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1 Introduction

Purpose of the present paper is the study of probability measures on coun-
table1 products of measurable spaces. We will discuss two problems: 1)
equivalence of measures on product spaces; classification2 of measures on
such spaces.

Accordingly, the work is divided into two parts.

Definition 1 A family of (probability) measure (Ψk)k∈N on the product of

measurable spaces
k∏
i=1

(Ωi,Bi) will be called a “cylindrical measure” on the pro-

duct space
∞∏
i=1

(Ωi,Bi) if there exists a single measure on the product
∞∏
i=1

(Ωi,Bi)

which extends each of the Ψk’s.

The measure will be called measure “induced” by the cylindrical measure
(Ψk)k∈N. A necessary condition for (Ψk) to be a cylindrical measure is that
the equality

Ψk+1(E1; . . . ;Ek; Ωk+1) = Ψk(E1; . . . ;Ek) ; Ei ∈ Bi ; (1 ≤ i ≤ k)

be satisfied.
We recall that two measures m and m′ on a measurable space (X,B)

are said to be “B–equivalent” (m ∼ m′) if for every E ∈ B, m(E) = 0 is
equivalent to m′(E) = 0. m is called “B–absolutely continuous” with respect
to m′, (m ≺ m′) if m′(E) = 0 implies m(E) = 0. m and m′ are said to
be “orthogonal” (m ⊥ m′) if there are two disjoint sets B, B′ such that
m(B) = m′(B′) = 1.

When the σ–algebra with respect to which equivalence (resp. absolute
continuity) is considered will be evident from the context we will omit it in
the notation.

1All the results still hold without this hypothesis, which is done to keep evident the
analogy with states of uniformly hyperfinite algebras (cfr. [6], [10]).

2For example (Ψk)k∈N are always cylindrical measures when Ψk =
k∏

i=1

mi (mi, a mea-

sure on (Ωi;Bi)) or when (Ωi,Bi) = (Ω,B) for every ι ∈ N and the Ψk’s are the measures
induced by a Markov chain (this follows from Ionesco Tulcea’s theorem; (cfr. [5], pg. 162).
Or, finally, because of Kolmogorov’s extension theorem, when the (Ωi;Bi) are standard
Borel space (cfr. [5], pg. 83).
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For two probability measures, m, m′ on (X;B) their “Hellinger integral”
is defined as:

ρ(m,m′) =

∫
X

√
dm · dm′ =

∫
X

√
dm

dn
· dm

′

dn
dn

where n is an arbitrary measure which dominates m and m′ (m ≺ n;m′ ≺ n),
and dm

dn
is the Radon–Nikodym derivative of m with respect to n. This having

been set, the “problem of the equivalence” is set out as follows: “When

do two cylindrical measures on the product
∞∏
i=1

(Ωi;Bi) induce two measures

equivalent with respect to the σ–algebra B =
∞∏
i=1

Bi?”.

If (Ψk)k∈N and (Ψ′k)k∈N are cylindrical measures it is clear that the con-
dition Ψk ∼ Ψ′k for every k ∈ N is necessary for the equivlaence of the
induced measures. Thus the problem of the equivalence can be reformulated
as follows.

“If (Ψk) and (Ψ′k) are cylindrical measures such that Ψk ∼ Ψ′k when are
the induced measures equivalent?”.

In the case of product measures, this problem has been completely solved
by Kakutani [2] who proved that if mn and m′n are probability measures on

(Ωn,Bn) such that m ∼ m′n for every n, then the product measurs:
∞∏
i=1

mi

and
∞∏
i=1

m′i are orthogonal if and only if
∞∏
i=1

ρ(mi;m
′
i) = 0 and equivalent if

and only if
∞∏
i=1

ρ(mi;m
′
i) > 0.

2 Asymptotic independence

Given a cylindrical measure (Ψk)k∈N on the product
∞∏
i=1

(Ωi;Bi) we set, for

k ∈ N and l ≥ k

Ψk,l(Ek+1; . . . ;El) = Ψl(Ω1; . . . ; Ωk;Ek+1; . . . ;El)

Furthermore, we denote:

(Ω̃l; B̃l) =
l∏

i=1

(Ωi;Bi) ; (Ω̃k,l; B̃k,l) =
l∏

i=k+1

(Ωi;Bi)
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Then (Ω̃l; B̃l) is naturally identified with (Ω̃k × Ω̃k,l; B̃k × B̃k,l) (k ≤ l).

