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Abstract
The introduction of a new (multiplicative) renormalization procedure

leads to a Lie algebra for the square of white noise which turns out to be a
current algebra on the Lie algebra sl(2,R). All the representations of this
algebra enjoying a certain irreducibility property are constructed. A one pa-
rameter class of classical processes is defined in terms of the generators. The
vacuum distributions of these processes are identified with the three excep-
tional (i.e. non Gaussian or Poisson) classes in the Meixner classification.
This class of distributions has been recently studied by several authors in
connection with different problems arising in decision theory, mathematical
finance, quantum field theory, classical probability, . . .. In the last section of
the paper these developments will be quickly reviewed.
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1 Emergence of white noise from stochastic

limit

In this section the main steps which lead from the stochastic limit of quantum
theory [AcLuVo02] to the white noise approach to stochastic calculus will
be described and it will be explained why this development naturally leads
to conceive the possibility of a calculus for higher powers of white noise
(nonlinear stochastic calculus).

The following is a relatively simple result which plays a fundamental role
in the stochastic limit of quantum theory. For its proof, as well as for the
proof of all the statements in this section, we refer to [AcLuVo02]. The theory
works equally well for Boson and Fermion fields, but in this paper we shall
discuss only the Boson case.

Theorem 1 Let ak, a
+
k′ be a Boson Fock field:

[ak, a
+
k′ ] = δ(k − k′) ; akΦ = 0

and let ωk be a function and ω a real number. Then, in the sense of operator
valued distributions on test functions satisfying∫

R
dt

∣∣∣∣∫
R3

dk|g(k)|2eit(ωk−ω)dk

∣∣∣∣ <∞
one has

lim
λ→0

ei(t/λ
2)ωk

λ
a+k = bω(t, k)

[b(t, k), b+(t′, k′)] = 2πδ(t− t′)δ(ωk − ω0)δ(k − k′)

Definition 1 A quantum field b(t, k) satisfying

[b(t, k), b+(t′, k′)] = δ(t− t′)G(k, k′)

G(k, k′) positive definite distribution on Rd×Rd is called a Boson white noise.
If, in the representation space of the field, there exists a unit (vacuum) vector
Φ such that

b(t, k)Φ0 = 0

then b(t, k) is called a Boson Fock white noise.
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Notice that, defining

b(t, k) + b+(t, k) =: w(t, k)

denoting K the completion of the Shwartz space S(Rd) for the scalar product

〈ϕ, ψ〉 :=

∫ ∫
ϕ(k)G(k, k′)ψ(k′)dkdk′

and defining

w(t, f) :=

∫
f(k)w(t, k)dk ; f ∈ K

Then, with respect to the vacuum vector Φ, i.e. in the sense of the expecta-
tion value

〈X〉 := 〈Φ, XΦ〉
w(t, f) is a K–valued classical white noise, in the sense that

[w(t, f), w(t′, g)] = 0 ; ∀ t, t′, f, g

with covariance
〈w(t, f), w(t′, g)〉 = δ(t− t′)〈f, g〉

Let HR denote the Fock space of the Boson field and let HS be the state
space of a system (say a lattice of atoms) interacting with the field with a
dipole type interaction.

The dynamics of such a system is described, in interaction representation,
by a Schrödinger equation of the form

∂tU
(λ)
t = −iλ

(
D ⊗

∫
R3

dkg(k)a+k e
it(ωk−ω0) + h.c.

)
U

(λ)
t (1)

where ωk ≥ 0 is the energy density of the field, D is an operator acting on
the system space HS, λ is a coupling constant and ω0 is a proper frequency
of the system. For example, for a 2–level atom ω0 is the energy difference
between the upper and the lower level. In general these proper frequencies
are infinitely many, but we are discussing the simplest situation.

After the time rescaling t→ t/λ2 the evolution equation becomes

∂tU
(λ)

t/λ2 = −i

(
D ⊗

∫
R3

dkg(k)
ei(t/λ

2)(ωk−ω0)

λ
a+k + h.c.

)
Ut

At this point a naive application of Theorem (1) suggests the following
natural conjecture:
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Theorem 2 As λ → 0 the solution U
(λ)

t/λ2 of equation (1) converges (in a

sense to be specified) to the unitary solution Ut of the white noise Hamiltonian
(WNH) equation

∂tUt = −iHI(t)Ut = −i(D ⊗ b+t +D+ ⊗ bt)Ut (2)

where b(t, k) is the white noise obtained in Theorem (1) and

b+t :=

∫
dkgkb

+(t, k)

In particular, if D = D∗ then equation (2) becomes

∂tUt =
dU

dt
= −i(D ⊗ wt)Ut (3)

where wt := b+t + bt is a classical white noise.

