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Introduction.

In the present work is studied an operational caleulus on «square roots
of measures » (") on a measurable space (2, %), in which these ones are inter-
preted as vectors in a complex Hilbert space (2, #). The structure of the
space (2, #) is completely determined by the fact that this space is isomorphic
to the inductive limit of the family {L%(2, %, m)} indexed by the set of all
positive measures on (£, #), partially ordered by absolute continuity and with
the natural immersions

i€ L2, 5, m) = - ngbe e/t

(m<n) (cfr. Sect. 2; cor. (2.8)).

Nevertheless, the construction of (2, #) considered here is purely alge-
braic and allows a simple description of the single elements of this inductive
limit, which are identified with square roots of measures.

The consideration of the space #7(2, #) arises naturally in the case when Q
is a function space interpreted, for instance, as the phase space of a system with
an infinite number of degrees of freedom. In this case, in fact, does not exist
a «natural » measure on £ and, moreover, the simplest groups of transforma-
tions in general do not preserve the equivalence class of a measure on £2. There-
fore the study of a dynamical system on Q leads to the consideration of one-
parameter families of inequivalent measures, which makes, in general, impos-
sible the use of a single space Lg (2, %, q) as state space for such dynamical
systems.

(") Onleave of absence from Laboratorio di Cibernetica del CNR, Arco Felice, Napoli.
(**) Unless explicitly stated the contrary « measure » will mean real hounded measure
throughout the paper.
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168 L. ACCARDI

Moreover, the fact that automorphisms on (£, %) act as Markoll operators,
in the sense of [3], on .#Zx(f2, Z)—the Banach space of measures on (2, #)—
and as unitary operators on the Hilbert space of square roots of measures
(cfr. Sect. 2) and the equality

Amyf/m, = ]‘f(lm,

which holds for an arbitrary measure m on 2, suggest that the formalism of
« square roots of measures » could be used to interpret the results of SEGAL [4]
and NELSON [5] in a context more general than that of Gaussian measures.
This formalism is applied here to obtain a classification of those measures
on product spaces which are «well behaved » (cfr. Sect. 4) with respect to
product measures in terms of incomplete components of an infinite direct product
of Hilbert spaces. In case of preduct measures the equivalence relation which
induces this classification turns cut to be the measure-thecretical formulation
of the equivalence relation among C,-families intrcduced by vON NEUMANN
in [1] (Def. (3.3.2.)). In this memoir ((11 [1], pag. 326) vON NEUMANN expresses
his program of applying the theory of infinite direct preduct of Hilbert spaces
to the study of measures on infinite-preduct spaces. Therefore the classi-
fication obtained in the present work can be considered as a way of making
explicit and realizing this program.
Finally, thanks to the recent results of ARAKI[6] and CONNES [T], most
of the results in this paper could be extended to the noncommutative case (%).

1. — Construction of the space 7 (02, %).

Let (2, %) be a measurable space, dencte Ap(2, #) (vesp. (L2, #)) the
space of bounded real (respectively complex) measures on (£, %), which is
a Banach space for the total variation norm. If @, y € #p(2, #) we write y
if z is absolutely continuous with respect to y; # Ly if « and y are ortho-
gonal (i.e. if there exists disjoint sets A, Bed, such that |z|(Q2)= |z[(4);
lyl(B)= |y|(2); |z| denoting the measure «total variation» of ). If
r€Mg(2,#) and x= wt—z~ iy the Jordan decomposition of x, at L 2~
|z] = &+ 4 2~. The convex cone of positive measures in #z(Q, %) will be
denoted #%(Q, #). If m, ne M2, %), then there exists a unique positive
bounded measure on (£, %), defined by

dm dn
1eA
W e f qu dq ’

(*y The Author is grateful to Dr. A. Coxnes for having called his attention on this
circumstance during his lecture in Varenna.
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where ¢ is an arbitrary positive measure dominating m and n (i.e. m < ¢;
n < ¢). The measure thus defined which is easily seen to be independent on ¢,
will be dencted v/m - n.

Let #7°(0Q, #) be the complex vector space spanned by the symbols [r]
where z e #g(£2, #); with the following relations among the generators

(r.1) [x] + [#']— [z + 2], 2 | o'
(r.2) [fx]—+/E[x], #>0; EeR(WV—1=i);
(r.3) [m] -+ [n]—[m -+ n-+2vm-n], m, n € ML, B):

[ge(m +n—24m-n)|+ [g_(m +n—2vm-n)],

(r.4) [m|— 1]

where m, ne A2, B), and y,, y_ are the characteristic functions cf a Jordan
partition of £ with respect to the measure m—n.

Denote I/ the free complex vector space spanned by the symbols [2], and
I, the subspace of I spanned by the expression (r.1), ..., (r.4). Define a sesqui-

linear form f, by confinuation on X I of the equality
BLely [y1) = otay yh) + oo, ym) —dola®, yo) 4 do(r, y*)

where o(m, n) = vm-n(2) denctes the Hellinger integral of m and n. A simple
computation shows that F, is contained in the subspace of F

{eec lV:ple, ¢)= 0} .

Lemma 1.1. Every element ¢e I defermines uniquely two measures , y
such that

0 = [a+] — [] -+ i([y*] — [y]) (mod L) .

Proof. Let ceE. Then ¢= > J,(2;], for a finite set ¥, and z;€.#p(2, %).

