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Abstract
The program relative to the investigation of quantum Markov states for gen-
eral one–dimensional spin models is carried on, following the strategy devel-
oped in the last years. In such a way, the emerging structure is fully clarified.
This analysis is a starting point for the solution of the basic (still open) prob-
lem concerning the construction of a theory of quantum Markov fields, i.e.
quantum Markov processes with multi–dimensional indices.

Mathematics Subject Classification Numbers: 46L50; 82A15.
Key words: Non commutative measure, integration and probability; Mathe-
matical quantum statistical mechanics.

1 Introduction

One of the basic open problems in quantum probability is the construction of
a theory of quantum Markov fields, that is quantum Markov processes with
a (possibly) multi–dimensional index set. This program concerns the gener-
alization of the theory of classical Markov fields (see e.g. [10, 11]) to the non
commutative setting, naturally arising in quantum statistical mechanics and
quantum field theory. We would like to mention some relevant applications of
the classical theory to classical statistical mechanics ([12, 16]), and construc-
tive quantum field theory ([15]). On the other hand, the original definition
of quantum Markov chains ([1]), which is the study of the quantum Markov
property for the one–side forward spin chain, was strongly dependent on the
totally ordered structure of the index set, as in the classical case.

However, the investigation of classes of states on the spin chain subjected
to Ising–type Hamiltonians (i.e. Hamiltonians relative to pairwise interac-
tions), was vastly developed in the last decades. Concerning this point, the
reader is referred to [6, 9, 13, 17] and the literature cited therein.

The approach followed in [4] was rather different. Namely, classes of
states of physical interest on the spin chain were studied through the Markov
property. Among other results, it was pointed out that there is an intrinsic
characterization of the Markov property in terms of the local modular groups
of the state under consideration. In such a way, one obtains a nice connection
with classes of local Hamiltonians satisfying certain commutation relations.

All the matter was reconsidered in [5] where further progress were ob-
tained. In particular, relatively to the homogeneous one–side forward spin
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chain, starting from a Markov state ϕ, a classical Markov process on a stan-
dard probability space (Ω, µ) (more precisely a usual Markov chain), to-
gether with a field {ϕω}ω∈Ω of “elementary” Markov states are recovered.
The pair ((Ω, µ), {ϕω}ω∈Ω) describes ϕ at level of finite–dimensional distri-
butions. Moreover, further connections with local Hamiltonians were pointed
out.

In the present paper, we deal with the most general one–dimensional case.
Namely, our framework is the study of the class of Markov states on the
quasi–local algebra A naturally associated to the non homogeneous one–side
backward or forward, or two–side spin chain (see below for the definitions).1

Following the strategy developed in [4, 5], we show that, even in our gen-
eral situation, one can recover for a Markov state ϕ, a non homogeneous
(classical) Markov chain described by the law µ on the space Ω of all trajec-
tories, together with a measurable field {ϕω}ω∈Ω of states on the quasi–local
algebra A. The states ϕω are canonically recovered by states ψω on suit-
able C∗–inductive limits Bω, which are Markov states w.r.t. sequences of
(Umegaki) conditional expectations whose ranges are all von Neumann fac-
tors. The pair ((Ω, µ), {ϕω}ω∈Ω) uniquely determines the Markov state ϕ
under consideration.

Namely, as a first result we obtain (Section 3) a disintegration

ϕ =

∫
Ω

ϕωµ(dω)

of the Markov state ϕ into elementary Markov states (in the sense explained
above). In such a way, we get a splitting between the commutative (classical)
part, and the non commutative (quantum) part which “lives on the fibres”.
Further (Section 4), we prove a reconstruction theorem for Markov states on
(non homogeneous) spin chains.

Another result of interest is the following (Section 5): the connection with
one–dimensional models of statistical mechanics is fully clarified. Namely,
the Markov property for a locally faithful state ϕ, is characterized by the
existence of a very explicit Ising–type Hamiltonian (canonically associated
to ϕ) which generates on the quasi–local algebra A, a one–parameter group
of automorphisms admitting ϕ as a KMS–state.

1In order to extend the theory of Markov processes to situations with multi–dimensional
indices, the non homogeneous cases should be necessarily taken into account as the “in-
teracting degrees of freedom” localized in a finite volume, increase with the volume, see
below.
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All the mentioned characterizations of the Markov property for the state
ϕ, are again equivalent to the Markov property defined only by properties of
generalized conditional expectations defined in [3], which are in our situation,
canonical objects intrinsically associated to the local structure of the quasi–
local algebra A, and the state ϕ under consideration. Then we obtain a
complete description of the deep connection between the Markov property
defined by (Umegaki) transition expectations, the same property stated in
terms of generalized conditional expectations, and finally one–dimensional
models of statistical mechanics with pairwise interaction Hamiltonians.

In such a way, the structure emerging from the Markov property is fully
understood, at least for any one–dimensional model.

As these intrinsic characterizations do not deeply depend on the total
order of the involved index set, we have some hope that the theory, or at
least the essential part of it, could be extended to the multi–dimensional
case, which was the original motivation for this work.

We consider a quasi–local algebra A obtained in the following way. For
each j in an index set I, a finite–dimensional C∗–algebra M j is assigned and,
for each finite subset Λ ⊂ I, we define

AΛ := ⊗j∈ΛM
j

The local algebra A is the C∗–inductive limit associated to the directed
system {AΛ}Λ∈I with the natural embeddings

ιΛ,Λ̂ : AΛ ∈ AΛ → AΛ ⊗ IΛ̂\Λ ∈ AΛ̂ , Λ ⊂ Λ̂

In this situation we write

A := ⊗j∈IM j

where the infinite tensor product is defined w.r.t. the unique C∗–cross norm.
We often denote by ιΛ : AΛ 7→ A the canonical injection of AΛ into A and
refer to [7, 8, 23] for further details.

