (TrageSight' >
j=1

In conlusion we recall the basic strategy of the stochastic limit in quantum

theory: the starting point is the formal solution of equation (5), given by the
iterated series:

[o.¢] t tnfl
U = Z(—i)"/\”/o dt1~~~/0 dt,Hy(t1) -~ Hy(tn) (15)
n=0

In usual perturbation theory one considers the first few terms of the
series (15), in increasing powers of A. For this procedure to make sense, it is
required that the coupling constant be small in some sense. In the stochastic
limit in quantum field theory one renormalizes time by the replacement ¢t —
t/)? and studies the limit, as A — 0, of matrix elements of the form:

< BA(€), UL B () > (16)

where, £, € L?*(R%) and the ®), are the so-called collective vectors. They are
chosen according to criteria which depend on the model and are suggested
by the usual perturbation theory. The basic goal of the theory is to prove
that, as A — 0, the limit of (16) exists and has the form

< ©(E), U(t)®'(n) > (17)

where ® (&), ®’'(n) are vectors in the tensor product space of the system space
with a certain limiting space H, called the noise space, whose explicit form
has to be determined, and the limit process {U(t) }+>0 is unitary on the tensor
product space for each ¢ > 0.

In the following, the subspace S(R?) of the Schwartz functions shall be
often denoted KSectionubsetL?(R?). For any pair f,g € K, the condition

/ |< f,Sig >| dt < 0o (18)
R
which plays a crucial role in the theory is satisfied.
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3 The Collective Operators and Collective Vec-
tors

One of the basic heuristic rules of the stochastic limit in quantum field theory
is that the choice of the collective vectors is suggested by first order analysis
of the usual perturbation theory. Following this rule, in this section we shall
introduce some preliminary considerations which give an intuitive idea on
how to define the collective vectors.

For each t € R, define

A*(Syg) == / dke™ ™9™ P (S,g) (k) © af (19)

Rd

as explained in formula (14) and define A(S:;g) as the formal adjoint of
AT(Syg) i.e., recalling (12)

A(S,g) = / dke™ " Pe™1(S ,5)(k) @ a (20)
Rd
Both A*(S:g), A(S;g) act on L?(R?) @ I'(L*(R?)), where I'(L?(R?)) denotes

the Boson Fock space over L?(R%), and behave like creation and annihilation
operators respectively, more precisely, for each &, f in the Schwartz space

S(RY):
ASig) (@ a(f)) = /R dke e IE @ (S_g) (R (21)

where ®(f) is the coherent or number vector with test function f and the
integral in (21) is meant weakly on the domain S ® £(S) where £(S) denotes
the space algebraically generated by the coherent or number vectors with
test functions in S. In these notations, we have that

H(t) = i[AJr(Stg)(—ip) - h.c} (22)

and the first order term of the interated series for Ut(’\) is:

—i)\/o dt,H(t,) = /\/0 dt1[AT (S, g)(—ip)—h.c.] = A+(/\/O dt1St, 9)(—ip)—h.c.
(23)
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For simplicity, in (22), we write (—ip) instead of (—ip) ® 1r, where 1 is the
identity operator on I'(L*(R%)).
In particular, in the iterated series for U5 the first order term is

At <(>\ /0 s, g)(—ip)) —he.

Following the above mentioned heuristic rule (see also [1]), we define the
collective annihilator process by:

t/22 t/ 22 , . _
Ax(0,t,g) :== A\ / dt, Sy g) = A / dt, / dke™ ™ Pk 42 S, g(k)ay; tE€R
0 R4

0
(24)
and its conjugate, the collective creator process, by:

t/>\2 t/)\2 ' .
A;\"_(O)t7g> = A+(A/ dtlstlg) = /\/ dtl/ dke—zk~q€ztk-p®stg(k>az_ : tER
0 Rd

0
(25)

More generally, for any bounded interval [S, T|SectionubsetR and Schwartz

function f, we shall define the collective creators and annihilators by:

T/\?

AL(S,T. f) = A /S dt/ dke e @ S f(k)al (26)
R

/22
Notice that, with these notations, the first order term of the iterated
series (1.14) can be written in the form:

/22
A / dt Hi () = ipAx(0, £, g) — AT (0,1, g)p] (27)
0

which has a formal similarity with the dipole approximation Hamiltonian (c.f.
2] ) except for the fact that in (27) the collective annihilators and creators
also contain operators of the system space, hence they do not commute with
.

The first step of the program of the stochastic limit in quantum theory
is to show that in a certain sense, as A — 0, i.e. the collective operators
converge to some kind of creation and annihilation operators A*(S, T, f) and
A(S,T, f) acting on some limit Hilbert space. Symbolically:

AL(S, T, f) — AT(S. T, f); ANS T, f) — A(S T, f)
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In order to determine the stucture of this space, the consideration of the
two point function is naturally suggested by the fact that the vacuum distri-
bution of the creation and annilhilation fields, before the limit, is gaussian.

The limit of the two point function of the collective creation and annihi-
lation operators can be obtained as follows: for each s, > 0, one has

t/\2 5/\2
/\2/ dtl/ dtg/ dk’l/ dky <0 | akla,i; | 0> (28)
0 0 R4 R4

< &, (—ip)e Mhrekra(S, g)(ky)e *2 1P (—ip) (S, g) (ke)n >=

% 5/ 22 ‘ ) )
N / dt, / dts / ke I < (ip)e, e i)y > (k) (S1ug) (k)
0 0 R

which, as A — 0, tends to:

ons dr /R k< ()6, > 5R) (So)(k) (29)

If, in (28), one replaces the zeros in the first two integrals by T/A\% S/\?
repectively, then the limit (29) is replaced by

+oo
<X s ey [ dr [k < @6 i > g(b) (S9)0)
—00 R

(30)

Keeping in mind the definitions (24) and (25) of collective annihilator

and creator, the above result can be rephrased as follows: the approximate
two point function

<&@ D, AN0,1,9)AL(0,5,9) n@ P > (31)

tends to an object which for some aspects, is very similar to a two point
function. In section (4.) we show how to substantiate this analogy.