ErR
By iterate application of the relations (v.1), (r.2), (r.3), one finds four positive
measures, m, n, m', #', such that

¢ = [m]—[n]+ i([m']—[n"]) (mod I,) ,

and the desired decomposition is obtained from this one by application of
Equality (r.4). To prove uniqueness, let

¢ = [yl — L1+ il 1—1y,]) (mod &),

be two decompositions of ¢, mod F,, according to the first statement of the
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Lemma. Then the expression

([et] + [a7]) — (L) + () + (o] + [7) —i([ug] + [97)
belongs to F,, hence I, contains also

=[] — [2.] + ([25] — [24])

where z,= a4+ a7 + 2\/.1'f-.1'2_ and 2; (270 4) are defined in a similar way.
By the remark preceding the Lemma

(l dz,
9 2 2. ~l . 2
‘ 20(21y 22) = (lq qu

(#,< q; 2,< ¢) it follows that the expression on the left-hand side is positive,
and null if and only if #,=2,. That is, if and only if

F by 2Vt ay = ar 4 ol + 2 Vol .

ast eque i ies L =, 16 same reasoning « i 0 24
The last equality implie =F %3 .- Tl me reasoning applied to z

and 2, yields yF=yF; y7=1y;. Therefore the proof is completed.
Corollary 1.2. Ky = {ce lV:f(c, ¢) = 0}.
Proof. One has only to prove that f(e¢, ¢) = 0 implies cels,. Let
¢=[zt]— o]+ ([y*]1—[y]) (mod L) ,
be the decomposition of ¢, mod F,, according to Lemma 1.1. Then
0= e, )= ] + Iyl

and the uniqueness of the decomposition implies ¢e€ ;.

Denote n. I — (2, #)= L/E,, the canonical projection. The scalar pro-
duct (@(l),w(l")) = P, U'); 1, U € K, defines on (02, H) the structure of a se-
parated pre-Hilbert space.

Lemma 1.3. The uniform structure induced on #g(£2, #) by the map
(1.3.1) (&, y) € MR(Q2, B) X Mp(£2, B) >max {|Jat—y*|; o= —y~ |},

is isomorphic to the uniform structure induced by the norm.
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Proof. It is not difficult to verify that the sets
= { Y)EMpX Mg max { |zt —yt|; [am—y [} < s}

for e >0, are a base of a uniferm structure on #z(Q, ). One has to prove
that the identity map on #x(£2, #) is uniformly continucus from the above-
defined uniform structure to the usual one and conversely. Clearly

max {[at —y+, o —y |} <e

implies [&—y| < 2¢; thus the uniform structure defined by the map (1.3.1)
is finer than the one defined by the norm. Conversely, suppose |@—y| e
For any two measures u, v, denote u(v) (respectively u(v)t) the component of
% absolutely continuous (respectively Orthegonal) with respect to ». From
the equality

le—yl = la* @) —yHar )] + la~yh) + yH((ar@h)* -
+ e~ =y (e @) + lrr ) + g (@) + )]+ Jay)*]
and the initial hypothesis it follows that each of the summands is less

than &, hence

lot—y*l = ot ™) —yHar )] + lyt(aryn) [t + o)t <e.

Analogously |z~ —y~| &, hence the uniformity defined by the (1.3.1) is less
fine than the usual one, and this ends the proof.
Now, one easily verifies that the sets

Vie)= {(x, y) e MpXMp: || + |y| p—2[0@*, y*) + o(e™, y7)] <&}
for & >0, are neighborhoods of the diagonal in a base of uniform structure
on Mp(2,#). We shall call this uniform structure the o-uniformity.

Lemma 1.4. The p-uniformity is isomorphic to the norm uniformity on
each bounded subset of AR(02, %).

Proof. Because of the preceding Lemma, it will be sufficient to prove that
the g-uniformity if isomorphic, on each bounded set, to the uniformity defined
by the map (1.3.1). Since, for positive measures m,n one has

dm dn\? fdm dn
[m| + ||n] —20(m, n) V V i 5 | dg,
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it follows that the norm uniformity is less fine than the g-uniformity. Censider
now twe positive measures m, n such that m < n; then

lm 2 b i lm 2 %
[m—n| = 1_(1_77_1 dn<i | 11— /f " dqp - ‘ ‘1+V( " an <
' dn dq J dq
o Q2 0

<]

20( o(m, n)

nl)V]

wher [2])= '\/“ m| + v |n].
Thus if m, n are arbitrary positive measures belonging to a bounded subset
of M2, %), there exists a constant A, such that

L

[m—n| <2 l\ m<| + [n] —20(m, n) + |m+|,

where m = m= -+ m*, is the erthogonal decomposition of m with respect to n.
Thus, if

m 4 n —2Zom,n) e<1,
one has |[m—mn| (2 -+ 1)'\/;, where the constant 4 depends only on the
bounded set to whom m and n belong. Hence the identity map is uniformly
continuous from the o-uniformity to the nerm-unifermity, en each bounded
set. Therefore the Lemma is proved.

Lemma 1.5. The p-uniformity has the same Cauchy sequences as the norm-
uniformity.

Proof. Since the norm-uniformity is less fine than the g-uniformity (cfr.
Lemma 1.4), and equivalent to it on each bounded set, it will be sufficient to
prove that a Cauchy sequence for the o-uniformity is bounded.

Let (X,) be a p-Cauchy sequence, let sup |X,| = oco. Assume first that
each a, is positive. Since !

]| — 20, )= (V] = V[ ])?

2l +

for any w and I, one can find a » > such that

UL o 0
L, | 12, | 2o(a

/1: .l'r) >N,

and this contradicts the fact that (x,) is a g-Cauchy sequence. Thus a g-Cauchy
sequence of positive measures is bounded but the sequence (X)) is a o-Cauchy
sequence if and only if (.rj) and () are such ones. Thus any o-Cauchy sequence
is bounded, and this ends the proof.