By a (Umegaki) conditional expectation E : A 7→ B ⊂ A we mean a norm–
one projection of the C∗–algebra A onto a C∗–subalgebra (with the same
identity I) B. The map E is automatically a completely positive identity–
preserving B–bimodule map, see [19], Section 9. When A is a matrix algebra,

5



the structure of a conditional expectation is well–known, see [5], Lemma 3
(see also [14], Proposition 5 for more general cases when the centre of the
range of E is infinite–dimensional and atomic). Namely, suppose that A is
a full matrix algebra and consider the (finite) set {Pi} of minimal central
projections of the range B of E, we have

E(x) =
∑
i

E(PixPi)Pi

Then E is uniquely determined by its values on the reduced algebras

APi
:= PiAPi = Ni ⊗ N̄i

where Ni ∼ BPi and N̄i ∼ (B′ ∧ A)Pi. In fact, there exist states φi on N̄i

such that
E(Pi(a⊗ ā)Pi) = φi(ā)Pi(a⊗ I)Pi (1)

For the general theory of operator algebras the reader can consult [8, 18,
19, 21].

2 Non homogeneous Markov states: general

properties

A necessary step for the construction of quantum Markov states on multi–
dimensional lattices (Markov fields), is to extend the strategy developed in
[4, 5].

The main example we have in mind is the following. We consider the stan-
dard lattice Zd in the d–dimensional space Rd, together with a quasi–local
algebra of observables defined as the infinite C∗–tensor product A = ⊗x∈ZdM
with M a fixed full matrix algebra. Suppose further that an increasing se-
quence {Rk} of bounded regions exhausting Zd is kept fixed, and consider
for k > l + 1, the local subalgebra given by

Ak,l := ⊗
x∈Rk\

◦
Rl
M

where
◦
Rk = {x ∈ Rk : dist(x,Rc

k) > 1}.2

2We denote, as usual, by Rc the complement of the set R.
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If such a picture is the framework for our analysis, we can point out two
procedures of conditioning.

The first one is in connection with a fixed sequence {Fk,l} of conditional
expectations from the outside or future to the inside or past

Fk,l : Ak,l 7→ Ak−1,l

satisfying
Ak−2,l ⊂ R(Fk,l)

where R(Fk,l) denotes the range of Fk,l.
Such a situation corresponds in the terminology of [5], to the localization

Ao = Ak−2,l, Ai = ARk\Rk−1
and Ab = ARk−1\Rk−2

.
The second one is given by considering a fixed sequence {Ek,l} of condi-

tional expectations from the inside to the outside

Ek,l : Ak,l 7→ Ak,l+1

satisfying
Ak,l+2 ⊂ R(Ek,l)

Such a situation corresponds in the terminology of [5], to the localization
Ao = Ak,l+2, Ai = A ◦

Rl+1\
◦
Rl

and Ab = A ◦
Rl+2\

◦
Rl+1

.

Summarizing, in both situations we obtain a chain {M j}j∈I of finite–
dimensional factors given by M j := ARj\Rj−1

or M j := A ◦
R−j+1\

◦
R−j

respecti-

vely.3

Taking into account the last examples, we start by considering a totally
ordered countable discrete set I containing, possibly a smallest element j−
and/or a greatest element j+. Namely, if I contains neither j−, nor j+, then
I ∼ Z. If just j+ ∈ I, then I ∼ Z−, whereas if only j− ∈ I, then I ∼ Z+.
Finally, if both j− and j+ belong to I, then I is a finite set and the analysis
becomes easier. If I is order–isomorphic to Z, Z− or Z+, we put simbolically
j− and/or j+ equal to −∞ and/or +∞ respectively. In such a way, the
objects with indices j− and j+ will be missing in the computations.

We consider the quasi–local algebra A obtained when full matrix algebras
with possibly different dimensions

M j := Mdj(C)

3In the last case we are using the reverse order, that is I ∼ Z−, the negative integers.
This choice is a pure matter of convenience, see below.
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describe the observables relative to j ∈ I. If Λ ⊂ I is finite, AΛ has an
obvious meaning whereas, for arbitrary Λ, the algebra AΛ will be the C∗–
inductive limit of the algebras associated with all finite subsets of Λ. We
always write

AΛ = ⊗j∈ΛM
j

as this causes no confusion.
For every k ≤ l ≤ j, let {Ek,j} be a sequence of conditional expectations

defined on the algebras {AΛk,j+1
} (where Λk,j := [k, j]), and satisfying

Ek,j (AΛk,j+1
) ⊂ AΛk,j

(2)

Ek,j AΛk,j−1
= id (3)

Ek,j AΛl,j
= El,j (4)

Definition 1 A state ϕ on the quasi–local algebra A is said to be a Markov
state w.r.t. a sequence {Ek,j} of conditional expectations satisfying conditions
(2), if the restictions of ϕ to AΛk,j

are invariant under the Ek,j:

ϕAΛk,j
◦ Ek,j = ϕAΛk,j+1

(5)

By restriction of {Ek,l}, we recover a sequence {E j}j−≤j<j+ of transition
expectations

E j : M j ⊗M j+1 7→M j

defined by the identity

Ek,j(Ak ⊗ · · · ⊗Aj−1 ⊗ Aj ⊗ Aj+1)

= Ak ⊗ · · · ⊗ Aj−1 ⊗ E j(Aj ⊗ Aj+1)

It is immediate to check that the sequence {Ek,j} of conditional expecta-
tions is uniquely determined by the sequence {E j} of transition expectations
and vice–versa. Therefore, in the sequel we will often use exchangeably the
symbols Ek,j or E j.