Ψk ·Ψk,l : (E1; . . . ;El) ∈ B̃l → Ψk(E1; . . . ;Ek) ·Ψk,l(Ek+1; . . . ;El)

is, thus, a measure on (Ω̃l; B̃l), for every k ≤ l, and one has Ψl ≺ Ψk · Ψk,l,
so that it makes sense to speak of dΨl

dΨk·ψk,l
the Radon–Nykodim derivative of

Ψl with respect to Ψk ·Ψk,l

Lemma 1 If (Ψk) and (Ψ′k) are cylindrical measures on
∞∏
i=1

(Ωi;Bi) the fol-

lowing formula holds, for k ∈ N; k ≤ l

ρ(Ψl; Ψ′l)− ρ(Ψk; Ψ′k) = ρ(Ψk; Ψ′k) · [ρ(Ψk,l; Ψ′k,l)− 1] + Jk(Ψl ·Ψ′l)

where

Jk(Ψl; Ψ′l) =

∫
Ω̃l

[√
dΨl

dΨk ·Ψk,l

· dΨ′l
dΨ′k ·Ψ′k,l

− 1

]
·
√
dΨk ·Ψk,l · dΨ′k ·Ψ′k,l

= ρ(Ψl; Ψ′l)− ρ(Ψk ·Ψk,l; Ψ′k ·Ψ′k,l)

Proof . From [2] Lemma 2, one has:

ρ(Ψl; Ψ′l) − ρ(Ψk; Ψ′k) = ρ(Ψk; Ψ′k) · [ρ(Ψk,l; Ψ′k,l)− 1] +

+ [ρ(Ψl; Ψ′l)− ρ(Ψk ·Ψk,l; Ψ′k ·Ψ′k,l)

Furthermore

ρ(Ψl; Ψ′l) − ρ(Ψk ·Ψk,l; Ψ′k ·Ψ′k,l) =

=

∫
Ω̃l

√
dΨl · dΨ′l −

∫
Ω̃l

√
dΨk ·Ψk,l · dΨ′k ·Ψ′k,l

=

∫
Ω̃l

[√
dΨl

dΨk ·Ψk,l

· dΨ′l
dΨ′k ·Ψ′k,l

− 1

]
·
√
dΨk ·Ψk,l · dΨ′k ·Ψ′k,l

Remarks : 1) If the sequence (ρ(Ψk; Ψ′k)) converges to zero, then lim
k→∞
k≤l

Jk(Ψl; Ψ′l) =

0.
2) If lim

k→∞
k≤l

Jk(Ψl; Ψ′l) = 0, then the sequence (ρ(Ψk; Ψ′k)) tends to a limit

α > 0 if and only if lim
k→∞
k≤l

ρ(Ψk,l; Ψ′k,l) = 1. Conversely, if the second equality
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holds, the first equality is a necessary and sufficient condition in order that
the sequence (ρ(Ψk; Ψ′k)) converges.

If (X,B) is a measurable space it is known that σ(m,m′) = − lg ρ(m,m′)
is a symmetric function on the set of all probability measures on (X,B),
such that σ(m;m′) = 0 if and only if m = m′. In general σ is not a distance,
but the following lemma shows that a weak form of the triangular inequality
holds (properly: σ induces a uniform structure).

Lemma 2 Let (X,B) be a measurable space and mi; (∠ = 1, 2, 3) probability
measures on (X,B). Then:

|ρ(m1,m20− ρ(m2,m3)| ≤
√

2(1− ρ(m1,m3))

Proof . Let ν be a measure dominating mi; (i = 1, 2, 3), then

|ρ(m1,m2) − ρ(m2,m3)| ≤
∫
X

∣∣∣∣∣
√
dm1

dν
· dm2

dν
−
√
dm2

dν

dm3

dν

∣∣∣∣∣ dν
≤


∫
X

∣∣∣∣∣
√
dm1

dν
−
√
dm3

dν

∣∣∣∣∣
2

dν


1/2

=
√

2(1− ρ(m1,m3))

Definition 2 The cylindrical measure (Ψk) on the product space
∞∏
i=1

(Ωi;Bi)

is said to be “asymptotically independent” if

lim
k→∞
k≤l

ρ(Ψl; Ψk ·Ψk,l) = 1

From Lemma (2) it follows thata if (Ψk) and (Ψ′k) are both asymptotically
independent, then lim

k→∞
k≤l

Jk(Ψl; Ψ′l) = 0. In fact one has, from Lemma (1)

|Jk(Ψl; Ψ′l)| ≤ ρ(Ψl; Ψ′l)− ρ(Ψ′l; Ψk ·Ψk,l)|+

+|ρ(Ψ′l; Ψk ·Ψk,l)− ρ(Ψk ·Ψk,l; Ψ′k ·Ψ′k,l)|

≤
√

2(1− ρ(Ψl; Ψk ·Ψk,l)) +
√

2(1− ρ(Ψ′l; Ψ′k ·Ψ′k,l))
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Lemma 3 The following conditions are equivalent:

lim
k→∞
k≤l

∫
Ω̃l

∣∣∣∣∣
√

dΨl

dΨk · ψk,l
− 1

∣∣∣∣∣ dΨk · ψk,l = 0 (1)