Proposition 1.6. The pre-Hilbert space H = m(F) is a Hilbert space
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Proof. Let (w(l,)) be a Cauchy sequence in H, then for each n, there exists
1 o ) b

a unique couple of measures @,,y, such that 7 —a7, (respectively N

n n )

being the Jordan decomposition of @,, (respectively ¥,), one has

a(l,) = alay 1 —ala; ]+ i(alyy ] —=ly,]) ,
and since
|7l * = |alag]—ala1]* + [=lyf]1—=(y;1]?,
one can limit oneself to the case y,= 0, for each n. If ¢ is any positive mea-
sure dominating all the a,, then (z[l,]) is a Cauchy sequence in H if and only
if the sequence (v/da}/dg—+/da;/dg) is Cauchy in L2, %, q). If { is a limit
for this sequence, define = by a+= (f*)2-q, == (f")*-¢q. Then =a[l,] — a[x]c H.

Definition 1.7. The mapping
Jralat]—ala] -+ i(alyt]—aly™]) — alet] —ale"]— i(aly-]1—aly*])

will be called the canonical involution in (2, %). Let us denote (2, D)
the fixed space of J (i.e. J(h) = h, for every he# (2, AB)). A (L2,9) is the
real subspace of #°(2, #) spanned by the vectors of the type z[m], where m
is a positive measure on (2, #). We shall denote J/’:r(.Q, Z) the set of elements
in A(Q, #), of the form m[m], with me.Z5Q,R).

Theorem 1. The mapping x: Mp(2, B) — H(2, %) defined by the equality
#(w) = z[x], induces an isomorphism of uniform structures from #z(2, %) onto
its image which ejoys the following properties:

(i.1) ®(x) = x(at) + in(ax);
(i.2) w(€x) = VE n(x) , r>0; feR (vV—1=1);

(i.4) x(m) + x(n) = %(m + n + 2vm-n) , m, neMEQ, B);
(i.5) x(m) — x(n) = =((m +n—2vm n) y,)— #((m+n—2vm-n)-y_),
where m, n e #5Q, %), and y.,, #— are the characteristic functions of a Jordan
partition for the measure m -— .

Moreover x(Mp(Q, RB)) = A HQ, B) -+ iAF(Q, #) and A, B) is a gene-
rating cone for 5,.(0Q, %4).

Proof.  Assertions (i.1), (i.2), (i.4), (i.D), follow from the relations (r.1),
oy (rd). Assertion (i.3) follows from the equality

(@) [2= o(@*, &¥) + oo, &™) = || .
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Identity (i.1) implies that x(#g)= AT+ i7", equalities (i.4), (i.5) and the
fact that s2,(Q, #) is spanned by the x(m), m e 4% imply that 2502, R) is
a generating cone.

The equality

x(w) — =(y)

2= || + |yl —2{o(a*, y*) + o@~, y7)}

and Lemmata 1.4, 1.5, imply that » is an isomorphism of uniform structures.

Remark. The properties listed in Theorem I justify the interpretation of
the »(x) as the «square root» of the real bounded measure = on (£, #). For
this reason, in the following, we will often use the notation x(z)=V/w.

Theorem II. The mapping o of #x(2, %) onto the Hilbert space 5,(2, #)
defined by the equality a(z)= »(zt) —ax(x~) is an isomorphism of uniform
structures with the following properties:

(1) fa@l= ol;

1.2)  a(iw) =4 afx), 2 € R+;
(i.3) oa(—m) = —a(m) , meMEQ, B);
(i.4) m, n€MEQ, B) = {a(m), x(n)) = 0, if and only if m _| n;
(i.b) a(m) -+ a(n) = o(m +n -+ 2vm-n) , m, neMQ,R);

(i.6) a(m) —o(n) = o gme: (M + n—3vmn)) —a(y,--(m +n—2vmn)),
where m, n €452, #) and {I*, E7) is a Jordan partition of £, relative to the
measure m —1n.

Proof. oY (2, B)) = Mp(L2, B), and o is an homeomorphism because of
Theorem I. Moreover [o(z)

= g(at, at) + o(w™, 7)) = |x| and this estab-
lishes (i.1). The equality {a(m), o(n))> = o(m, n) implies (i.4); and the remain-
ing properties follow immediately from the corresponding ones in Theorem I.
The properties (i.1), ..., (i.6) characterize the space J,(2, %) in the sense spe-
cified by the following Thecrem.

Theorem III. TLet H be a real Hilbert space and let f: .#z(2, #) —H be
an homeomorphism which enjoys properties i.1),...,i.6) of Theorem IL Then
H is unitarily isomorphic to J.(02, 4).

Proof. Put w=fot. Clearly « is a norm-preserving homeomorphisn.
Trom i.2), i.3) homogeneity follows, and additivity is a consequence of i.5),
(i.6). Exchanging « with 4~ one deduces that « and %! ave, isometric isomor-
phisms, hence « is unitary and this ends the proof.
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Corollary 1.8.  There exists an isomorphism of uniform structures:
v Mo(Q, B)—H(Q, D), defined by the property

y(@ 4 ty) = afx) + daly) .

2. — Action of aut(2, %) on 7 (Q, %).

Denote aut (£2, #) the group of one-one mappings of 2 into itself which
are measurable together with their inverses. Then aut (2, %) has a natural
action on Mg(2, #) (and M(2, %)), defined by

(2.1) Po=a0T™, wele(Q,%8), Teaut(Q,5).

The operator 7' thus defined has the following properties:
M1) 7' is linear,
M2) 7' preserves positivity,
M3) |Te| = || ,
M4) 7' preserves absolute continuity. (i.e. z < y <« T < Ty).

Following the notations of [3], any operator which satisfies these four condi-
tions will be called a « Markov operator ».