The situation described above can be fitted into the framework of [2].
Namely, we can start with a totally ordered set {αj}j−≤j<j+ where the “bounded
set” αj is given by αj := Λj,j+ with “boundary” ∂αj := Λj,j. Suppose further
we have a sequence of transition expectations {E j}j−≤j<j+ satisfying for each
j− < j < j+,

E j−1(A⊗B) = E j−1(A⊗ E j(B ⊗ I)) (6)
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It can be shown (see (25)) that, if ϕ is a locally faithful Markov state
w.r.t. the sequence of transition expectations {E j}, then {E j} must satisfy
(6).

Identifying A ∼= AΛj−,j−1
⊗AΛj,j+

and considering generators A⊗B with
A ∈ AΛj−,j−1

and B := Bj ⊗ · · · ⊗ Bl−1 ⊗ Bl any localized element of AΛj,j+
,

we define

Eα′j(A⊗B) := A⊗ E j(Bj ⊗ · · · ⊗ E l−1(Bl−1 ⊗Bl) · · ·)))

Because of condition (6), the Eα′ can be extended to conditional expec-
tations (which we continue to call Eα′) on all of A. Such extensions satisfy
the projectivity condition

Eα′kEα′j = Eα′k

if k ≤ j, and the Markov property

Eα′k(Aαk
) ⊂ A∂αk

The above analysis suggests how one can prove the existence of non trivial
examples of Markov states on one–dimensional chains. Namely, suppose we
have a sequence {F j}j−≤j<j+ of transition expectations and define

E j(A⊗B) := F j(A⊗F j+1(B ⊗ I)) (7)

Then it is easy to verify that the new sequence {E j}j−≤j<j+ is made of
conditional expectations and satisfies (6). Hence, taking into account the
above considerations, we can conclude that the set of Markov states w.r.t.
{E j} is nonvoid by a simple application of Theorem 1.1 of [2].

The following result is essentially contained in [5]. We include its proof
for completeness.

Proposition 2.1 Let ϕ be a state on the quasi–local algebra A.
Then ϕ is a Markov state w.r.t. the sequence {E j}j−≤j<j+ of transition

expectations if and only if

ϕ(ιk,l(A)) = ϕ(ιk,k(Ek(Ak ⊗ · · · ⊗ E l−1(Al−1 ⊗ Al) · · ·))) (8)

for every k, l ∈ I with k < l, and A := Ak ⊗ · · · ⊗ Al−1 ⊗ Al any linear
generator of AΛk,l

.
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Proof. Suppose that ϕ is a Markov state w.r.t. the sequence {E j}j−≤j<j+
of transition expectations, and A ∈ AΛk,l

is as above. Then the Markov
property leads to

ϕ(ιk,l(A)) ≡ ϕΛk,l
(A)

= ϕΛk,l−1
(Ak ⊗ · · · ⊗ E l−1(Al−1 ⊗ Al))

Then (8) follows by a repetead application of the Markov property.
Conversely, suppose that ϕ satisfies the chain of conditions (8) and fix a

generator A := Ak ⊗ · · · ⊗ Al−1 ⊗ Al of AΛk,l
. Then, by (8) we get

ϕΛk,l
(A) ≡ ϕ(ιk,l(A))

= ϕ(ιk,k(Ek(Ak ⊗ · · · ⊗ E l−1(Al−1 ⊗ Al) · · ·)))

But, again by (8),

ϕ(ιk,k(Ek(Ak ⊗ · · · ⊗ E l−1(Al−1 ⊗ Al) · · ·)))
= ϕΛk,l−1

(Ak ⊗ · · · ⊗ Āl−1) = ϕΛk,l−1
(Ek,l(A))

where Āl−1 = E l−1(Al−1 ⊗ Al) and Ak ⊗ · · · ⊗ Āl−1 is precisely Ek,l(A).
We have just proved that

ϕΛk,l
(A) = ϕΛk,l−1

(Ek,l(A))

which is the Markov property for ϕ, as the A as above linearly generate all
of AΛk,l

, and k < l is arbitrary.

3 Disintegration of Markov states

In this section we study the structure of Markov states. As final result we
obtain a disintegration of a Markov state into “elementary Markov states”
in a sense we are going to explain.

We start by considering a Markov state ϕ on the quasi–local algebra A
w.r.t. the sequence {E j}j−≤j<j+ of transition expectations. As the structure
of such expectations is well-known, we consider the centre Zj of the range
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R(E j) of E j, together with the generating family {P j
ωj
}ωj∈Ωj

of atomic projec-
tions, which in the finite–dimensional case is in one–to–one correspondence
with its spectrum Ωj. We set

Bj := ⊕ωj∈Ωj
P j
ωj
M jP j

ωj

and define
B :=

(
⊗j−≤j<j+Bj

)
⊗M j+ (9)

Then we obtain in a canonical way, a conditional expectation

E : A 7→ B

defined to be the (infinite) tensor product of the following conditional expec-
tations

a ∈M j 7→
∑
ωj∈Ωj

P j
ωj
aP j

ωj
(10)

together with the identity map on M j+ . The projections P j
ωj

generate also

the centre of Bj, which in such a way coincides with Zj ≡ Z(R(E j)). Fur-
thermore, the reduced algebra