Remark. Although the collective creation and, annihilation operators
depend on the operator ¢, the limit of their 2-point function, i.e. (28), given
by (29), is independent of . However a remnant of the original g—dependence
remains in the limit through the commutation relation (95).

The above considerations suggest to introduce the collective number
vectors, which shall play a crucial role in the following.
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Definition 1 A collective number vector is a vector of L?>(R?) @ I'(L*(RY))
obtained by applying a (finite) product of collective creation operators to a
vector of the form ® ® & where ® is the vacuum in T'(L*(RY)) and & is an
arbitrary vector in L*(R?). Such a vector has the form

AL(S1L, T f1) - oo AL (S, T, f2)E @ @ (32)

In the following, when no confusion can arise, we shall use the simplified
notation

H AL @@ (33)
h=1

to denote a vector of the form (32). Notice, for future use, that the indices
of the creators in (33) are increasing from left to right. The linear
span of the collective vectors, for a given value of the coupling constant A
will be denoted H, and called the space of collective vectors.

It will be convenient to operate a change in notations with respect to the
previous Sections and to write the state space of the composite system in the

form I'(L?(RY)) ® L?*(R%), rather than L*(RY) @ ['(L*(RY)).

4 Non Gaussianity of the quantum noise

From the previous two Sections we know that our original physical model
is Boson Gaussian, i.e. the creation and annihilation fields satisfy the CCR
and their vacuum distributions are Gaussian.

In this section we want to give an intuitive idea of the mechanism through
which, by applying to the present model the procedure of the stochastic limit
of quantum theory, in the limit A — 0 of the vacuum correlation functions of
the collective operators all the terms, corresponding to crossing partitions,
vanish and the only nontrivial contributions come from the non crossing pair
partitions (cf. Section (5) below for a quick review and references on this
notion). This phenomen corresponds to the breaking of the gaussianity (be-
cause in the gaussian case all pair partitions, and not only the non crossing
ones, contribute to the correlations). The lowest order correlation function
where the distinction between crossing and noncrossing pair partitions (and
therefore between gaussian and non gaussian correlations) can become ap-
parent corresponds to the four point function therefore in this Section we
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shall study the limit of
< ATy, AT, f2)2 @ €, AX(TH, f)AS (T3, f5)2 @n > (34)

(the general case is dealt with is Sections (7) and (8)).
By the definition of collective creation and annihilation operators, (34) is
equal to

T/ /3 . .
< \? / dty / dt; / / dkydkge™ M etk Pk agitzkap
0 0 R? JR4

(St f1) (k1) (St fo) (k2)ag azf, | 0 > QE,

2 T{/)\z T2//>‘2 ik is1k) ik isok:
A / dSl / d52 / / eil l'qel'sl 1'p€71 2'(167"32 2P
0 0 R? JRA

(Suu ) () (Sus f) )y |0 1 >=

Ty /N2 Ta /N2 Ty /22 T4 /22
:/\4/ dtl/ dtg/ dSl/ d82 / dkldkgdklldké
0 0 0 0

RA4d

< 57 e*it2k2'1)€ik2'q6*it1k1'peikl'qe*ikﬂ'qeislkﬂ -pefik’z-qeiSQk’z-pn >

(Stlfl)(kl)(SthQ)(kQ)(SS1f{)(kll)(swfé)(ké) <0 | ak2ak1a2_’1a2—’2 | 0>

Ty /A2 To /)2 T /A2 Ty /A2
:)\4/ dtl/ dtz/ dSl/ d82 / dkﬁldkg (35)
0 0 0 0

R2d

[< 6’ efztzkz-pelk?qeﬂtlkl-pemkl-pefzkz'qezsm-pn >

Fr(ka) (S, -0 1) (k1) o (K2 ) (Ssy e f3) (K2 )+

I < {, e—zt2k2~p€2k2~q€—zt1k1~pezk1~qe—zk2~q€w1k2~p6—zk1'q€wzk1~p,7 >

Fi(k1)(Ssp—r f3) (k1) fo(K2) (S~ f1) (R2)] (36)

By the CCR, one can move the g—factors together in the right hand side of
(35). Thus one can rewrite (34) as

Ty /A2 To /N2 Ty /A2 To /N2
)\4 / dtl / dtQ / d81 / dSQ / dkﬁldkg
0 0 0 0 R2d

[< 57 e—it2k2~p . eiszkg-pe—it1k1‘pe—i51k’1‘pei(sl—tl)kglﬁ77 >

14



Fr(ka) (S, -0 1) (k1) fa (K2 ) (Ssy e f3) (K2 )+

1< 57 e—it2k2~p6i81k2~p€—it1k1~pe—i52k1~pei(81—t1)k)2~k1,r] >

Fi(k1)(Ssp—er f3) (k1) o (K2 ) (S~ f1) (K2)] (37)

Notice that, in the first term in (37), fi is paired with f] and f, with f;
(non crossing); while in the second one, f; is paired with f; and fo with f]
(crossing).

With the change of variables

T1:>\2t1,TQI)\2t2’Sl_T1/)\2:u, 52—7'2//\2:1) (38)

the first term of (37) becomes

T T (T2’77—2)/)\2
/ dTl / dTQ / / dv / dl{?ldkg
-7 A2 —T9 /)\2 R2d

< & eMerethiry > MR £ (By) fo ko) (SufD) (k1) (Sufs) (R2) — (39)

and as A tends to zero, this goes to

< X[OTﬂ X[OT/] >L2(R /du/dv/ ddkldefl(kl)fQ( ) iukq-ko
R2

(SufD(Suf)(s)- < & elbrteraly > (40)
With the change of variables

=M, To=MNly, u=s —1/ N, v=s—T1/\ (41)

the second term of (37) becomes

Ty T (T]—72) />\2 (Ty—71/A2)
/ dTl/ dTQ/ / dv/ dkldk’z
—T79/A2 —71 /A2 R2d

[< f, i(uka4vk)- (S f1>(k2>(s fz)(kl)fl(kl)fQ( ) . ’I,ukl'k’z] ‘e’ik’ykz(TQ—Tl)/)\Q
(42)
By the Riemann-Lebesgue lemma, (42) tends to zero as A — 0.