Let now y: #o(Q, B) — (2, #) be the map considered in Corollary 1.8;
and

(2.2) Toy: yo(]ﬁ.

Proposition 2.1. The map T eaut (2, Z)—T defined by formula (2.2) is
a unitary representation of aut (2, %) on the Hilbert space (02, %).

Proof. Tt is clear, from i.2),1.3) of Theorem IT that Th)y= 2-T(h ), A€R
for he (2, #). Moreover applying 1.4) and i.5) of Theorem II one finds

Tlam) 4 a(n)] = a[Tm + Tn + 2’f’A\/mny] ,
thus the additivity of 7' follows from the equality
TvVm-n= \/(Tm) (Tn)

Let now m, ne.#}(Q2, %), then if m, n< q

(To(m), (n)y= J.V(:(; _/’(u)dq(lm) o(m, n) = {a(m), a(n)) .
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TFinally, if @e.Zq(2, #), and 8, T' e aut (2, %)
(ST)(ya) = p(STwy = ST (ya)

and clearly id, = id,,. Therefore, the map 7'—1" is a unitary re resentation
2 H ’ g y
and this ends the pl’OOf.

According to the notation introduced in the preceding Section, we shall
write VT = \/17’\/5, and we will use the notation \/f?’, for 7.

Similarly, if M denotes the action by multiplication of L{ (L2, #)-algebra
of real bounded, measurable functions on (£, %), the action

M (fyoy = yo M(f),

of L (8, 2) on s (2,%) is defined.

Proposition 2.2. The following equalities hold:

(i.1) M= M) + il (),

(i.2) T(f-g)= M) Mg);

(i.3) M(f) + J(g)= J(V] + V), f,9e LR, %)
(i.4) M) — Mg) = My, -V —Vg1— My Vf =g,

where f, g€ LT (2, %) and y,, y_ are the characteristic funetions of the sup-
ports of (f—¢) and (f—g) respectively;

(i.5) 1M (F)2= ] -

Proof. Bquality i.2) is clear. The remaining ones follow immediately from
the corresponding ones in Theorem I.
Writing 7 (f) =4/, one has v/f - =+v/f -v/& and the following equalify holds:

(2.3) Nmy T m = “f(lm 3 meMy, fels .
)

¢

We shall denote .of = .oZ(Q, %) (vespectively o7,) the complex (respectively
real) algebra spanned by the M (f), with fe Ly (L2, #), which is isomorphic
to LZ(#,Z).

Definition 2.3. For every x in Mp(2, #) denote (L2, %) the norm clo-
sure, in 2, of o/[Vw].
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Lemma 2.4. For every we.#p(2, #) one has
(i.1) Ho(Q, B) = y( M2, B)) ,

where (82, %) denotes the subspace of the measures absolutely continuous
with respect to x;

(i.2) Ho(Q, B) ~ LN 5 05)

where Lo/, w v&) 1s the Hilbert space obtained from .7 and its positive func-
tional  ,:a€.o/ —/w,a-vx) by means of the Gel'fand-Naimark-Segal
construction.

(i.3) there exists a canonical isomorphism (2, #) ¥ L}(2, %, |»|)

such that
p(va) =1 and %(“W))—de Vit

Proof. (i.1): Since y~(oZ V)= L& (2, #)-», and since the closure of the
latter space in g is A,, the equality y(#,) = 5, is a consequence of the
fact that y is a homeomorphism.

(i.2) is just the definition of (,(2, Z). TFinally (i.3) follows from (i.2)
and equality (2.3).

Proposition 2.5. Let x,yeMp(2,#). Then x_L_y if and only if (2, %)
is orthogonal to #(Q, #); x<y if and only if H#,(Q, B)CH (2, B).

Proof. Suppose S, L ,; then for every fe Ly (2, %), f]‘ dvay = 0 (for
2

positive @, y). Thus @ 1 y; for general @,y the assertion follows by linearity.
Since the converse is obvious, the first assertion of the Lemma is proved. The
second one follows from (i.1) of the preceding Lemma.

The group aut (2, #) acts on LZ (2, #) by means of

(2.4) P(fy=toT', feLg(@,B), Teaut(Q,A).

Equality (2.4) defines an automorphism of the C*-algebra Lg (2, #). Moreover
the following equality holds:

(2.5) ToM(f) = M(Fr)oT,

which connects the natural actions of L® and aut on (2, &), with the action
of aut on L%, defined by (2.4).

12 — Rendiconti S.I1.I'. - LX
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Corollary (2.6). For every a € Mp(R2, #), and T €aut (2, %),

Aoy (9, B)=NT[H (2, B)].

T

In particular the space 5, is invariant for the unitary operator \/T, if and only
if the measure z is quasi-invariant for the automorphism 7.

Proof. From (2.5) follows VT (%-\/o?):&%\/f’x, which proves the first
assertion. The second one follows from Proposition 2.5. Let for any
w€Mp(2, B), Y.,(Q2,%) be the subgroup of the VT which leaves H (2, D)
invariant. From Corollary 2.6 it follows that

9.2, B)={VT:Tcaut (2, B), To~a}.
Corollary 2.7. of , Q@Y G, ~ B(AH,).

Proof. Clearly #, acts ergodically on .27,
Corollary. 2.8. (2, #) ~ lim_L%(2, %, ).

3. — The isomorphism 7,0 ', ~ Mp(2, B).

In the previous Sections the complex Hilbert space (2, #) has been iden-
tified with the «square root» of the real Banach space #g(2,%). In the
present Section the converse problem is studied: that is, to express the Banach
space Mp(2,#) as the «square of its square root ».