Remark. A corollary of the above result is that white noise is not the
derivative of Brownian motion in the naive sense that, by replacing an ordi-
nary white noise differential equation by the corresponding integral equation,
one gets a stochastic differential equation. In fact, if we consider the inte-
gral equation, associated to the Hamiltonian White Noise equation (3) one
obtains

Ut = 1 + (−i)
(
D ⊗

∫ t

0

wsdsUs

)
and, if it were true that

wsds = dWs (W −BM)

then (3) should be equivalent to

Ut = 1 + (−i)
(
D ⊗

∫ t

0

dWsUs

)
(4)

in the sense of usual stochastic integrals. But (4) is equivalent to the SDE

dUt = −i(D ⊗ dWt)Ut (5)

Theorem 3 : (3) is not equivalent to (5).
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Proof . The solution of (5) cannot be unitary, unless D is zero.
On the other hand, starting from [AcFrLu87], we know that

Theorem 4 As λ → 0 the solution U
(λ)

t/λ2 of equation (1)converges (in a

sense to be specified) to the solution Ut of the quantum stochastic differential
equation

dUt = −i(D ⊗ dB+
t +D+ ⊗ dBt + γ−D

∗Ddt)Ut (6)

From this we deduce that the two equations (2) and (4) must be equivalent
and that there should be a simple rule allowing to pass from one to the other.
The correctness of this conjecture, first proved in [AcLuVo93], is shown by
the following:

Theorem 5 The causally normally ordered form of the WNH equation

∂tUt = −i(D ⊗ b+t (g) + h.c.)Ut (7)

is the SDE
dU

dt
= −i(D ⊗ b+t )Ut − iDUtbt + γ−D

+DUt

where

γ− :=

∫ 0

−∞
dt

∫
dk|g(k)|2eit(ω(k)−ω)

For the notion of causal normal order we refer to [AcLuVo02].

To complete the inclusion:
Stochastic Differential Equations (Classical or Quantum) “⊆” Hamilto-

nian white noise equation
a white noise formulation of the Ito formula had to be developed. It

turns out [AcLuVo95b] that this formulation can be synthetized in the formal
identity

δ(0)dt = 1 (8)

in the sense that one can give a rigorous meaning to this identity by means
of several different limiting procedures (which are the analytical counterpart
of the many different notions of stochastic integral) and that the stochastic
limit is one of these possibilities.
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2 The square of white noise

The fact that the white noise itself does not enter explicitly in the white
noise Ito formula (8) suggested the possibility of a naive application of this
formula to higher powers of white noise thus obtaining a nonlinear extension
of the ususal Ito calculus. In fact, already starting from 2 − d order WNE
we are beyond usual stochastic calculus.

This program was initiated in [AcLuVo95b] and carried out in several
directions but it soon turned out that a too naive application of this formula
lead to some unpleasant features, such as the non associativity of the non
linear Ito tables.

The idea to replace additive renormalization by multiplicative renormali-
zation [AcLuVo99] [AcLuVo00] allowed to construct the Fock representation
for the the renormalized square of white noise (SWN in the following). The
essence of the new idea can be summarized as follows:

Since the usual Ito multiplication tables are consequences of the commu-
tation relations, rather than renormalizing directly the Ito table one might
try to renormalize the commutation relations themselves.

This idea was substantiated, in the following Lemma, by making use of
the known formula of distribution theory

δ(t)2 = cδ(t) (9)

where the constant c ∈ C is arbitrary (for a proof of this formula and
bibliographical references, cf. [AcLuVo99]).

Lemma 1 Let P(b, b+) denote the free associative unital complex ∗–algebra
generated by the symbols bt, b

+
t with t ∈ R and commutation relations

[bt, b
+
τ ] = δ(t− τ) (10)

and let us define the square of the δ–function by formula (9) with an arbitrary
constant c. Then the following commutation relations hold:

[b2t , b
+2
t′ ] = 2δ(t− t′)c+ 4b+t btδ(t− t′) (11)

[b+t bt, b
+2
t′ ] = 2δ(t− t′)b+2

t′ (12)

In particular b+2
t , b2t , b

+
t bt have a closed Lie algebra.