We shall now proceed to the proof of the fact that the vanishing, in the

limit, of all the contributions coming from crossing partitions is a general
feature of QED.
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5 The Limit of the Spaces of the Collective
Vectors

Our next step will be to try to determine the limit
lim(®,, \) =1 <P, >
A—0

of the scalar product of two collective number vectors. This will give the
Hilbert space where the limits of the collective creation and annihilation
operators act.

According to our choice of these vectors, this amounts to study the limit,
as A — 0, of scalar products of the form:

<H AP ®¢, H AL @)
h=1 h=1

The present section shall be devoted to the proof of the following result:

Theorem 1 For any N,n € N, the limit, as A — 0, of the scalar product of
two collective number vectors:

N n
(J[ALe®e [[AL2®n) (43)
h=1 h=1

exists and is equal to:

n —+o00 +oo
v | [Xis0mis Xispm)) - / duy ... / du,, /R ~dhy . dk

h=1

n—1 n—

n n !
<£’ H 6iuhkh D H Suhfh kh fh(kh exp ('L urk kh+1) (44)
— h=1

h=1 r=1 h=r

Remark. If the factor

H
3

n— —1

(&, H e Py L exp (z Urkpyq - k ) (45)
h=1

r=1 h=r

were absent in (1), then the expression (1) would coincide with the scalar
product

(@71 (x18;,1;0 ® f7), ®1(Xs1,101 @ 7)) (46)
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defined on the tensor product of n copies of the space:
L*(R)®K

where L?(R) has the usual scalar product, while KSectionubset [?(R%) has
the scalar product

(F19) = [ AHF,Sig)rerms (47)
R
Notice that the scalar product (46) can also be written in the form
A Cus, @ )%, [TA Casy iy @ £)¥) (48)
=1 j=1

where AT(+) denotes the creation operator on the full Fock space over L*(R)®
IC, with the scalar product (47), and ¥ is the vacuum vector in this space.

Our goal in the following sections will be to write the limit (43) in the
form (48) where the A*(-) are some sort of creation operators acting on some
sort of Fock space in which ¥ plays the role of vacuum vector.

The obstruction to the use of the usual Fock or full Fock space comes
precisely from the scalar factor (45) which is itself the product of two fac-
tors, each of which is related to the other two new features arising from our
construction, namely:

—(i) the & — np—scalar product is related to the fact that the noise lives on a
Hilbert module rather than a Hilbert space.

—(ii) The exp—factor is related to the fact that the space (more precisely, the
module) over the test function space is not the usual Fock, or full Fock space,
but the wnteracting Fock space.

These features will be better understood in the following. Without loss

of generality, in the following we shall suppose that S; = S} = 0 and rewrite
T]f as S; for all j = 1,---,n. Moreover, it is obvious that we have to prove
Theorem 43 only in the case n = N.

In order to prove Theorem 43 let us first notice that the explicit form of
the scalar product (43) is:

Ty /A2 Sy /A2 T /A2 S /A2
/\2"/ dtl/ dsl.../ dtn/ dsn/ dky ... dk,dk] ... dE]
0 0 0 0 R2nd
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. o . o R T P T
<€7€ itnkn pezknq. e it1k1 pezqu e zquezslklp” e ik;, qezsnkn p,I7>

LT St fn) (kn) - (S £1) (R3) (O | a,, - aga; ... af, | 0) (49)

h=1

By explicitly performing the vacuum expectation, (49) can be written in the
form:

Ty /)2 S1/22 T /N2 Sn /A2
Z )\2”/ dtl/ dsl.../ dtn/ dsn/ dk, ...dk,
0 0 0 0 Rnd

0ESH

<§’ e_itnkn'peikn'q o e—itlkl-peik1~qe—iko(1>-qeislka(l)p o e_ikd(’n)'qeis'ﬂka(n)'p/r/>

H(Ssh_to(h) f}/z)(ka(h))?h(kh) (50)
h=1
where §,, denotes the group of permutations over the symbols {1,2,...,n}.

Lemma 1 In the limit X\ — 0, only the identity permutation in the sum in
(50), gives a non zero contribution.

Proof. The proof is an extension, to arbitrary n, of the argument used
in Section (3.) for the case n = 2. Notice that the factors exp(+k;q) are
independent of the times s;, t; and each of them appears twice: once with
the “+ 7 and another with the “ — " sign. If o(j) = h, by permuting the
factor exp(ikyq) with all the factors

exp (it kmp) , m=h-—1,h—2,...,1
and then with the factors
exp(i5,.ko(ryp) , r=1,...,0h)—1=5-1

we shall erase this factor by multiplication with exp(—iknq) = exp(—iko(;)q).
Because of the CCR, each of the first A — 1 exchanges gives rise to a scalar
factor of the form

exp(—itykm - kn) | m=1,...,h—1

and each of the other 07!(h) — 1 = j — 1 exchanges gives rise to a scalar
factor of the form

exp(i8,ko(ry - kn) r=1,...,0 %h) -1

18



When all these exchanges have been performed, the scalar product in the
expression (50) becomes equal to:

. o 1(1)— o—1(2)_
exp <% ([Zrzl(l) sk - ko) — tik1 - ko + ZT:1(2) kg - Koy — (t1ky - kg + taks - ks3)
TR L Y Y () Y T MY TR
+ Z:;i(n)—l s,k - ka(r)>])§ Hh IO tg(m) U(m-pn) —