Let @,y e Mp(2, #), fe Ly (L2, 7#). From the equality

VF s Vs = [VE- (Varyt + Vg 4 i[VE{Varyr—Vary)
Q Q
it follows that the map Vf+><{Vfv/@, vy defines a complex measure on
Lg (4, T), therefore the equality
(3.1) ;z(-\/.;; Vy) = (Vaty*t + Vay-) +i(Va—y+t—Vaty)
determines a sesquilinear map from X into (2, #) such that
la(vVe; V)| <Vl -y = [Val - [Vy] -
Thus the restriction of g to s,Xs, extends to a (real) linear map from

H, RN, to Mp(2,#) which will be denoted x. The generic element of 7,
has the form a(x) (cfr. Theorem II) and

(3.2) wla(@) @ aly)) = (Vatryt + Va-y-) — (Va—y+ + Vaty-) .
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Lemma 3.1. Denote &(f) = v/f+—+/f~. Then keru contains the following

expressions:
(i.1) o(r) @ aly) , z_ |l y;
(i.2) [@(f)? - o)1 @ ex(y) — [@&(f) ()] @ [&(f) - ox(y)] - f=0;

Proof. Both assertions follow immediately from equality (3.2).

Denote now by 0, the closed subspace of &, ® #, spanned by expres-
sions (i.1), (i.2).

Lemma 3.2. Let 3, @@ 37, denote the algebraic tensor product of 22, by
itself. Then any veetor b in 2, O, can be written in the form

h=Vut+ ®\/u+ —Vu- @V ‘u (mod 0,),

where w*, 4~ are positive measures mutually orthogonal.
Proof. Let h= Y 2Vz, @Vy, (I a finite set) be an expression for
iEF
hed, @0,. Clearly one can suppose the ., y, positive, and @; < y,;, mo-
dulo O,. Now, if f,g,f, ¢' are positive functions in L'(Q, 4, y), the inequality

2w 19 —¢'[ 2w

IViy @ Vay— vy @ Va'yl <e.Vlgluww [f—F | ow+ eV

(61, ¢, are constants depending only on %), it follows that

\/.1 ®\/1,-»~\ ®\/~,, z,Vgi Yiy

can be uniformly approximated by expressions of the type (i.2) of Lemma 3.1,
hence it lies in @,. This yields

h=32.Ve, ®Vz, (mod 0,)

1EF

where z,— (\/d;vi/dg/i)-yi and the 2; can be assumed to be equal to --1.

We now apply an analogous of the Schmidt orthogonalization process:
consider the sum 2,vz, @ V2, + L V7, ®V%,. If 2,=2,,+ 2,, is the Hahn-
Lebesgue decomposition of 2z, with respeet to 2z, (that is Ba1l %50,y %1< %,
%20 2), 1t Is clear that the sum is equivalent mod @, to

(3.2.1) Ve, @ Va4 2V, @ Vags+ 2 Ven, ® Veas.

Now, if @<y, and z,y are both positive measures, one easily verifies the
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equalities

\/a_9®\/o;—|—\/g;®'\/§:\/m—}—y @'\/mTy (mod 0,) ,
(3.2.2) Vo @Ve —Vy @ Vy=

=Ve—y+r@Vie—y—V@e—y - @Vie—y)~  (modd,).

From these equalities, applying inductively the decomposition (3.2.1), one
obtaing

h= 3 Vau; @ Vu,— 3 Vu, ® Vu, (mod 0,),

iert JEF™

where the %, are mutually orthogonal. Therefore

= VEH OV S VIu OV,

i€r i€EE 1EF™ 1EF”
and the thesis follows by putting
wh= Y, w= D u,.
ier* i€r~

Remark that in general vut @ vVut —+/u~ @ v/~ is not the orthogonal pro-
jection of A with respect to 0,.

Lemma 3.3. For any hes, ®© s, the representation described in the
Lemma above is unique.

Proof. Let v= vt—ov~eMr(2,#) be another measure which satisfies the
condition of Lemma 3.2. Then

Vaut @ Vut —Vu- @ Vu- —Vor @ Vot + V- @ Vo ed, .

Consider ot = of 4 o + o} (vespectively v~ =4+ o]+ v;) the orthogo-
nal decomposition of o+ (respectively v~) which respect to ™ and w= (i.c.
vh<wty ot < wm;of _|u|; and analogously for o7). Then, by iterate ap-
plication of the equalities (i.1), (i.2), one can reduce the above expression to

n=V@" +o;—oh)t+ @ +oT—v) +of ®
®V(wh +vi—oD)" + (™ + o —v2)” + o +

VR T ool o s ©
RV (U +vz—vI) + (u +vE—o2) + 5,
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where e @,. Hence it follows

S T T O S
U T —vi=u + 0 — =0, =10, =0,
hence, from the definition of the ot
vi=vt=0, oi=u", Z=u",

that is w = v; and this proves the Lemma.
Lemma 3.4. 0, = ker p.

Proof. By construction ¢,Ckerp.  We shall prove that it is dense
therein. Let hekeruy and 1 >¢>0. There is an h' €, @ #, such that
[h—1n'| <e. If

B = Vaut R Vut— V- R V- (mod @,) ,
is the decomposition of A’ described in Lemma 3.2, one has
] + o] < Jah— )] < [h—B] <.

Hence there is an ne @, such that |[h—7y| <2/, and therefore ¢, is dense
in kerpu.

Lemma 3.5. The space J, @ #,/0, is isomorphic, as a normed space, to
Me(2, D).