8



Proof.
[b2t , b

+2
t′ ] = [b2t , b

+
t′ ]b

+
t′ + b+t′ [b

2
t , b

+
t′ ] =

= bt[bt, b
+
t′ ]b

+
t′ + [bt, b

+
t′ ]btb

+
t′ + b+t′ bt[bt, b

+
t′ ] + b+t′ [bt, b

+
t′ ]bt =

= δ(t− t′)btb+t′ + δ(t− t′)btb+t′ + b+t′ btδ(t− t
′) + b+t′ δ(t− t

′)bt =

= 2δ(t− t′)btb+t + 2δ(t− t′)b+t bt = 2δ(t− t′)2 + 4δ(t− t′)b+t′ bt
Using the relation (9) we find (11). Similarly

b+t btb
+2
t′ = b+t [bt, b

+2
t′ ] + b+t b

+2
t′ bt = b+t δ(t− t′)b+t′ + b+t b

+
t′ δ(t− t

′) + b+2
t′ b

+
t bt =

= 2δ(t− t′)b+t b+t′ + b+2
t′ b

+
t bt

which is (12).
Lemma 3 suggests to introduce a Lie algebra with generators

B+
t , Bt , Nt

and a central element E (which we omit from notations) with relations:

[Bt, B
+
τ ] = 2cδ(t− τ) + 4δ(t− τ)Nτ (13)

[Nt, B
+
τ ] = 2δ(t− τ)B+

τ (14)

[Nt, Bτ ] = −2δ(t− τ)Bτ (15)

[Nt, Nτ ] = [Bt, Bτ ] = [B+
t , B

+
τ ] = 0 (16)

and to construct a representation of this Lie algebra with a cyclic vacuum Φ,
i.e. a unit vector satisfying

BtΦ = 0 (17)

and such that the quadratic number vectors

B+
tn . . . B

+
t1

Φ

are total in the representation space. The above Lie algebra is called the
SWN algebra and a representation with the above properties, a Fock repre-
sentation. Intuitively

B+
τ := b+2

t = b+t b
+
t , Bt = b2t = btbt , Nt = b+t bt (18)

and the central element E is the identity (of the universal enveloping algebra).
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In [AcLuVo99] it was proved that a Fock representation of the SWN
algebra exists if and only if the constant c, in formula (9), is strictly positive.

This opened the way to a multiplicity of developments starting from the
paper of P. Śniady [Śnia99] where the q–deformation of the SWN was discus-
sed, the free (q = 0) Fock representation explicitly constructed and it was
proved that there exist no natural Fock representation for both the first and
the second order white noise (in other words: the renormalization procedure
has indeed a strong effect on the relations between the first and second order
white noises).

Simultaneously L. Accardi and M. Skeide [AcSk99a], [AcSk99b] intro-
duced the exponential vectors for the SWN and used them to prove that
the Fock space of the SWN was isomorphic to the Fock space of the finite
difference algebra, previously constructed, on the basis of completely diffe-
rent motivations, by A. Boukas and P. Feinsilver [Bou88], [Bou91], [Fei87],
[FeSch93].

This apparently surprising connection was explained in the paper by L.
Accardi, U. Franz, M. Skeide [AcFrSk00] where it is shown that the Fock
representation of the SWN realizes a factorizable representation of a current
algebra of the real Lie algebra sl(2,R) over R (in fact all the main results
of this paper are applicable to a more general, multidimensional index set)
in which the three generators B±,M correspond respectively to the formal
expressions b+2b2, b+b where b± is a usual quantum white noise.

In fact, after introducing test functions in the usual way

b+ϕ“=”

∫
dtϕ(t)b2t ; bϕ = (b+ϕ )+ ; nϕ“=”

∫
dtϕ(t)b+t bt

and appropriately fitting the parameters, the commutation relations become:

[bϕ, b
+
ψ ] = γ〈ϕ, ψ〉+ nϕψ (19)

[nϕ, bψ] = −2bϕψ (20)

[nϕ, b
+
ψ ] = 2b+ϕψ (21)

(b+ϕ )+ = bϕ ; n+
ϕ = nϕ (22)

Comparing this with the relations among the three generators B−, B+,M
of the Lie algebra sl(2,R):

[B−, B+] = M ; [M,B±] = ±2B±
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we see that the SWN algebra is isomorphic to (a central extension of) the
Lie algebra sl(2,R).

Moreover the commutation relations (19), (20), (21), (22) clearly imply
that operators, corresponding to test functions with disjoint support com-
mute. This, together with (17), implies that they are independent random
variables with respect to the vacuum.