(51)
n—1 h
€Hez(3h a(h))ka(h)p exp( Z Z grkh ko) — ZZtk kh+1>
h=1 r= h=1 r=1

We shall now rewrite the scalar exponential in (51) so to make more trans-
parent the difference between negligible and non negligible terms. First of
all notice that, for any permutation o € S,,:

n—1 h
SO ek knar = tiky -k + tiky - ks o+ ok ks .+
h=1 r=1

+t1]{?1 . ]{Z + ...+ tnflknfl . k’n ==

—Zthkh Z Kom Ztg(h Z Kom (52)

m=h+1
Notice that, to say that hqy,...,h, € {1,...,n} are such that the sequence
o1 (hy), 07 (hy),..., 07 (hy,) is ordered in increasing order, is equivalent to
say that
o(m) = hy, ; m=1,....n

With these notations we also have

n o=l(h)-1 o~ (hm)—1

Z Z srkio(r) - Z Z srkio(r) * K =
n m—1 n—1

=D srkot) kot = Z srko(r) Z Fo(im) (53)
m=1 r=1 m=r+1
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Thus the difference between (53) and (52), i.e. the factor appearing in the
scalar exponential in (51), can be written in the form:

(Sh _t h) U(h Z ka(m +Zta(h a(h) Z ka(m) - km

1 m=h+1 m=h+1 m=c(h)+1

n—

,_.
3

T

Therefore, the expression (50) can be written as

Ty /A2 Sy /A2 T /A2 Sp /A2
Z A%/ dtl/ dsl.../ dtn/ dsn/ dk, ...dk,

O'ESTL

n 1

(€, H ei(Sh—ta(m)ka(M'pm exp [Z (5n — tom))k Z k(h) }

3
I

h=1 h=1 m=h+1
n—1 n n
exp [Z to(h)kg(h) . < Z ko(m) — Z /{m>} (55)
h=1 m=h+1 m=o(h)+1

Now we replace the scalar product in (50) by the right hand side of (51) and
make the following change of variables in (50):

Th = Nty | uh:sh—Tg(h)//\Q, h=1...,n

JFrom the Riemann-Lebesgue Lemma it follows that, as A — 0, the only
terms (in (50)) that can give a nonzero contribution are those coming from
the factors such that the identity

0= ta(h)ka(h) . Z ks (m) — Z kp, (56)

h=1 m=h+1 m=c(h)+1

is satisfied for almost all (ky,...,k,) € R™ and almost all (¢1,...,t,) € R"
So for almost all (ki, ..., k,) € R™

zn: k‘a(m)z Zn: k‘m; Vh:1,...,n (57)
m=c(h)+1

m=h+1

Letting h = n — 1 in (57), the fact that (57) is true for for almost all

(k1,...,k,) € R™ implies that in the the sum > ' _ B+ k.., there is only
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one term, i.e. the cardinality of the set {o(h) + 1,---,n} is one. This is
equivalent to say that
on—1)+1=n (58)

Letting h =n — 2 in (57) and using (58) one finds
ka(n—l) + ka(n) =kp1+k,= ka(n—2)+1 + ky,

or equivalently
on—1)=0cn—-2)+1=n-1 (59)

iterating one finds

o=1d (60)
i.e. o must be the identity permutation.

Proof of Theorem 43. For o = I, the last term of (51) is equal to
oo ([T T vk h - ST k)

= exp (z [Z:;ll ZZ:T,H Srky + kp — Z:;l Z;; trky - thD
= oxp (i 302 S — L) - )

(61)
Therefore (50) is equal to the limit of
Oty [ syt [ sy fga b d
(€& TThoy €CrmPm) - TThoy (Ss—on f3) (k) F1 (Fn)
exp (i 202) o) (e = bk - K ) + (1)
(62)

where o (1) denotes the sum over all the permutations § € S,,, different from
the identity, which, according to Lemma 1, tend to zero as A — 0. With
the change of variables:

ThZ:)\ch, uh:Sh—Th/)\Q, th,...,n

(61) tends to (1), and this ends the proof.
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6 Non crossing Pair Partitions

Since the notion of non crossing pair partition will play a crucial role in the
following, we devote the present section to introduce some basic properties
of these partitions (for more complete information we refer to [5, 6, 16]).

Non crossing pair partitions play, for Wigner processes, the role played
by the pair partitions for the usual Gaussian processes. More precisely: it
is known that the mixed moments of order 2n (n is a natural integer) of a
mean zero Gaussian process, are given by the sum, over all pair partitions
of {1,...,2n}, of the products of the 2-point functions (covariance) of the
process computed over all the pairs of the partition.

If the sum over all pair partitions is replaced by the sum over all non
crossing pair partitions, in the sense specified below, one obtains the notion
of Wigner process.

To each pair of natural integers (my,, m;), we associate the closed interval:

[mj,mp] :={z e N:mj <z <my} (63)

and we shall say that the two pairs (mj},my), (m}, my) are non crossing if

0
[mhv mh] N [m;m mk] - [m;w mh] (64>
[m;w mk]

Condition (2) means that either the two intervals associated to the pairs
do not intersect, or one of them is contained in the other one.

Definition 2 Let n be a natural integer. A mon crossing pair of the set
{1,2,...,2n} is a pair partition

(my,m),...,(m,my,) (65)
such that any two pairs (m},my), (m}, my) of the partition are non crossing.
Lemma 2 Given n numbers

my<me<...<m,
in the set {1,...,2n}. If there exists a non crossing pair partition

(my,m),...,(m,m,)
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of the set {1,...,2n} such that
my, < my ; h=1,....,n (66)

then it is unique. Moreover, for each hg = 1,...,n, the number mj, is
uniquely determined by the condition:

my, =max{zr € {1,....2n}\{mu}j_, 1 x <my, and |{x+1,...,my, —1}N

N{ma,....mu} = {z+1,...omp, — 13N {1, .. 20\ {mn}7o)) |}
(67)

where, | {---} | denotes the cardinality of set {---}

Remark. By construction

{mitho = {1, 20\ {mu } sy (68)
and the sequence {m} }'_; is not necessarily increasing in h.