Proof. The mapping from 5, ® #,/0, to Me(R2, B) naturally induced by
wis a contraction and equality (3.2) implies that it is surjective. If he#, ® H,,
then there exists = ut—w— €. #p(2, #) such that

h—vVu+r @ Vutr —vu~ @vVu~ €0,

(as one easily verifies by approximating & with elements of the algebraic ten-
sor product 7, Q0 ,). Hence

Inf{|n+9|me0})<|u].
Thus if 7: 5, @ H,— A, @ H,|0, is the canonical projection
7| < |uh)| = |u],

hence |n(h)]| = |u(m(h))], and this ends the Proof.
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Definitions 3.6. Let H be an Hilbert space and A a C*-algebra of operators
on H. We shall denote H o* I, the normed space H® H/O(A), where 0(4)
is the closed subspace of H ® H spanned by the expressions

)h®K, hlK, hKeH;
i) (a*ah) @ K — (ah) @ (aK), acA, h,keH.
We sum up the above considerations in the following:

Theorem IV. There is a natural isomorphism of Banach spaces

M, B) = H(Q, B) " H, (2, B) .

4., — On the classification of functional measures.

In Sect. 3 has been studied the mapping p: H @ A — M which arvises
from the equality

(1.1) s f|-vay = [Iflaja .

In the present paragraph the corresponding equality will be considered in the
case when Q is a function space. To this aim, let us consider a family (2,, %)),
of measurable spaces, and denote, for each iel, (2, #,) the complex
Hilbert space constructed as in Sect. 1. The infinite direct product of the
family {#°(Q,, #,)} can be thus formed, and it splits, according to [1], into its
«incomplete components » Q% A (Q,, #,) relative to the equivalence classes of
Cy-families. e

For ie I let /¥, o/ denote the Abelian algebras built in Sect. 2. It is
known that, for any finite set I'CI, and «,€./? there exists a unique oper-
ator @ a,; defined on ® H#(L2;, #,) by the equality

= iel

(®a) (@ Va)=(®ava) @ ® Vai).

VIEF i€l 1€r t€I—F ‘

If a;= a,(f;), then

[(®a)-(0va)

() atgied

ier iel
IT o
i€l
where the measure x,;] is well defined because 1 — [Wea,l]|< co.
o ‘ 1 1
i€l i€l

Introducing the notation (2, %)= H (Q,;, #;, and making use of equality
(4.1), one deduces =

(o) (g0

i€l

(TT ) (LT ) |

el iel |
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If the x; are positive measures and the f, are positive functions, the above
equality becomes simply

@) (@vel~ [vign Vi)

1EF 1€1 IEF €1

Thus one is naturally led to think these last two equalities as arising from
a correspondence between (2, %) and ® #(2;,#4,) which extends the map

iel

(4.2) Q@ Vm; >V T m,
1€l 1€7
defined in the case when all the m; are positive.
Let us begin the study of the extension of the map (4.2) by restricting our
attention to the incomplete direct product Q@Y™ Z,(Q,,%,) in the case
el
where almost all the m; (i.e. all but a finite number) are positive measures.
From now one, a Cp-family in ® o,(2;, #,) which enjoys this property will
be called an «essentially positive Cj-family ».
From [1] (Lemma (3.3.7)) it follows that we can suppose each m; to be a
probability measure.
Lemma 4.1. Let (o;(r,)) be a Cp-family in ® ,(2,, %4,). Then (ai(.r,»)) is
iel
equivalent (in the sense of [1]) to an essentially positive O,-family, if and
only if (Va}),,, is a Cp-family. In such a case one has

(i) =~ (\/;) and Y a7(2,)< oo
i€l
Proof. Sufficiency. Recall that, by definition o, \/J* Va;; thus if
the conditions stated in the Lemma are satisfied, cleally (oes(y)) is a Cp-family,
and

)

S|t —<adm), Vaiy|=3
i€l €1

which implies (o;(x;)) =~ (V#7).

Necessity. Suppose that («,(z;)) is a Cp-family equivalent to the essentially
positive Cp-family (vm,). Suppose first that, for almost all i€ I, [o,(2;)| = 1.
Then from the inequality oz, m,) \/cc+( ) it follows

2 o(m,, 7 Z[( olm,, &) + o(m,, 7)) = ¥ |1 — {as(a; )y Vmy|< oo,

1€7 i€l i€r
and therefore

i

i€

< Y [1—o(m,, ah)]< co.

i€l
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These two inequalities imply that (\/%:) is a Co-family equivalent to (v/m,).
By transitivity (v/z) is equivalent to (o;(x;)), and this implies 3 27 (£,) < oco.

i€l
Now, if o 2,)] =1, for infinite 4, equivalence implies that there is a finite
set I, C I, such that T (ei(@,); v/m,> >0. Then applying Lemmata (3.3.6)

i€I—F,
and (3.3.7) of [1], one deduces

2‘1_<,\/w7i; i) ><0<>,
€1 ‘ “al(xl)”
and the above result implies that (\/;T'f/‘ljai(.'ri)) is a C,-family equivalent
o (Vm,).
Therefore, also (Va?) is a Co-family, and

LB w8 o) (B at)=l B a8 Vima B )t

t€EI—T
(where we have put ;= 1/]o,(;)]), but this relation implies (V) ~ (vVm,).

Tinally, since both (o(2)) An(l (\/x;) are Cp-families, one must have
> #7(£2,) < co. BEquivalence implies that (va}) ~ (ee(x;)), and therefore the

i€l
proof is completed.

Denote now

K0, )= H(T1 (20, B)) 2 M2, B) > H (2, 7)

i€l

the real Hilbert space and the map defined in Theorem IL. Consider the map

ot (@ ors(; RVm, —>oc( ;) m; )
ot (@) © (8 vmi) > ([T =) (T[m))
which is defined on a total subset of QW) 7, (2;, #,) and takes values in
H(Q, B). .