The intuitive interpretation of this processes as naturally associated to
the SWN can give some insight on their distributions. Let us illustrate this
with the example of the renormalized square of the classical white noise. The
classical WN is the independent increment process

wt = b+t + bt = w[0,t] = Σjw[tj+1−tj ]

Computing formally its square we find

w2
t = (b+t + bt)

2 = b+2
t + b2t + b+t bt + btb

+
t = b+2

t + b2t + 2b+t bt + δ(0)

thus, after additive renormalization (i.e. subtraction of the infinity δ(0)) we
find:

: w2
t := b+2

t + b2t + 2b+t bt

which, by the above remark is also an independent increment, i.e. a sum of
squares of independent Gaussians:

: w2
t :=: w2

[0,t] := Σ : w2
[tj−tj ] :

therefore, if the above formal manipulations lead to the correct intuition the
vacuum distribution of : w2

t : should be a χ2–distribution. This means that,
after integration with a test function ϕ∫

ϕ(t) : w2
t : dt = b+ϕ + bϕ + nϕ =: w2

ϕ

we have to check, using the commutation relations, that we obtain a classical
(commuting) process and that its distribution is a χ2. We will see that this
is indeed the case.

We have seen that to any representation of the SWN algebra it is asso-
ciated an independent increment processes on R. According to the general
theory of independent increment processes on ∗–bialgebras [AcSchuvW88],
[Sch93], such processes are classified by a representation ρ of the Lie algebra
sl(2,R) and a ρ–cocycle η.
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Using the theory of unitary representations of SL(2,R), in [AcFrSk00] all
such pairs, corresponding to an irreducible ρ were classified.

In [AcAmFr02] an explicit classification was obtained of the SWN ana-
logue of the Bogolyubov automorphisms. This allowed to define the notion
of free evolution for this algebra and to study the corresponding KMS states
which should correspond to the equilibrium representations of the SWN al-
gebra. A different construction of the (Fock) SWN process has recently been
obtained by [Priv02].

3 Classical infinitely divisible processes built

from the SWN

The last part of [AcFrSk00] is devoted to the study of those classical infinitely
divisible processes built from the SWN in a similar way as the Wiener and
the Poisson processes are built from the usual WN. These have the form

Xβ(t) := b+2
t + b2t + βb+t bt = B+

t +Bt + βNt (23)

where β is a real number (because we want formally self–adjoint proces-
ses). Without the power 2, for β = 0 one would find the Wiener (or field)
process and, for β 6= 0, the Poisson process of intensity β.

With the power 2, the only privileged parameters are β = ±2: the value
+2 corresponding to the renormalized square of the position (classical) white
noise, i.e.

| b+t + bt |2= b+2
t + b2t + b+t bt + btb

+
t +

= b+2
t + b2t + 2b+t bt + δ(0) ≡ b+2

t + b2t + 2b+t bt

and the value −1 to the renormalized square of the momentum white noise,
i.e. (b+t − bt)/i. In [AcFrSk00] it was proved that the vacuum distribution of
both processes is the Gamma–distribution

µ(dx) =
|x|m0−1

Γ(m0)
e−βx1βR+

whose parameter m0 > 0 is uniquely determined by the choice of the unitary
representation of SL(2,R) corresponding to the representation of the SWN
algebra. Since the Gamma–distributions are precisely the distributions of
the χ2–random variables, this result confirms the naive intuition about the
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distribution of the renormalized square of white noise which was discussed in
the previous section. Notice that the above expression of the gamma function
corresponds to a reparametrisation in which these two processes correspond
to the choice |β| = 1 rather than |β| = 2.

For any value of β the process X = Xβ (everything depends on β, but
we omit this dependence from our notation) is classical and, denoting µ
its vacuum distribution, and Pn(x) the associated sequence of orthogonal
polynomials, with initial condition P−1 = 0, P1 = 1, using the commutation
relations one can verify that the Jacobi recurrence relation satisfied by the
Pn(x) is

(n+ 1)Pn+1 + (2βn+ βm0 − x)Pn + (n+m0 − 1)Pn−1 = 0 (24)