M j

P j
ωj

≡ P j
ωj
M jP j

ωj

can be written as
M j

P j
ωj

= N j
ωj
⊗ N̄ j

ωj
(11)

with N j
ωj

and N̄ j
ωj

all finite–dimensional factors. Again, the states φjωj
on

N̄ j
ωj
⊗M j+1 are uniquely recovered by the transition expectation E j according

to Formula (1).
Following [5], we can recover

(a) a classical Markov process on the compact space

Ω :=
∏

j−≤j<j+

Ωj ≡
∏

j−≤j<j+

spec(Z(R(E j))) (12)

whose law µ is uniquely determined by the initial distribution and
transition probabilities given respectively by

πj−ωj−
:= ϕ(ιΛj−,j−

(P j−
ωj−

)) (13)

πjωj ,ωj+1
:= φjωj

(I ⊗ P j+1
ωj+1

) ,

see [24], Theorem 7.2.
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As we are dealing with the measure space (Ω, µ) obtained as the projective
limit of compatible measure spaces {(ΩΛ, µΛ)}Λ⊂I , we denote by qΛ : Ω 7→ ΩΛ

the canonical projection of Ω onto ΩΛ. For details relative to measure on
infinite dimensional spaces, the reader can consult [24] and the literature
cited therein.

Let Ω0 ⊂ Ω be the set consisting of those ω ∈ Ω such that all πjqΛj,j
(ω)

together with πjqΛj,j
(ω),qΛj+1,j+1

(ω) are nonvanishing. It is straightforward to

verify that Ω0 is a measurable set of full µ–measure.
Consider, for each ω ∈ Ω, the (infinite) tensor product Bω given by

Bω := (⊗j−≤j<j+M
j

P j
ωj

)⊗M j+ (14)

≡ N j−
ωj−
⊗ (⊗j−≤j<j+−1(N̄ j

ωj
⊗N j+1

ωj+1
))⊗ (N̄ j+−1

ωj+−1
⊗M j+)

We remark that, in non trivial cases (i.e. when I is infinite), Bω cannot be
viewed in a canonical way as a subalgebra of A ([23]). However, a completely
positive identity–preserving map Eω : A 7→ Bω is uniquely defined as the
(infinite) tensor product of the maps

a ∈M j 7→ P j
qΛj,j

(ω)aP
j
qΛj,j

(ω) , (15)

together with the identity map on M j+ . We have trivially

Eω ◦ E = Eω (16)

where E is obtained by the (infinite) tensor product of the maps given in
(10).

Denoting (with an abuse of notation) by ωj the canonical projection
qΛj,j

(ω) of ω in Ωj, we further recover for ω ∈ Ω0

(b) the state ψω on Bω given by

ψω :=η
j−
qΛj−,j−

(ω)⊗(⊗j−≤j<j+−1η
j
qΛj,j

(ω),qΛj+1,j+1
(ω))⊗η

j+−1
qΛj+−1,j+−1

(ω) (17)

determined by the initial distribution, which is the state on N j−
ωj−

given

by

ηj−ωj−
(a) :=

ϕ(ιΛj−,j−
(P j−

ωj−
(a⊗ I)P j−

ωj−
))

π
j−
ωj−

; (18)
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by the states ηjωj ,ωj+1
on N̄ j

ωj
⊗N j+1

ωj+1
, given by

ηjωj ,ωj+1
(ā⊗ b) :=

φjωj
(ā⊗ P j+1

ωj+1
(b⊗ I)P j+1

ωj+1
)

πjωj ,ωj+1

; (19)

and by the final distribution which is the state on N̄ j+−1
ωj+−1

⊗M j+ given

by
ηj+−1
ωj+−1

(ā⊗B) := φj+−1
ωj+−1

(ā⊗B) (20)

Finally, we recover

(c) A sequence {Eωj}j−≤j<j+ of conditional expectations

Eωj : M j

P j
ωj

⊗M j+1

P j+1
ωj+1

7→M j

P j
ωj

,

Eωj+−1 : M
j+−1

P
j+−1
ωj+−1

⊗M j+ 7→M
j+−1

P
j+−1
ωj+−1

given by

Eωj((a⊗ ā)⊗ (b⊗ b̄)) = ηjωj ,ωj+1
(ā⊗ b)ηj+1

ωj+1,ωj+2
(b̄⊗ I)a⊗ I ,

Eωj+−1((a⊗ ā)⊗B) = ηj+−1
ωj+−1

(ā⊗B)a⊗ I (21)

The proof of the following proposition follows by an elementary applica-
tion of Proposition 2.1 and is left to the reader.

Proposition 3.1 The state ψω satisfies the Markov property w.r.t. the se-
quence of transition expectations {Eωj}j−≤j<j+ given by (21).

Finally, we note that the map

ω ∈ Ω0 7→ ψω ◦ Eω ∈ S(A)

is σ(A∗,A)–measurable.

We are ready to prove the announced result concerning the disintegration
of a Markov state into elementary Markov states which are minimal in the
sense that the ranges of the associated transition expectations factorize as in
(11), that is they have a trivial centre .
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Theorem 3.2 Let ϕ be a Markov state on the quasi–local algebra A w.r.t.
the sequence {Ej}j−≤j<j+ of transition expectations.

Define the set Ω by (12); the probability measure µ on Ω, by (13); the
quasi–local algebra Bω by (14), the map Eω by the projections (15); the state
ψω on Bω by (17).

Then ϕ admits a disintegration

ϕ =

∫
Ω

ϕωµ(dω)

where ω ∈ Ω 7→ ϕω ∈ S(A) is a σ(A∗,A)–measurable map satisfying, for
µ–almost all ω ∈ Ω,

ϕω = ψω ◦ Eω

Proof. If the state ϕ satisfies the Markov property w.r.t. {Ej}j−≤j<j+ , we
can find a non homogeneous Markov process on Ω with law µ as above.
Consider the abelian C∗–subalgebra Z of B given by

Z := (⊗j−≤j<j+Zj)⊗ I ,

together with the GNS representation π of B relative to ϕB. Then π(Z)′′ ⊂
π(B)′∩π(B)′′. As π(Z)′′ ∼ L∞(Ω, µ) (see [24], Theorem 7.2 and [21], Section
III.2), we have for π the direct–integral disintegration

π =

∫ ⊕
Ω

πωµ(dω)

where ω 7→ πω is a weakly measurable field of representations of B, see [21],
Theorem IV.8.25.