The cylindrical measure (Ψk) is asymptotically independent (2)

lim
k→∞
k≤l

∫
Ω̃l

∣∣∣∣ dΨl

dΨk ·Ψk,l

− 1

∣∣∣∣ dΨk ·Ψk,l = 0 (3)

lim
k→∞
k≤l

∫
Ω̃l

√∣∣∣∣ dΨl

dΨk ·Ψk,l

− 1

∣∣∣∣dΨk ·Ψk,l = 0 (4)

Proof . Obviouslu [A11] → [A12]. If ρ(Ψl; Ψk · Ψk,l) tends to 1, from the
inequality

1−
(

dΨl

dΨk · ψk,l

)(
1 +

√
dΨl

dΨk ·Ψk,l

)
one deduces∫

Ω̃l

∣∣∣∣ dΨl

dΨk′Ψk,l

− 1

∣∣∣∣ dΨk ·Ψk,l ≤ 23/2 ·
√

1− ρ(Ψl; Ψk ·Ψk,l)

so (2) → (3).
Since, clearly (3) → (4) it will be sufficient to prove [A14] → (1). Let

lim
k→∞
k≤l

∫
Ω̃l

√∣∣∣∣ dΨl

dΨk ·Ψk,l

− 1

∣∣∣∣dΨk ·Ψk,l = 0

Let us consider the sequence∫
Ω̃l

|
√

1 + fk,l − 1|dΨk ·Ψk,l

where fk,l = dΨl

dΨk·Ψk,l
− 1. Let us introduce the sets:

E+
k,l = {xl ∈ Ω̃l : fk,l(xl) ≥ 0} ; E−k,l = Ω̃l − E+

k,l
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And let us consider separately the two addenda of the sum:∫
Ω̃l

∣∣∣∣∣
√

dΨl

dΨk ·Ψk,l

− 1

∣∣∣∣∣ dΨk ·Ψk,l =

∫
E+

k,l

| . . . |dΨk ·Ψk,l +

∫
E−k,l

| . . . |dΨk ·Ψk,l

On E+
k,l by construction fk,l ≥ 0, so∫

E+
k,l

|
√

1 + fk,l − 1|dΨk ·Ψk,l ≤
∫
E+

k,l

√
fk,ldΨk ·Ψk,l

But if fk,l < 0, then necessarily −1 ≤ fk,l < 0, except for a set of null
(Ψk · Ψk,l)–measure. So if F−k,l = {xl ∈ E−k,l : fk,l = −1}, Gk,l = E−k,l − F

−
k,l,

one has∫
E−k,l

|1−
√

1− |fk,l||dΨk ·Ψk,l ≤
∫
Gk,l

√
|fk,l|dΨk ·Ψk,l + Ψk ·Ψk,l(F

−
k,l)

Summing up the last two inequalities, one finds∫
Ω̃l

∣∣∣∣∣
√

dΨl

dΨk ·Ψk,l

− 1

∣∣∣∣∣ dΨk ·Ψk,l ≤
∫

Ω̃l

√∣∣∣∣ dΨl

dΨk ·Ψk,l

− 1

∣∣∣∣dΨk ·Ψk,l

so (3) → (1) and this ends the proof.
The preceding Lemma justifies the following definition:

Definition 3 Let γ be a real number such that 1 ≤ t ≤ ∞. We shall say
that the cylindrical measure (Ψk) is L+(Ψk ·Ψk,l) asymptotically independent
if

lim
k→∞
k≤l

∫
Ω̃l

∣∣∣∣ dΨl

dΨk ·Ψk,l

− 1

∣∣∣∣t dΨk ·Ψk,l = 0

When no confusion can arise we shall simply write Lt–asymptotically
independent.

L∞–asymptotic independence is called “uniform asymptotic independen-
ce”. Lemma (3) can be stated: asymptotic independence is equivalent to
L1–asymptotic independence (resp. L1/2).
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Definition 4 A cylindrical measure (Ψk) on the product
∞∏
i=1

(Ωi,Bi) will be

said to be “strongly L+–asymptotically independent” if

lim
k→∞
k≤l

sup
ωk∈Ω̃k

∫
Ω̃k,l

∣∣∣∣ dΨl

dΨk ·Ψk,l

(ω̃k, ω̃k,l)− 1

∣∣∣∣t dΨk,l(ω̃k,l) = 0

For t = 1, we shall say that (Ψk) is strongly asymptotically independent.