Proof. The proof can be done by the induction using the following facts:
— in the non crossing pair partition (65), m} is surely equal to m; — 1;

— given (m}, my) as above, { (mf,my), -, (m,’n,mn)} is a non crossing

pair partition of {1,2,---,2n} if and only if {(m’z,mg), e (m;,mn)} is a
non crossing pair partition of {1,2,--- 2n}\ {m}, mi}

— since, by the previous two arguments, given the (m;), the pair (m/}, m,)
is uniquely determined, the partition (65) is unique if and only if the corre-
sponding partition of the set {1,2,...,2n} \ {m}, m1} is unique.

— since, by the previous two arguments, given the (m;), the pair (m}, m,)
is uniquely determined, the partition (65) is unique if and only if the corre-
sponding partition of the set {1,2,...,2} \ {m}, m1} is unique.

In the following we shall use the notation

n.cp.pil,...,2n} (69)

to denote the family of all non crossing pair partitions of the set {1,...,2n}.
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7 Limits of Matrix Elements of Arbitrary Prod-
ucts of Collective Operators

In order to calculate the limit (16), the knowledge of the limits of scalar
products of collective number vectors is not sufficient: one has to identify
the limit of matrix elements of arbitrary products of collective creation and
annihilation operators.

Goal of the present section is to describe these limits. More precisely, we
shall prove the following theorem:

Theorem 2 For any natural integer n and with the notations:

AS = Ay A} = AT (70)
the limat
lim@wg, Y ASLTA) A (S Ton, fo) 2 @m) (T1)

e€{0,1}2n

exists and is equal to:

n

> TS0, 2 X[S 0y Ty 1) 12(R)

{m},,mp}p_ En.cp.p{l,...2n} h=1

+00 +00 n N
/ dul.../ dun/ dky - dk, LTS fons ) Bi) F (i)
—00 —00 R h=1

n n—1 n
(&, H et Py L exp <z Z Z upkp - er(m;,mr)(mh)> (72)
h=1

h=1 r=h+1

In order to prove this theorem we must do some preparation. Without
loss of generality we shall assume that S, =0 for all h=1,---,2n.

Let us consider the matrix elements of arbitrary products of collective
creation and annihilation operators (in contrast with (50) where only anti-
Wick-ordered products were considered):

<(I)®§a A/\<OaT17f1) c A:\F(OaTl/?f{) = A—A"_<O’T7{L’ frlz)a cee 7A/\(07Tna fn)©®,’7>
(73)
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Counting from left to right, let
1<mi<mes<...<m,<2n (74)

denote the places where the creation operators appear. Since ® is the vacuum
vector, the expression (73) is clearly equal to zero if either m,, < 2n orm; = 1.
Remark. The scalar product (73) is # 0 only if for any r = 1,2,..., n,
the cardinality of {1,...,2r}\{m,...,m,} is less than or equal to max{h =
1,...,n; my <2r}. That is, if it happens that, for any r = 1,--- n, in the
first 2r operators in the operator product in (73), there are more creators
than annihilators. Using the definition (??) of A, and A}, (73) becomes

Ty /)2 Trny /A2 Ton /N2 B
A2 / dt; ... / dtp, ... / dt,,, / dk
0 0 0 R2nd

(€, e7thpgikia - omibmidgismibmy - pitnknpoibng - pikmn 4 gitmnkmn py)
n
H t'mh mh mh) ’ H (Stafa’)(ka)
h=1 ac{l,....2n}\{m1,...mn}
+
Ofar,...ap ...ap,. ak, | 0) (75)
It is clear that the vacuum expectation value in (6.7) is of the form
> [Loi, o
@)= {120\ {my )7, h=1
mp <mp,h=1,..., n
Ty /N2 Ton /N2
A\ / dty ... / dtan / dk E
0 0 R™ (i) = (L 20\ {mn 1P
mp <myp,h=1,....n
<§’ e~ ttmy k1-p€ik1-q o e—im1-qeitm1k1~p€—itmnkn-peikn-q o e—ikn~qeitmnkn~pn>
n
L1 7o (B (St —tom, o) () (76)

h=1
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Lemma 3 In the limit A — 0 the only terms of the summation (76) which

give a non zero contribution are those corresponding to those n—uples (my, . .., my,)
which satisfy the equation

X[ﬁr+1,2n—1]<mh) — X[mir+1,2n—1] () + X[my+1,2n—1] () — X[mr,Qn—l}(mh) =0
(77)

Proof. Remember that the indices m; in (76) correspond to annihilators in
(73) and are associated to exponential factors of the form

ki (78)
in (76). While the indices m; correspond to creators and are associated to
exponential factors of the form

e~ thiagitm k;p (79)

Also in this case, as in the proof of Theorem 43, we shall permute the ex-
ponentials in the scalar product (76) so to cancel the factors exp(+ik; - q).
However in this case we shall employ a different grouping strategy, namely,
instead of permuting each factor exp(+ik; - ¢) until it is cancelled by its con-
jugate factor, we bring all the factors exp(=%ik; - ¢) to the right of all the
factors exp(£tq;k; - p) (o = my or m;) with the exception of the factor
exp(itm, kn - p), which remains on the extreme right.

The scalar phase factor which arises when all the permutations have been
performed has the form exp(io) where ¢ is a real number which can be
expressed as the sum of four different types of terms:

n—1 n—1

=D D tmik oy (80)
r=1 h=r
n—1 n
Ximnt1,2n-1) (M)t kp - kr (81)
h=1 r=1
n—1 n
X[mp+1,2n—1] (mr) tmrkh : k:r (82)
r=1 h=1
- X[mh+1,2n71] (mr) tﬁrkr : kh (83>
r=1 h=1
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The term (80) arises from the commutation of the factors exp(—ik, - q),
(r=1,...,n—1) with the factors exp(it,,, kn - p), for h=1r,...,n — 1.