Further, by mimicking the proof of Proposition IV.8.34 of [21], we find a
measurable field ω 7→ ξω of unit vectors such that, for each a ∈ B, we get

ϕ(a) =

∫
Ω

〈πω(a)ξω, ξω〉µ(dω)

As ϕ is a Markov state, it is invariant w.r.t. E. Then

ϕ =

∫
Ω

ϕωµ(dω)

for the σ(A∗,A)–measurable field ϕω defined as

ϕω := 〈πω(E( · ))ξω, ξω〉
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Let now A ∈ AΛk,l
be given by

A = P k
ω̄k

(aω̄k
⊗ āω̄k

)P k
ω̄k
⊗ · · · ⊗ P l

ω̄l
(aω̄l
⊗ āω̄l

)P l
ω̄l
, (22)

and consider
Z = P k

ω̂k
⊗ · · · ⊗ P l

ω̂l

Then, taking into account that π(ιΛk,l
(Z)) belongs to the diagonal algebra,

we obtain

ϕ(ιΛk,l
(AZ)) =

∫
Ω

z(ω)ϕω(ιΛk,l
(A))µ(dω)

where
z(ω) = δωk,ω̂k

· · · δωl,ω̂l

is the function on Ω representing the operator π(ιΛk,l
(Z)).

Now ϕ(ιΛk,l
(AZ)) can be also computed by the Markov property obtaining

ϕ(ιΛk,l
(AZ)) =

∑
ωk−1,ωl+1

πk−1
ωk−1

πk−1
ωk−1,ω̄k

· · · πlω̄l,ωl+1

× δω̄k,ω̂k
· · · δω̄l,ω̂l

ηk−1
ωk−1,ω̄k

(I ⊗ aω̄k
) · · · ηlω̄l,ωl+1

(āω̄l
⊗ I)

≡
∫

Ω
z(ω)ψω(Eω(ιΛk,l

(A)))µ(dω)

If the localization of A contains j−, j+ − 1 or j+, it is easy to show by
analogous computations, that the last result holds as well.

Namely, bearing in mind (16), we have just shown that∫
Ω

z(ω)ϕω(a)µ(dω) =

∫
Ω

z(ω)ψω(Eω(a))µ(dω)

for each fixed localized operator a ∈ A and each function z ∈ C(Ω) depending
only on finitely many variables. As such functions are dense in C(Ω), we
conclude by the uniqueness of the Radon–Nikodym derivative, that for each
localized element a ∈ A, there exists a measurable set Ωa ⊂ Ω0 of full µ–
measure such that, when ω ∈ Ωa, we have,

ϕω(a) = ψω(Eω(a)) (23)

By considering linear combinations with rational coefficients, we can se-
lect a measurable set F ⊂ Ω0 of full µ–measure and a dense subalgebra
A0 ⊂ A of localized operators such that (23) continues to be true on F , for
each element of A0.
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Consider now a sequence an ∈ A0 converging to a ∈ A. If ω ∈ F we
obtain

ϕω(a) = lim
n
ϕω(an) = lim

n
ψω(Eω(an)) = ψω(Eω(a)) ,

that is (23) holds on F ⊂ Ω0 for each a ∈ A.
We have just proved that the Markov state ϕ under consideration admits

the disintegration

ϕ(a) =

∫
Ω0

ψω(Eω(a))µ(dω) (24)

by “elementary” Markov states ψω, where Ω0 is the measurable set of full
µ–measure on which ψω ◦ Eω is well–defined.

Corollary 3.3 Let

ϕ =

∫
Ω

ϕωµ(dω)

be the disintegration of a Markov state ϕ as in Theorem 3.2.
Then ϕω is a factor state for µ–almost all ω ∈ Ω.

Proof. It is enough to show that ψω ◦ Eω is a factor state for all ω ∈ Ω0.
As ψω is an infinite product state on Bω w.r.t the factorization pointed

out in (14), the double commutant πψω(Bω)′′ of the GNS representation of
ψω gives rise to an Araki–Woods factor, see [19], Section A.17. The proof
easily follows from [8], Theorem 2.6.10, by noticing that, if A,B ∈ A are
localized in separated regions of I, then

Eω(AB) = Eω(A)Eω(B)

We note that the type of the factor πψω◦Eω(A)′′ is determined by the eigen-
value list associated to the states given in (18), (19) and (20); see [19], Section
A.17. Furthermore, the disintegration (24) for the Markov state ϕ, even if
it is made of factor states, does not correspond to the central disintegration,
see [18], Section 3. The central decomposition of ϕ could be connected to
the problem of the ergodic decomposition of the non homogeneous Markov
chain associated with µ.
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4 A reconstruction theorem

In this section we analyze the possibility to obtain the converse of the disin-
tegration result contained in the previous section.

The following theorem can be also regarded as a reconstruction result for
the class of non commutative Markov processes treated in the sequel.

Theorem 4.1 Consider, for j− ≤ j < j+, a sequence Zj of commutative
subalgebras of M j with spectra Ωj and generators {P j

ωj
}ωj∈Ωj

; a Markov pro-
cess on the product space

Ω :=
∏

j−≤j<j+

Ωj

with law µ determined, for ωj ∈ Ωj, ωj+1 ∈ Ωj+1, by all marginal distributions
πjωj

, and all transition probabilities πjωj ,ωj+1
.