Lemma 4.2. The map u, admits a unique extension « into a unitary trans-
formation from QW= 7,(Q2,, #,) onto a closed subspace of (L2, #). The

1€l
unitary transformation U is characterized by the property that the image by
U of any essentially positive C,-family (oi(2,)) in @Y™, (Q,,4,) is the
image a(l—[ w,) of the product measure Hxi: “

i€r €7

Proof. Suppose I and I contain a single index % (respectively ¢'). Then

<<x(xi -I([ﬂm,) (y, HmJ)>

1—{i"}

<'\/’(’+ Hm,, \/_/t 1_[m,> <\ x7 Hm,, Vi HmJ>

1—{:} —-{i'} 1-{i}

<\/w HmJy \/_/; Hml> + < \/m; 'E{}mﬂ \/y;'H’?lJ> )

—{i'}
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since Q(H 1% Hv,-) =TT o(u:: v;) (cfr. [2]), this expression is equal to

€7 i€l i€l

o(xFymy)-o(my, yFy— o7, m)-o(m,, yh) —

— Q(.rj‘, m,) oy, , my) 4 ola,, my)o(y,y, M) =

= <a1-((1“1-)'® v oy ® le.> ;
1-{3} 1—={'}
Thus, by induction on the number of elements of I and I, one deduces that w,
preserves scalar products between Cy-families differing only in a finite number
of indices from ®+/m,. It is well known (efr. [1]; Lemma (4.1.2)) that these
iel
Co-families are total in @Y™ (Q,, #,), thus it remains to prove that the
€l

linear extension ¢f U, on the space spanned (algebraically) by such C,-families,
is well defined. That is, again using induction c¢n the set of indices one re-
duces to verify that

0,2 @ Vm, = [o(a;) 4+ oY) ] @ Vm! ,
JAL J#£i
where @,;,y, are pesitive, z,= ;4 y, and almost all m'J: m,. And this
relation easily follows from Thecrem I11.
Now, if ® o,(x,) is an arbitrary essentially positive Cj-family equivalent

el
to ®+'m,, then
i€l
lim (@ ) - @ Vi) = @ e,
. \{Eer Tel—-1r el
tim (T Hm) = a(H 1) ,
iEF t€I—F €l

(both limits are meant for the filter ¢f finite parts of 1).
Therefore, by continuity u(@ oc,-(w,—)) == oc(l_[ rc,-). Conversely, if «' is a uni-
= el iel
tary map from QW= 2,(Q,, #,) into H#,(Q, #), such that the above equality
holds, then «' coincides with % on a total set, hence #'= u. The Lemma
is proved.
We shall denote .7/(1_[ m,-) the image of V™), (Q;, #,) by the map w,
i€l i€l
defined in Lemma 4.2. Now we investigate the possibility of giving an intrinsic
characterization of the space (H m,v). Remark that the last assertion of the
iel
above Lemma shows that the map %, hence also .}K(H mi>, does not depend
el
on the Cy-family (v/m,), but only on the set of essentially positive Cy-families
contained in its equivalence class.
Consider the family & of all product measures on the measurable space
11 (Q,, #,). Introduce in & the following relation:

(154
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Definition 4.3. Two product measures ], and J] y. are called «asymp-
i€l i€l
totically equivalent », if there exists a finite subset ¥ C I, such that the two

measures [[a; and J]w;, are not orthogonal. One easily verifies that ef-
1el—-F iEl—F
fectively the above one is an equivalence relation. Hence the set & is parti-

tioned into equivalence classes &, by this relation. For each such equivalence
class &, define the space #'(G§) as the subspace of J’f,(l_[ (2, %”,—)), spanned

_Nier
by all the product measures in the equivalence class .
Lemma 4.4. The subspaces 4 (&) of J{’,(H (.Q,-,L@,-)) corresponding to
o i€l
different equivalence classes @, are mutually orthogonal.

Proof. It is an easy consequence of Kakutani’s theorem formulated for the
case of infinite preducts of a family of nonnormalized measures and of The-
rem IL  Consider now two product measures []a;, [Jy:,. A necessary con-

iel ‘el

dition for the families (z;) and (y,) to define product measures in that almost
all measures in them be positive. And the two product measures are asymptotic-
ally equivalent, if and only if

21— o(@, yo)| < oo,

E€I—F
where the set I” is supposed chosen in such a way that for all indices J in its
complement @, and y, are positive. Therefore the asymptotic equivalence
of the two preduct measures is the same as the equivalence of the essentially
positive Cp-families & o (x;) and @ «i(y,).

_ el i€l

Thus a class & of asymptotically equivalent produet measures finally de-
termines an equivalence class &* of Cy-families which contains one (hence
infinite) essentially positive Up-family. Conversely, each such class of C,-families
is determined in the way described above by a class of asymptotically equi-
valent product measures. It is an easy consequence of Lemma 4.1 that if an
esuivalence class & of Cp-families contains one essentially positive C,-family,
then it cannot contain any C,-family & o,(x;), with an infinite number of x,
strictly negative. e

Therefore there exists a continuum of classes ¢ which do not contain any
essentially positive C,-family.

We now sum up our results in the following Theorem.

Theorem V. There is a one-to-one correspondence between equivalence
classes &+ of C,-families in ® ,(2;, #,), which contain one essentially po-
el
positive Up-family, and classes @ of asymptotically equivalent product measures
on [T (£;, B;). This correspondence is established by associating to each es-
i€l
sentially positive Co-family & o(z;) in G§*, the equivalence class & of the
4
product measure [ a;. =
i€l
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Moreover there is a unitary isomorphism #g. between ®0" A2, #,) and
H(), which is characterized by the property e

g (® i) = «(TT )

1€l i€l
for any essentially positive Cp-family & o;(x;) € G5t

Proof. The first assertion has been proved in the considerations before the
Theorem. The second one follows from Lemma 4.2.