The term (81) arises from the commutation of the factors exp(—iky, - q),
(h = 1,...,n) with the factors exp(its, k. - p) for r = 1,...,n — 1. The
characteristic function in this term is motivated by the fact that the term
exp(—iky, - ¢) first appears on the right of exp(—its, kp, - p) because of the
convention on the indices of the collective vectors (c.f. the end of Section 2)
and the fact that m; < my, this implies that among all the factors exp —it - p,
it will have to commute only with those for which

mp < m, <2n

(recall that the m; are not increasing in general). Notice that, since m,, = 2n
the n-th term of the second sum in (81) is zero.

The term (82) arises from the commutation of the factors exp(iky,-q), (h =
1,...,n) with the factors exp(it,, k,-p) forr = 1,...,n—1. The characteristic
function in this term is motivated by the fact that the term exp(iky, - q) first
appears on the right of exp(—itsm, ki, - p) for the above mentioned convention.
Therefore, among the factors exp(it,, k, - p), it will have to commute only
with those for which

mp, < m, <2n

Finally the term (83) arises from the commutation of the factors exp(iky, -
q), (h = 1,...,n) with the factors exp(—itm k. - p) for r = 1,... ,n. The
characteristic function in this term has the same origin as in the previous
one.

Now notice that the sum of the four expressions (80), (81, (82) (83) can
be rewritten as

Z [Xm+1.20—1) (M08 ) tm, + X 1,201 (M0,
1<h,r<n
— X201 (M) by, — X +1,20—1] (T8t b - For (84)

Where, in (84), the first term in square brackets corresponds to (81); the
second one to (82); the third one to (80) (recall that the map j — m; is
strictly increasing) and the fourth one to (83).

By adding and subtracting, into the square bracket of (84), the terms

:l:tth[mH-l,Qn—l} (mh>kh ke itth[mH-lzn—l] (mh)kh - K,
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the double summation (84) can be rewritten as

> i<hr<n B kr(tmy, — tmy ) Xme+1,.20-1 ()
+ 2 1<hren tmkn - ke (X4 1.20- 1 (M) — Xpmo+1.20-1) (T20))
- 21§h,r§n(tmh - tmh)kh : k’l‘X[mr,Qn—l] (mh)
-+ Zlgh,rﬁn tﬁhkn : kr(X[mr—‘rl,?n—l] (mh) - X[mr,Zn—l] (mh))

By the same argument used in the proof of Theorem 43, we conclude that,
in the limit A — 0, only those terms of the summation (76) can survive, for
which

Z tm,, kp, - ky [X[ﬁr+1,2nfl] (mh) — X[mr+1,2n—1] (mh)

1<h,r<n

+X[mr+1,20-1] (M) = Xfme,2n—1) ()] = 0

for almost all (¢y,...,ts,) € R?" and almost all (k;,...,k,) € R™ and this
condition is equivalent to equation (77).

Lemma 4 For any natural number n and any choice of 1 < my < ... <
my, = 2n in the set {1,...,2n}, the equation (77), in the unknownsmy, . .., m,
has a unique solution satisfying

my, < my, ; h=1,...,n (85)
Moreover the solution (Thy, ..., my) is characterized by the property that
(mlaml)v (m27m2>7"'7<mnamn) (86>

is the unique non crossing partition of the set {1,...,2n} associated to the
set {my}}_, in the sense specified by Lemma 2.

Proof. We distinguish two cases:
X +1,2n-1)(Mn) = 0 (87)
In this case, the non crossing property implies that one must also have:
X[mr,2n71](mh) =0
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because m, < m,. Hence

Ximr+1,2n—1](Mh) = X[m,+1,2n—1] (78)

and therefore
myp > M, & My > M,

2) X[mr+1,2n—1] (mh) =1
In this case, if X{n, 2n-1] (myp) = 1, by the same arguments as above, we have
my > M, & my > m, Vhr=1,...,n
Notice that this is equivalent to saying that
my, > M, < my, > m, Vhr=1,...,n
and clearly this can be reformulated as
mp, > M, = my, > m, Vhr=1,...,n
Now if Xpm, 2n—1)(mn) = 0, one must have
X[ +1,2n—1] (Mn) = 1
That is, in any case, Xfm,+1,20—1](ms) = 1 implies that
X[ +1,2n—1] (Mn) = 1

which is equivalent to
my, > My = My, > M,

summing up, we have that either [my, my] N [m,., m,.] = 0 or [my, my,
subseteq|m,., m,]. Hence the partition (85) is non crossing.
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8 Why Hilbert Modules?

In order to interpret the expression (4), obtained in Theorem 70, for the limit
of matrix elements of arbitrary products of collective creators and annihila-
tors, we describe in this section the Hilbert module on which the limits of
the collective creation and annihilation processes live. By analogy with the
Fock and the free Brownian motions, we shall refer to this process as the
interacting free module Brownian motion. The first example of a quantum
noise living on a (nontrivial) Hilbert module was considered in [3], the the-
ory of stochastic integration and stochastic differential equations on Hilbert
modules was developed in [11], [12], [13].
For each f in the Schwartz space, define

f(t) = /R (S f)(R) et (38)

then, f is a map from R to the bounded operators on L?*(R%). Denote by
P the W*— algebra generated by {¢**?; k € R%} (i.e. the momentum W*—
algebra of the system) and by F the P-right-linear span of { fi fe K}
Then F is a P -right module and therefore the algebraic tensor product
between L?*(R) and F (denoted by L*(R) ® F) is a P (in fact 1 ® P)-right
module. On the P-right module L?*(R)®F, we introduce a P-right bi-linear,
P valued form:

(| LAR)OFxL*R)OF — P (89)

by

~ d d . —
@ F1395) =< a8 >em - [ o[ kIIEEDE (0

In the following we shall identify f with its eqivalence class with respect

to the P—valued inner product defined by (4). Thus L?(R) ® F becomes a
P-pre-Hilbert module. The positivity of the right hand side of (4) is not
obvious by inspection but it follows from Theorem 43. For each n € N,
we denote by (L*(R) ® F)®" the algebraic tensor product of n—copies of
L*(R) ® F and define the P-right sesqui-linear, P valued form:

(-] (LAR) 0 F)" x (LAR) e F)*" — P (91)
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by

(@)@ @@ f) | (BRG) @ @ (B ® Gn)) =

n d d n
= H < an, Br >12(®) / (G "dun/ H [e= 502 £ (kn) (Sup gn) (kn)
h=1 el

n Rnd

exp(i Y wkikng) (92)

1<r<h<n—1

and we still identify the fj’s with their equivalence classes with respect to the
equivalence relation stated before. Thus for each n € N, with the P-right bi-
linear, P valued form given by (6), (L?(R) ® F)®" becomes a P-pre-Hilbert
module and the notion (L?*(R) ® F)®" will be used to denote it.

Since for each n € N, (L*(R) ® F)“" is a P-pre-Hilbert module, (again
the positivity of (6) follows from Theorem 43), the direct sum Ce@,~ , (L*(R)®
F)®" makes sense and will be denoted by F(LQ(R) ©) .7-“) and called the

Fock module over L*(R) ® F. In this pre-Hilbert module, the vector ¥ :=
1®040---is called the vacuum vector. One can easily show that

Lemma 5 The number vector subset

[= {A+(a1®f1) AN a,@f)®; neN, a; € L*(R), ;€ F, j=1,-- 77%}
(93)
18 a P—total subset 0fF(L2(R) ® ]-“),

Definition 3 For each element of L*(R) ® F, the creator with respect to
this element, denoted by A™(-), is defined on the P-right linear span of T by
P—right linearity and

AN(eaf)|[(m® /)@ - @(ano )V = (a@flo(m® /)@@ (an® fr)P

(94)
where n € N, «, «a; € L*(R), 1, f] eF, j=1,---,n. The formal adjoint
is called annihilator and denoted by A(-).

Remark. In general, At(oq ® f1)A"(as ® f3) is not necessarily equal to
At (0 ® f2) AT (er @ o).
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Definition 4 For each ko € R, the left action of e™oPo on F(Lz(R) @.7-") ®
Ho is defined by

¢om At (0 @ f) 1= AT (o ® ethors f)ethom (95)

for all a € L*(R), f € F, where py is the momentum on Ho and py is the
momentum on the one—particle space of F.

It is easy to show that if * denotes the adjoint with respect to the P-valued
scalar product given by (4), then (eikopo) — —ikopo

Theorem 3 For eachn € N, a,a; € L*(R), f,f; € F(j=1,---,n)
Ala® HA (a1 ® fi)--- At (a, @ f,)V (96)
is equal to
(@@ flar® fi)AT(ay® fo) - AT (a, ® f,)¥ (97)

Proof. For each n € N, a,a; € L*(R), f,f] e F(=1--,n), B €
L*(R),gr € F (k=0,1,---,n), since A = (A")T, we have

< AT (u®f1) - AT (@ a)®, A(a® f) AT (Bo@Go) AT (B1®G1) - - - AT (B, 0Gn) P >=

=< AT (a® AT (a1 ®f1) -+ AT (@)@, AT (Bo®Go) AT (B1®G1) - - - AT (B, @Gn) P >

L (98)
Denote o := vy, f := fy. By definition (98) is equal to
n +o0o +oo
[T ﬁh>-/ duo.../ dun/ dkg . .. dk,
he0 —0 —0o0 R(n+1)d
n—1 n—1
H elnn H Sungn)(kn) F,(kn) - exp (Z Urk - k‘h+1> (99)
h=0 r=0 h=r

Rewriting the expression (99) in the form:

n 00 o0
[T 8 / dul.../ dun/ dky ... dk,
h=1 —00 Rnd
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n n n—1 n—1

one finishes the proof.

Now let us compute the matrix elements of arbitrary products of creation
and annihilation operators on the limit Hilbert module, which we interpret
as limit noise space. For simplicity we shall not distinguish f from f . What
we must compute is the following object:

< U, AD(a; @ f1) - AP (ay, @ fon)T > (101)
where, n € N, a; € L*(R), f; € F (j=1,---,2n), e € {0,1}*" and
AY = A Al .= AT

Y

It is clearly sufficient to compute (101) only in the case

e(1)=0, e(2n) =1 (102)

Lemma 6 (101) is not equal to zero only if

> e(h)=n (103)

h=1

Proof. The Lemma can be easily verified in the case n = 1. Suppose by
induction that 327" e(h) # n implies that (7.14) is equal to zero and consider

<0, AW (g ® fr) - ACOTD (a0 @ i)V > (104)

Denote
h:=min{x € {1,---,2n}; e(z) =1} (105)

the position where the first creator is. By Theorem 3, (104) is equal to
<@, AWy @ f1) - A" 0 @ fro) (1 ® frot | an @ fr)
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A (g @ fraa) - AP (0 @ fopni))® > (106)

Now by applying Lemma 4, one can move the inner product (a1 ® fr_1 |
ap ® fp) in (106) out from the inner product < @, ---® >. Since in order to
produce this inner product we have used one creator and one annihilator, it
follows that

2(n+1)
d oer)#£n+l = > e(r) #n (107)
r=1 1<r<2(n+1), r¢{h—1,h}

By the induction assumption we complete the the proof. The same technique

can be used to prove the following

Theorem 4 Denote

{mpth_y i ={re{l,---,2n}; e(r) =1}, l<mp<---<m,=2n

(108)
The inner product (101) is equal to zero if {my}}_, does not define a non
crossing pair partition of {1,---,2n}. If it does (and in this case we know

from Lemma 2 that it is unique) (101) is equal to

<amh Qo >L2(R)