For ωj ∈ Ωj such that πjωj
> 0, fix a splitting as (11)

M j

P j
ωj

= N j
ωj
⊗ N̄ j

ωj

by finite–dimensional factors.
For ωj− ∈ Ωj− such that πj−ωj−

> 0, choose a initial distribution ηj−ωj−
on

N j−
ωj−

.

For each pair (ωj, ωj+1) ∈ Ωj × Ωj+1 such that πjωj ,ωj+1
> 0, consider a

state ηjωj ,ωj+1
on N̄ j

ωj
⊗N j+1

ωj+1
.

For ωj+−1 ∈ Ωj+−1 such that πj+−1
ωj+−1

> 0, consider a final distribution

ηj+−1
ωj+−1

on N j+−1
ωj+−1

⊗M j+.

Then there exists a measurable set Ω0 of full µ–measure such that, for
each ω ∈ Ω0, the state ψω in (17) is a well–defined Markov state on the
quasi–local algebra Bω given in (14).

Moreover, defining Eω : A 7→ Bω by (15), and the σ(A∗,A)–measurable
map

ω ∈ Ω0 7→ ψω ◦ Eω =: ϕω ∈ S(A) ,

the state ϕ on A given by

ϕ :=

∫
Ω0

ϕωµ(dω)

17



is a Markov state w.r.t. any sequence {E j}j−≤j<j+ of transition expectations
with Z(R(E j)) = Zj, determined according to (1), by states φjωj

satisfying,
for each j− ≤ j < j+ and ωj ∈ Ωj,

πjωj
φjωj

(ā⊗ P j+1
ωj+1

(b⊗ b̄)P j+1
ωj+1

)

=
∑

ωj+2
πjωj

πjωj ,ωj+1
πj+1
ωj+1,ωj+2

ηjωj ,ωj+1
(ā⊗ b)ηj+1

ωj+1,ωj+2
(b̄⊗ I) ,

πj+−2
ωj+−2

φj+−2
ωj+−2

(ā⊗ P j+−1
ωj+−1

(b⊗ b̄)P j+−1
ωj+−1

) (25)

= πj+−2
ωj+−2

πj+−2
ωj+−2,ωj+−1

ηj+−2
ωj+−2,ωj+−1

(ā⊗ b)ηj+−1
ωj+−1

(b̄⊗ I) ,

πj+−1
ωj+−1

φj+−1
ωj+−1

(ā⊗B)

= πj+−1
ωj+−1

ηj+−1
ωj+−1

(ā⊗B)

Proof. The state ψω is well–defined on the measurable set Ω0 of full µ–
measure consisting of sequences ω such that all the πjqΛj,j

(ω), and πjqΛj,j
(ω),qΛj+1,j+1

(ω)

are nonvanishing. Moreover, ψω is a Markov state on Bω w.r.t. the sequence
{Eωj}j−≤j<j+ of transition expectations

Eωj : M j

P j
ωj

⊗M j+1

P j+1
ωj+1

7→M j

P j
ωj

,

Eωj+−1 : M
j+−1

P
j+−1
ωj+−1

⊗M j+ 7→M
j+−1

P
j+−1
ωj+−1

given by (21), see Proposition 3.1. Further, as we have pointed out above,
the map

ω ∈ Ω0 7→ ψω ◦ Eω ∈ S(A)

is σ(A∗,A)–measurable.
Next, by Proposition 2.1, it is enough to show that, for each elementary

tensor A = Ak ⊗ · · · ⊗ Al localized in AΛk,l
,

ϕ(ιk,l(A)) = ϕ(ιk,k(B)) (26)

where B is given by

B := Ek(Ak ⊗ · · · · · · ⊗ Ek(Al−1 ⊗ Al) · · ·)

To simplify, we suppose also that Λk,l does not contain j− or j+ − 1,
otherwise the result can be obtained by quite similar computations left to
the reader. Furthermore, we can choose A as in (22), restricting ourselves to
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the case when (ω̄k, . . . , ω̄l) ∈ qΛk,l
(Ω0), otherwise (26) is trivially satisfied. In

such a situation we get, for ω ∈ Ω0,

ϕω(ιk,l(A)) = δqΛk,k
(ω),ω̄k

· · · δqΛl,l
(ω),ω̄l

× ηk−1
qΛk−1,k−1

(ω),ω̄k
(I ⊗ aω̄k

) · · · ηlω̄l,qΛl+1,l+1
(ω)(āω̄l

⊗ I)

Then

ϕ(ιΛk,l
(A)) =

∫
Ω0
ϕω(ιΛk,l

(A))µ(dω)

=
∑

ωk−1,ωl+1

πk−1
ωk−1

πk−1
ωk−1,ω̄k

· · · πlω̄l,ωl+1
ηk−1
ωk−1,ω̄k

(I ⊗ aω̄k
) · · · ηlω̄l,ωl+1

(āω̄l
⊗ I)

Conversely, we have for B

B = ΓP k
ω̄k

(aω̄k
⊗ I)P k

ω̄k

where Γ is the number given by

Γ = φkω̄k
(āω̄k
⊗ P k+1

ω̄k+1
(aω̄k+1

⊗ I)P k+1
ω̄k+1

)× · · ·
× φl−2

ω̄l−2
(āω̄l−2

⊗ P l−1
ω̄l−1

(aω̄l−1
⊗ I)P l−1

ω̄l−1
)φl−1

ωl−1
(āω̄l−1

⊗ P l
ω̄l

(aω̄l
⊗ āω̄l

)P l
ω̄l

)