For |β| = 1 this leads, up to appropriate rescalings, to

Pn(x) = (−β)nL(m0−1)
n (βx) (25)

where L
(α)
n are the Laguerre polynomials which are orthogonal for the gamma

distribution.
For |β| < 1

Pn(x) = P (m0/2)
n

(
x

2
√

1− β2
;− arccos β

)
(26)

where P
(m0/2)
n are the Meixner-Pollaczek polynomials corresponding to the

measure

µ(dx) = C exp

(
−(2 arccos β + π)x

2
√

1− β2

)∣∣∣∣∣Γ
(
m0

2
+

ix

2
√

1− β2

)∣∣∣∣∣
2

(27)

where C is a normalization constant. For m0 integer there are explicit
formulae for the densities because it is known that (cf. [Grig01])

|Γ (n+ ix)|2 =
πx(1 + x2) . . . ((n− 1)2 + x2)

sinh(πx)
, n = 1, 2, . . . , , x ∈ R

(28)∣∣∣∣Γ(1

2
+ ix

)∣∣∣∣2 =
π

cosh(πx)
, x ∈ R (29)
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∣∣∣∣Γ(n+
1

2
+ ix

)∣∣∣∣2 =
π(1

4
+ x2) . . . ((n− 1)n+ 1

4
+ x2)

cosh(πx)
, n = 1, 2, . . . ; x ∈ R

(30)
Finally, for |β| > 1

Pn(x) =

 (−1)n
∏n

k=1
n+m0−1

n
Mn

(
x

c−1/c −
m0

2
;m0; c

2
)

if β > 0,∏n
k=1

n+m0−1
n

Mn

(
− x
c−1/c + m0

2
;m0; c

2
)

if β > 0
(31)

where the Mn are the Meixner polynomials and

c =

{
β −

√
β2 − 1 if β > +1,

−β −
√
β2 − 1 if β < −1.

(32)

The associated probability measure is the negative binomial (Pascal)
distribution

µ = C
∞∑
n=0

c2n(m0)n
n!

δsgnβ((c−1/c)(n+m0/2)) (33)

where (m0)n denotes the Pochammer symbol,
(m0)n = m0(m0 + 1) · · · (m0 + n− 1) and

C−1 =
∞∑
n=0

c2n(m0)n
n!

= (1− c2)−m0

4 Emergence of the square of white noise in

different contexts

In this section we prove that the classical processes (23), naturally associated
to the SWN exactly coincide with the three exceptional (i.e. neither Gaussian
nor Poisson) Meixner classes. Following [Lytv02a] let us briefly recall the
main facts about these classes.

In 1934 Meixner considered the following problem [Meix34]: Find all
sequences of polynomials P (n)(x) (n ∈ N), in one real variable x with the
following properties:

(i) the leading coefficient of each P (n)(x) is 1
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(ii) for each n ∈ N, P (n)(x) is the n–th orthogonal polynomial with respect
to some probability measure µ on R.

(iii) there exist functions f(z) and Ψ(z) such that

G(x, z) := exp(xΨ(z))f(z) =
∞∑
n=0

P (n)(x)

n!
zn (34)

The sequence (P (n)) of orthogonal polynomials, with respect to any pro-
bability measure µ on R, is characterized by the Jacobi recurrence formula
(Favard theorem)

xP (n)(x) = P (n+1)(x) + anP
(n)(x) + bnP

(n−1)(x) , n ∈ N (35)

P (−1)(x) := 0 , P (0)(x) := 1 (36)

where an are real number and bn are positive numbers which define a
unique infinite (symmetric) Jacobi matrix with the an on the main diagonal
and the

√
bn on the upper and lower diagonals.

Meixner proved that (34) implies that

Ψ−1(D)P (n)(x) = nP (n−1)(x) , n ∈ N (37)

where Ψ−1 is the inverse function of Ψ and D := d
dx

. and using this he
showed that the solution of this problem is completely determined by two
parameters λ and k satisfying the equations

k =
bn
n
− bn−1
n− 1

, n ≥ 2

an = λn

According to the values of the parameters k, λ the solutions of these equa-
tions, hence the corresponding measures, can be classified in 5 classes: the
Meixner classes.

The first two classes correspond to the case k = 0, so that bn = n.
(I) λ = 0, so that an = 0
In this case (35) becomes the recurrence relation of the Hermite polyno-

mials and µ is the standard Gaussian distribution on R.
(II) λ 6= 0
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In this case (35) becomes the recurrence relation of the Charlier poly-
nomials and µ is the centered Poisson distribution on R with parameter
λ.