We now study in a closer way the subspace 2 (¢). By definition this is
the closed subspace spanned by the o(H .r,-), with T «; lying in one and the
i€l i€l
same class @& of asymptotic equivalence.

Lemma 4.5. Bach algebra Lg(Q,, #,) leaves 4 (®) invariant in its natural
action @&; on it.

Proof. Clear.

Denote now &f/® the mnorm clusure of the algebra spanned Dby the
&(L7(Q;,#")). By the preceding Lemma Zg[# (&)]C.# (&), and since .7,
is contained in yf/,(l_[ (L2, ;JZ,-)), one has also that o7 [JKHIM] QJ/HIE‘_ for every

i€ s

i€l
product measure 7 ;.
fel
T y J " . n . L \ " 3 %
Lemma 4.6. For each ][, y/®a[H lr,-] is dense in A, .
i€l 1€l i€l
Proof. It will be sufficient to prove that in the canonical isomorphism
L%”Hx‘%fﬁc(r[ (2, %, 1'1-)) (cfr. Lemma 2.4), the set ﬂ/®a[1_[ ;r,] goes into a
el i€l i€l
dense subset. But in the isomorphism above oc(l_[ .r,-) goes into the function 1;
iel - ]
and an element @(f;) goes into the function V/ff —+/f; (cfr. Lemma 2.4).

Thus it is sufficient to prove that the algebra ® L*(LQ,,%,) is dense in
L® (H (2., %, a;,-)), or, equivalently, in qu(]_—[ (2., B,, .v,»)). But each set in

i 1
H!@ilis limit in (H 90‘:')'1110?13111‘0, of (“SJ'OilltEIunions of eylindrical sets. Thus
ier 14
each characteristiemfunction in L;’;’(H (Qi,,g?,-,:pi)) is limit in measure and,

i€l
because of boundedness, in Lg (H w,-) of elements in ®LE(2,, %,).
5. .
Therefore the proof is complzete(l. “

Corollary 4.7. For every T[w,€®, #, CHA(®).

1€/ 1€l
3 ) aQing ¢ - acires b - , - Thio a1
/f’_l—}x( contains all the measures ¥ on the product | (2;, %), which are
1E. i€l
equivalent to J],, and, in general, it is composed exactly by those o(®),

el .
with @ < T[a,. From the relation #p, CA(®) for every [[x,e® clearly

i€l 7€l i€l
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follows that

H(G)= U #a
I12e6 €7
i€l
where the expression on the right-hand side denotes the closed linear subspace
of Jf,‘(n (Q,, .@i)) spanned by the o, with ], in .
iel . 1€l el
Denote now & = @ A4 (&) the subspace of JKT(H (Qi,,@,-)) obtained as
. . i€l
direct sum of the spaces #°(®), when @5 runs rhrough all the classes of asymptotic
equivalence of product measures. Denocte 2+ the orthogonal complement of
in J{’,.(]_[ (2, %’,«)).
el
Lemma 4.8. A vector (V) is in o4, if and only if the measure ¥ is ortho-
gonal to all product measures on ] (2,, %,).
1€l
Proof. If ¥ is orthogonal to all produet measures, it follows from Theorem I1
that «(¥)e . Conversely, let «(¥)e . Suppose, by contradition, that ¥
is not orthogonal to all product measures. Then there exists a product measure
& such that ¥=¥,+ ¥, and ¥,< &, ¥, _|_®. But then Corollary 4.7 im
plies that «(¥,) e #(®), where @ is the class of asymptotic equivalence of @.
Finally, since ¥, | ¥,, one has a(¥)= a(¥.) + «(¥,). Hence «(¥,) is the
projection of «(¥) on A(¥)CH, and our assumptions imply «(¥,) = 0, hence
Y,= 0. This means ¥ __ @ which contradicts the assumption. We deduce
that, if w(W)ex’, ¥ is orthogonal to all preduct measures on [] (2., %)
and this ends the Proof. e
Denote now ¥ the subspace of ® (2., #,) obtained as direct sum of
iel
the incomplete components ®% H#,(Q,, %), relative to equivalence classes
i€l
&~ of Cy-families who do not contain any essentially positive C,-family. Using
the above notations, we now sum up the results in this paragraph:

Theorem VI. Let (2, #;)
is an exact sequence

s« De a Tamily of measurable spaces, then there

0>V 2 QHQ2:, B —“>,7f,.(1_[ (Q,, gm) Bt 50,

1€l i€l

where J and P denote the natural injection and projection respectively and «
is the partial isometry implemented by the unitary isomorphisms

Ugr: % Qi B) > H(GY),

by means of the equality

%= Ug: Pgs ,
(5+
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where the sum is extended to all equivalence classes &* of C,-families in
® H(L2:, #;) who contain an essentially positive family.

iel

Proof. It follows from Theorem VI and proposition 4.8.

Remark. The space ¥ is the subspace of ® 7,(£2,, %.), spanned by those
1€l
Cp-families (os;(#,)) such that for infinite indices 4, x;, is nonpositive and
2 a7 (8;)= oco. The map u, of Theorem V does not extend to such Cp-families
i€l

because | «; cannot define a measure on [] (£2;, %,). Nevertheless such a
i€l 1el
Cy-family still determines a measure on... by means of the quadratic expression

(@aiw); (@) )= aTT o (f0).
134 T o

i€7 i€l

1EI

In this sense one can inferpret ® «;(x;) as the square root of a «virtual
134
measure » on || (2., %,). €

i€l
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