Next, we get by (25),

Γ =
∑

ωl+1
πkω̄k,ω̄k+1

· · · πlω̄l,ωl+1

× ηkω̄k,ω̄k+1
(āω̄k
⊗ aω̄k+1

) · · · ηlω̄l,ωl+1
(āω̄l
⊗ I)

Finally, collecting the last calculations, we obtain

ϕ(ιΛk,k
(B)) =

∫
Ω0
ϕω(ιΛk,k

(B))µ(dω)

=
∑

ωk−1
πk−1
ωk−1

πk−1
ωk−1,ω̄k

Γηk−1
ωk−1,ω̄k

(I ⊗ aω̄k
)

=
∑

ωk−1,ωl+1
πk−1
ωk−1

πk−1
ωk−1,ω̄k

· · · πlω̄l,ωl+1

× ηk−1
ωk−1,ω̄k

(I ⊗ aω̄k
) · · · ηlω̄l,ωl+1

(āω̄l
⊗ I)

≡ ϕ(ιΛk,l
(A))

Taking into account the definition of E : A 7→ B, the assertion follows as
such A linearly generate all of E(AΛk,l

).
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5 Connection with statistical mechanics

In this section we investigate links between Markov states and Ising potentials
on chains. We have also a natural connection with the definition of the
Markov property in terms of quasi–conditional expectations.

Suppose we have a locally faithful state on the quasi–local algebra A, then
a potential hΛ is canonically defined for each finite subset Λ of the index set
I as

ϕAΛ
= TrAΛ

(e−hΛ · ) (27)

Such a set of potentials {hΛ}Λ⊂I satisfies normalization conditions

TrAΛ
(e−hΛ) = 1 (28)

together with compatibility conditions

(TrA
Λ̂\Λ
⊗ idAΛ

)(e−hΛ̂) = e−hΛ (29)

for finite subsets Λ ⊂ Λ̂.
As the structure of Markov states is fully understood, the set of potentials

related to ϕ by (27) satisfies some nice properties. Namely, we find for a

Markov state ϕ, sequences of selfadjoint operators {Hj}j−≤j≤j+ , {Ĥj}j−≤j≤j+
localized in AΛj,j

, and {Hj,j+1}j−≤j<j+ localized in AΛj,j+1
respectively. Such

opertors satisfy the following commutation relations

[Hj, Hj,j+1] = 0, [Hj,j+1, Ĥj+1] = 0 ,

[Hj, Ĥj] = 0, [Hj,j+1, Hj+1,j+2] = 0 (30)

and, for Λ = [k, l], they give rise to the potentials {hΛ} by

hΛk,l
= Hk +

l−1∑
j=k

Hj,j+1 + Ĥl (31)

for each k ≤ l, see below.
We have

Theorem 5.1 Let ϕ ∈ S(A) be locally faithful.
Then the following assertions are equivalent.

(i) ϕ is a Markov state.
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(ii) The set of potentials {hΛk,l
} associated to ϕ by (27), can be recovered

by (31), from sequences {Hj}j−≤j≤j+, {Ĥj}j−≤j≤j+ and {Hj,j+1}j−≤j<j+
of selfadjoint operators localized in AΛj,j

and AΛj,j+1
respectively, and

satisfying commutation relations (30).

(iii) For each k < l, the generalized conditional expectation ( [3])

εk,l : AΛk,l+1
7→ AΛk,l

leaving fixed ϕAΛk,l
, acts identically on AΛk,l−1

.

Proof. (i)⇒ (ii) As ϕ is a locally faithful Markov state w.r.t. the sequence
{E j} of transition expectation, for each j− ≤ j < j+ and every ωj ∈ Ωj we
recover, taking into account Formulae (13), (18), (19) and (20), the following
set of potentials: {hjωj

}, Hj+ , {hjωj ,ωj+1
}, hj+−1

ωj+−1,j+
, and finally {ĥjωj

}, related

to the following positive faithful functionals.
The potentials hj−ωj−

are related to the initial distribution πj−ωj−
ηj−ωj−

on

N j−
ωj−

; the hjωj
are related to the functionals∑

ωj−1

πj−1
ωj−1

πj−1
ωj−1,ωj

ηj−1
ωj−1,ωj

(I ⊗ · )

on N j
ωj

; whereas Hj+ is related to the final distribution∑
ωj+−1

πj+−1
ωj+−1

ηj+−1
ωj+−1

(I ⊗ · )

on M j+ .
Further, the potentials hjωj ,ωj+1

are related to the functionals

πjωj ,ωj+1
ηjωj ,ωj+1

on N̄ j
ωj
⊗N j+1

ωj+1
; and h

j+−1
ωj+−1,j+

to the final distribution ηj+−1
ωj+−1

on N̄ j+−1
ωj+−1

⊗M j+ .

Finally, the potentials ĥjωj
are related to the functionals∑

ωj+1

πjωj ,ωj+1
ηjωj ,ωj+1

( · ⊗ I)

on N̄ j
ωj

; and ĥj+−1
ωj+−1

to the final distribution ηj+−1
ωj+−1

( · ⊗ I) on N̄ j+−1
ωj+−1

.
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Now we define

Hj :=
∑
ωj

P j
ωj

(hjωj
⊗ I)P j

ωj

Hj,j+1 :=
∑

ωj ,ωj+1

(P j
ωj
⊗ P j+1

ωj+1
)(I ⊗ hjωj ,ωj+1

⊗ I)(P j
ωj
⊗ P j+1

ωj+1
)

Hj+−1,j+ :=
∑
ωj+−1

(P j+−1
ωj+−1

⊗ I)(I ⊗ hj+−1
ωj+−1,j+

)(P j+−1
ωj+−1

⊗ I)