Lemma 4 Let (Ψk) and (Ψ′k) be two cylindrical measure on
∞∏
i=1

(Ωi,Bi) such

that Ψk ∼ Ψ′k, and lim
k→∞

ρ(Ψk; Ψ′k) = α > 0. Suppose the following condition

is satisfied:

[i1] The measures (Ψk), (Ψ′k) are strongly asymptotically independent.

Then:

lim
k→∞
k≤l

∫
Ω̃l

√
dΨ′k
dΨk

·

√
dΨ′l
dΨl

dΨl = 1 (5)

Proof . The cylindrical measures (Ψk); (Ψ′k) are asymptotically independent,
so from Lemma (1), (2) and from the hypothesis it follows that lim

k→∞
k≤l

ρ(Ψk,l; Ψ′k,l) =

1. Therefore, because of the equality:∫
Ω̃l

√
dΨ′k
dΨk

dΨl = ρ(Ψk,l; Ψ′k,l)+

∫
Ω̃l

√
dΨk,l

dΨ′k,l

[√
dΨ′l

dΨ′k ·Ψ′k,l
· dΨl

dΨk ·Ψk,l

− 1

]
dΨ′k·Ψ′k,l

the thesis is equivalent to the assertion that the second addendum of the
right member of the equality tend to zero. From Fubini–Tonelli’s theorem,
this addendum can be expressed as∫

Ω̃k,l

√
dΨk,l

dΨ′k,l
· dΨ′k,l

∫
Ω̃k

[√
dΨ′l

dΨ′k ·Ψ′k,l
· dΨl

dΨk ·Ψk,l

− 1

]
dΨ′k

Let us first consider the integral:
∫

Ω̃k
[. . .]dΨ′k.

Writing the term under square root in the form 1+fk,l, with an argument
similar to that used in Lemma (3) one finds∫

Ω̃k

[√
dΨ′l

dΨ′k ·Ψ′k,l
· dΨl

dΨk ·Ψk,l

− 1

]
dΨ′k ≤

∫
Ω̃k

√
|fk,l| · dΨ′k
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So one sees that, after easy manipulations, the initial integral is majorized
by ∫

Ω̃l

√
dΨk,l

dΨ′k,l
·

√√√√∣∣∣∣∣ dΨ′l
dΨ′k ·Ψ′k,l

− 1

∣∣∣∣∣ · dΨ′k ·Ψ′k,l+

+

∫
Ω̃l

√
dΨ′l

dΨk ·Ψk,l

·
√
dΨ′k · dΨk ·

√∣∣∣∣ dΨl

dΨk ·Ψk,l

− 1

∣∣∣∣dΨk ·Ψk,l

From the hypothesis and Lemma (1.4), the first addendum goes to zero for
k →∞; k ≤ l. Concerning the second, we observe that, applying repeatedly
Cauchy inequality, it can be majorized by{∫

Ω̃k

Ik,l(ω̃k)dΨk ·
∫

Ω̃k,l

dΨ′l
dΨk ·Ψk,l

· dΨk,l

}1/2

where

Ik,l(ω̃k) =

∫
Ω̃k,l

∣∣∣∣ d

dΨk ·Ψk,l

(ω̃k; ω̃k,l)− 1

∣∣∣∣ · dΨk,l

In hypothesis [1], given ε > 0, ak(ε) can be found such that, for l ≥ k ≥ k(ε)

sup
ω̃k∈Ω̃k

Ik,l(ω̃k) ≤ ε

Therefore also the second integral tends to zero for k →∞; k ≤ ε, and this
proves the thesis.

It is known (cfr. [12]), that condition (5) is equivalent to Ψ′ < Ψ. Thus,
from Lemma (4), and [1], pg. 181, one deduces:

Theorem 1 Two cylindrical measures (Ψk) and (Ψ′k) on the product
∞∏
i=1

(Ωi;Bi),

strongly asymptotically independent and such that Ψk ∼ Ψ′k for every k ∈ N,
are either orthogonal or equivalent according to the lim

k→∞
ρ(Ψ′k; Ψk), is equal

or bigger than zero.