—=

h=1
+oo +oo n
/ dus . .. / du,, / H (Sup Forn) (k) Frg (Fon)
—00 —00 Rnd h=1
(€, H eMrkn Py L exp <z Z Z upky, - er(m;,mr)(mh)> (109)
h=1 h=1 r=h+1
where, {m},, my}}_, is the unique pair partition of {1,...,2n} determined by

{mn}hy-

9 The Wigner Semicircle Law

This section is devoted to describe how the Wigner semicircle law arises from
the above considerations.
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It is well known that the distinctive characteristic of the Wigner semicircle
law is the role of the non crossing pair partition, in the expression of its
momenta. But in our case, the situation becomes more complicated since
the inner product of the n—particle space is not the product of n copies of
the inner product of the one—particle space. Thus even if we obtain only
non crossing pair partitions, in the sum each of them is weighted by a factor
depending on the partition. We shall see that the Wigner semicircle law
corresponds to the case in which these weighting factors are put equal to
ZEro.

In order to evidentiate the above mentioned connection between the vac-
uum distribution of the field operator and the Wigner semi-circle law, we
introduce the probability spaces (€, 4,,P,) , n € N:

—Q,, == {{m},,mp}7_, : noncrossing pair partition of {1,---,2n}};

~Wprm = M, mp}i_y € Qu;

~A, is the discrete o—algebra on €Q,,;

P, : Q, — [0,1] is the probability defined by

1
P (Wi m) = (110)
| Q2 |
For each 1 < h,r < n, define a random variable:
0, if h > r;
Xh,T(wm/7m> . — {X(m%mr)(mh), 1f h <r (111)

Then

. . . , n
Lemma 7 For each non crossing pair partition {mj,mp}1_,

. n—1 n
Z {1,---,2n} exp(% Z Z unkp - er(m;,mr)(mh)) =

{m}, , mn}j_ €U h=1 r=h+1

n—1 n
:| Qn |n En €xXp <@ Z Z U/hk’h . erth) (112)

h=1 r=h+1

where E,, denotes expectation with respect to the random wvariables Xj .,
defined by (8), with respect to the probability measure P, and | §, |, de-
notes the cardinality of the set €, of all the non crossing pair partitions of
{1,2,---, 2n}.
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For each n € N, a € L*(R), f € K, define the field operator by B, ; =
Ala® )+ AT (a® f). Then:

<®,BXHd >=0 (113)

Moreover, Theorem 4 shows that for each £ € L*(R?)

“+o0 —+00
<E<®BYP>E>= Y ||a||i%(R)/ dul.../ du,

{f s} €0 %0 o

/Rnd dk; ... n/ dpe(k H Su, ) kh ).eiuhkh-k
exp (2 2 Z upkp - er(m;,mr)(mh)> (114)

h=1 r=h+1

where, 1 is the spectral measure of p with respect to the fixed vector &.
By applying Lemma 119, we have that

+o0o +oo
<<I>®§BQ<I>®§>—|Q|n||ozHL2R)/ dul.../ du,

— 00 o0

/Rnd dk; .. / dpe(k g Sy [)( kh k) - lunkn-k
E"eXpG ”z: i “hk’h‘erh,r> (115)

h=1 r=h+1
and in the following the right hand side of (115) will be denoted by

20 | ol | delh) ML) (16
Lemma 8 For each n € N, the function M (-) defined by (115), (116), has
the following properties:

i) MJ(-) > 0 and continuous;
i) MJ(-) satisfies the bound, uniform in k:

I < | /R du /R e | F@sN@ ) vkeR!  (117)
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Notice that the vacuum odd moments of B, ; are zero and, if each factor
M/ (k) were the 2n—th power of some function c;(k), independent on n, then
the expression (115) would be the moment of order 2n of a random variable
with distribution given by a convex combination of Wigner semi-circle laws
with parameter

cr(B)llall 2w

and mixing measure given by the spectral measure of the momentum operator
in the state €. This is not the case because of the interaction term in (115),
i.e. the factor under FE,—expectation. Neglecting this term, i.e. putting
Xnr =0, Vh,r, the right hand side of (115) reduces to

[ Q| [l 23 gy /Rd dpe(k) [(f | £)(R)]" (118)

where

FINE = [ du [ ay(S.miwe" (119

which is precisely of the type discussed above with

cr(k) = (f [ £)(F)

In this sense we have claimed in the introduction that the vacuum distribution
of the limit field operator is a nonlinear modification of (a convex combination
of) Wigner semi-circle laws.

10 The limit stochastic process

Up to now we have discussed the convergence, in the sense of mixed moments,
of the collective creation and annihilation processes to a new type of quantum
noise. The results proved in the previous Section, combined with techniques
now standad in the stochastic limit of quantum theory, allow to deduce the
explicit form of the stochastic equation for the limit of the time-rescaled
wave operator. The full proof, which is unfortunately rather long, shall be
published elsewhere [19]. We state her however the final result because the
explicit form of the equation is particularly simple and easy to use.
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Theorem 5 Foreacht >0, {Sy, T}, {S;L,T,’L}hél CR, {fi},, {f] flvz/l C
K and &,n € L*(RY), the limit

N N’
< TT A5 (S Tn f)@ @ & Uyne [ [ AL (S Th 1)@ @ 1 > (120)
h=1 h=1

exsits and is equal to the solution of the quantum stochastic differential equa-
tion with respect to the free module Brownian Motion:

t
U) =1+ [ (4410 =in) = (<in) dAu(o) ~ (=ip)' (g | 9)_(~in)ds)U)
0
(121)
on the full Fock P-module described in Section Section 7. Where, the half-
inner product (- | -)_ is defined by

Flo= [ at [ v iw)(sio)m (122)

The proof that the solution of the quantum stochastic differential equation
(121) is effectively a unitary operator and in fact the very meaning of this
equation, depends on the theory of the free stochastic calculus over a
Hilbert module, which has been recently developed in [13].
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