Ĥj :=
∑
ωj

P j
ωj

(I ⊗ ĥjωj
)P j

ωj

Ĥj+−1 :=
∑
ωj+−1

P j+−1
ωj+−1

(I ⊗ ĥj+−1
ωj+−1

)P j+−1
ωj+−1

Putting Ĥj+ = 0, it is straightforward to verify that the Hj, the Hj,j+1

and the Ĥj satisfy commutation relations (30), and give rise to hΛk,l
through

(31).
(ii)⇒ (iii) If {hΛk,l

} satisfies all the properties listed above, the generalized
conditional expectation εk,l can be obtained as

εk,l(a) = (idAΛk,l
⊗ TrAΛl+1,l+1

)(k∗k,lakk,l)

where kk,l is the transition cocycle given, in such a situation, by

kk,l = e−
1
2

(Hl,l+1+Ĥl+1)e
1
2
Ĥl ,

see [3], Theorem 3.5, see also [4], pag. 260. Hence, εk,l acts as the identity
on AΛk,l−1

.
(iii) ⇒ (i) As the fixed point of εk,l is a ∗–algebra ([3], pag. 260), we can
take the L2–ergodic limit of εk,l obtaining a conditional expectation εk,l, see
[19], Theorem 9.1. Such a conditional expectation εk,l leaves ϕAΛk,l

invariant

by construction, and contains AΛk,l−1
in its range by assumption. Hence, it

can be written as
εk,l = idAk,l−1

⊗ E lk
where E lk a transition expectation

E lk : M l ⊗M l+1 7→M l
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In such a way, for every j < k, we find by restrictions of εk,l, other
conditional expectations of of AΛk,l+1

into AΛk,l
leaving ϕAΛk,l

invariant. A

simple application of Theorem 5.1 of [3], together with Takesaki existence
Theorem [20] (also reported in [3]), leads to

εk−1,l(AΛk,l+1
) ⊂ εk,l(AΛk,l+1

)

Namely, {E lj}j−≤j≤l is, as j → j−, a decreasing sequence of conditional
expectations which converges by a standard martingale convergence Theorem
(see e.g. [22] Theorem 3), to the conditional expectation

E l : M l ⊗M l+1 7→M l

given by
E l := lim

j→j−
E lj

Putting
Ek,l := idAΛk,l−1

⊗ E l ,

the set {Ek,l} satisfies all the properties listed in (2), and ϕ is a Markov state
w.r.t. {Ek,l}.

A set {hΛk,l
} of positive selfadjoint operators is called, following the ter-

minology of [4], an Ising potential if

e−
1
2
hΛk,l+1e

1
2
hΛk,l ∈ AΛl,l+1

Then any Markov state on the chain leads to a normalized Ising potential.
Moreover, taking into account (30) and (31), the potentials {hΛk,l

} arise from
a pairwise interaction.

Further, Theorem 5.1 provides also the equivalence between the definition
of the Markov property by quasi–conditional expectations ([4], Definition 2.1
or [5], Definition 2) and that given directly by conditional expectations (our
Definition 1).

As an immediate consequence of the above results, we get

Corollary 5.2 Let ϕ ∈ S(A) be a locally faithful Markov state w.r.t. the
sequence {E j}j−≤j<j+ of transition expectations.

Then there exists another sequence {F j}j−<j≤j+ of transition expectations

F j : M j−1 ⊗M j 7→M j

such that ϕ is also a Markov state (relative to the reverse order of the index
set I) w.r.t. {F j}j−<j≤j+.
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Proof. As ϕ is a locally faithful Markov state w.r.t. the sequence {E j}j−≤j<j+ ,
the implication (i)⇒ (ii) of Theorem 5.1 tells us that the potentials {hΛk,l

}
relative to ϕ, have the form (31) for sequences {Hj}, {Ĥj} and {Hj,j+1} of
selfadjoint operators satisfying all the properties listed above. Then (ii) ⇒
(i) of Theorem 5.1 (by passing through Property (iii)) gets that ϕ satisfies
the Markov property, relative to the reverse order of the index set I, w.r.t a
suitable sequence {F j}j−<j≤j+ of transition expectations as above.

The last result leads to a kind of reflection symmetry on the chain.4

We end this section with the generalization to our situation of Corollary
14 of [5].

Theorem 5.3 Let ϕ ∈ S(A) be a locally faithful Markov state.
Then the pointwise–norm limit

lim
k→j−
l→j+

e−ithΛk,laeithΛk,l

defines a one–parameter automorphisms group t 7→ αt on the quasi–local
algebra A which admits ϕ as a KMS state. Further, ϕ has a normal faithful
extension on all of πϕ(A)′′.

In particular, any locally faithful Markov state is faithful.

Proof. Thanks to the properties of hΛk,l
, the cocycle eithΛk−1,l+1e−ithΛk,l com-

mutes with each element a ∈ A localized in AΛk+1,l−1
.

Then e−ithΛk,laeithΛk,l becomes asymptotically constant (t fixed) on the
localized elements a ∈ A, that is it trivially converges, pointwise in norm, on
the localized elements of A. Next, by a standard 3–ε trick, it converges on
all of A and defines an isometry αt. It is straigthforward to show that t 7→ αt
is actually a group of automorphisms of A, which is also pointwise–norm
continuous in t, that is a strongly continuous group of automorphisms of A.
By constuction, ϕ is automatically a KMS state for αt at inverse temperature
β = −1. The last assertions follow by [9], Corollary 5.3.9, taking into account
that A is a simple C∗–algebra ([8], Proposition 2.6.17).

4If I is regarded as a discrete “time”, the above symmetry is precisely a time–reversal
one.
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