The remaining 3 classes correspond to the case k 6= 0. In this case

bn = kn+
n

n− 1
bn−1 = kn+

n

n− 1
(k(n− 1) +

n− 1

n− 2
bn−2 = . . . = kn2

Following [Lytv02a] we set k = 1 and introducing two complex numbers
α and β through the equation

1 + λz + z2 = (1− αz)(1− βz) . (38)

we distinguish the three following cases:
(III) |λ| = 2, so that α = β = ±1 (these two cases correspond to the

renormalized square of classical white noise which was discussed above).
In this case the P (n)(x) are the Laguerre polynomials and µ is a centered

gamma distribution which is a compound Poisson measure. These measures
do not possess the chaotic decomposition property but, as shown in [Nu-
Sch00] (see also the recent book [Schou00]), they enjoy a generalization of
this property obtained by adding to the original process (Xt) its associated
power jump processes

X
(i)
t :=

∑
0<s≤t

(∆Xs)
(i) , i ≥ 2

The gamma, Pascal, and Meixner processes served as main examples of ge-
neralized chaotic representation for square–integrable random variables in
terms of the orthogonalized Teugels martingales related to the process.

The one–dimensional polynomials of Meixner’s type were used in this
paper in order to carry out the orthogonalization procedure of the Teugels
martingales (which, in turn, are the centered power jump processes related
to the original process).

The connection between the gamma processes and the current represen-
tations of SL(2,R) was noticed in [TsVeYo01] independently of [AcFrSk00],
where this connection was established for all the Meixner classes.

(IV) |λ| > 2, so that α 6= β.
In this case the P (n)(x) are the Meixner polynomials (of the first kind),

which are orthogonal with respect to a centered Pascal (negative binomial)
distribution i.e., up to reparametrization, a distribution of the form (33).
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The Lévy processes, corresponding to the Pascal measures were intro-
duced in [BruRo91] in the context of optimal selection strategies based on
relative ranks, when the total number of options is unknown.

(V) |λ| < 2, so that α 6= β, both complex conjugate.
In this case the P (n)(x) are the Meixner polynomials of the second kind,

(or Meixner–Pollaczek polynomials). These are orthogonal with respect
to a measure µ obtained by centering a probability measure of the form
C exp(ax)|Γ(1 + imx)|2dx, where a ∈ R, m > 0, and C is the normalizing
constant. These are called Meixner measures in [Lytv02a] and they are a
sub–class of Grigelionis’ generalized z–distributions [Grig01]. In this paper
the term Meixner distribution is used for the class of probability measures on
R whose characteristic function (Fourier transform of the probability density)
has the form

f̂(z) =

(
cos(β/2)

cosh((αz − iβ)/2)

)2δ

with z ∈ R,−π < β < π, δ > 0, µ ∈ R. This class was introduced in
[SchTeu98] where it was proved that the measures in it correspond to Levy
processes and their connection with the Meixner–Pollaczek polynomials was
established. We refer to [Grig01], [Grig00], [Grig99] for several interesting
properties of these distributions and explicit formulae related to them. In
particular, in [Grig99], the Meixner process was proposed as a model for risky
assets and an analogue of the Black and Sholes formula was established for
them.

In all the above cases, the generating function G(x, z) defined in (34) can
be represented as

G(x, z) = exp(xΨ(z))/`µ(Ψ(z))

where

`µ(z) :=

∫
R
ezxµ(dx)

is the extension of the Laplace transform of the measure µ defined in a
neighborhood of zero in C.

The infinite dimensional and multidimensional analogues of orthogonal
polynomials associated to a given measure have been widely studied both in
the Gaussian ([BeKo94], [HiKuPoStr93], [Kuo96]) and in the Poisson case
([Chiha78], [KoKuOl00]).
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The programme to extend this analysis to more general probability mea-
sures was developed by Berezansky, who introduced in this connection the
notion of Jacobi field of operators, and his school ([BeLiLy95], [Lytv95],
[Berez98], [Berez97]).

An infinite–dimensional analogue of the Laguerre polynomials and the
corresponding Jacobi fields, corresponding to the gamma case, i.e. to the
class (III) in Meixner’s classification, was studied in [KoLy00], see also [Ko-
SiSt97].

In conclusion it should be added that the SWN was introduced as an
example of interacting Fock space and in the attempt to extend to infinite
dimensions the canonical connection between orthogonal polynomials and
interacting Fock spaces established, in the 1–dimensional case, in [AcBo98].

Now this connection has been established in the paper [AcKuSt02] and it
will be discussed elsewhere. Also in this case there are interesting connections
with previous papers by Yu. Berezansky and by E. Lytvinov.
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