Definition 5 Two cylindrical measures (Ψk), (Ψ′k) on the product
∞∏
i=1

(Ωi;Bi)

are said to be “weakly equivalent” if lim
k→∞
k≤l

ρ(Ψkl; Ψ′k,l) = 1.
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In the case of product measures “weak equivalence” coincides with the
equivalence relation between C0–sequences introduced in (??) and from Ka-
kutani’s theorem it follows that two weakly equivalent product measures are
either equivalent or there exists a finite subset of indices such that the finite
product measures relative to this set are orthognal and the infinite product
measures on the complement of this set are equivalent.

It can also be proved that weak equivalence is a measure theoretical ge-
neralization of Power’s condition of “quasi–equivalence” of two factor states
on a uniformly hyperfinite algebra (cfr. [6]). In case of asymptotically inde-
pendent cylindrical measures, the property lim

k→∞
ρ(Ψk; Ψ′k) > 0 and thus, in

particular the equivalence of the induced measures implies weak equivalence.

Proposition 1 Let (Ψk) and (Ψ′k) be two weakly equivalent cylindrical mea-

sures on the product
∞∏
i=1

(Ωi;Bi), such that Ψk ∼ Ψ′k; ∀ k ∈ N, and the se-

quences
(
dΨ′k
dΨk

)
and

(
dΨk

dΨ′k

)
are almost everywhere bounded. Then the induced

measures are equivalent.

Proof . From Lemma (1) and [4] pg. 172, weak equivalence implies

lim
k→∞
k≤l

Jk(Ψl; Ψ′l) = 0

From the equality:∫
Ω̃l

√
dΨ′k
dΨk

·

√
dΨ′l
dΨl

·dΨl = ρ(Ψk,l; Ψ′k,l)+

∫
Ω̃l

√
dΨk,l

dΨ′k,l

[√
dΨ′l

dΨ′k ·Ψ′k,l
· dΨl

dΨk ·Ψk,l

− 1

]
dΨ′k·Ψ′k,l

and the fact that∫
Ω̃l

√
dΨk,l

dΨ′k,l

[√
dΨ′l

dΨ′k ·Ψ′k,l
dΨl

dΨk ·Ψk,l

− 1

]
dΨ′k ·Ψ′k,l ≤ λ · Jk(Ψl; Ψ′l)

it follows that, in our hypothesis the relatain (5), holds and the thesis follows
by simmetry and the remark after Lemma 4.
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3 Semi–Stationary Measures

Let (Ω,B) be a measure space. Set (Ω̂, B̂) =
∏

N(Ω,B) (the product of

N–replicas of (Ω,B). The cylindrical measure (Ψk) on (Ω̂, B̂) is said to be
“stationary” if Ψk,l = Ψl−k for every, k, l ∈ N, k ≤ l, (cfr. [5] pg. 214). That
is, in the notations of (§ 1), a cylindrical measure (Ψk) is stationary when

Ψl(Ω; . . . ; Ω;Ek+1; . . . El) = Ψl−k(Ek+1; . . . ;El)

for every Ei ∈ B, k + 1 ≤ i ≤ l.

Theorem 2 Two stationary, weakly equivalent cylindrical measures coinci-
de.

Two stationary cylindrical measures such that: lim
k→∞
k≤l

Jk(Ψl; Ψ′l) = 0 are

either orthogonal or coincident.

Proof . The first assertion is obvious. Let (Ψk) and (Ψ′k) now be sati-
sfying the condition of the theorem. If the two measures are not orthogonal
lim
k→∞

ρ(Ψk; Ψk) > 0 and, from Lemma (1) their weak equivalence follows.

Thus if the two cylindrical measures are stationary the first part of the
theorem proves their coincidence, and this concludes the proof. In particular
the condition of theorem II is always satisfied when the two measures are
asymptotically independent (cfr. remark after Lemma (2)), and in this case
the thesis is a well known property of stationary, strongly mixing measures.

Definition 6 The cylindrical mesure (Ψk) on the product is said to be “semi–
stationary” if Ψk,k+1 = Ψ1. This, in the notation of 1) is equivalent to:

Ψk+1(Ω; . . . ; Ω;Ek+1) = Ψ1(Ek+1)

Every Markov chain with a stationary distribution induces a semi–stationary
cylindrical measure which is not, in general, stationary, unless the initial
Markov chain is homogeneous.

Corollary (2.3). If two semi–stationary cylindrical measures (Ψk) and
(Ψ′k) are weakly equivalent then ψ1 ≡ Ψ′1.
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4 An Application

Let Ω = {s1, . . . , sn} be a set containing n points. P(Ω) = B the family
of parts of Ω; (P(k))k∈N a sequence of n–dimensional stochastic matrices,
ta = (a1, . . . , an), a stochastic vector. It is well known (cfr. [11]) that the
Markov chain {(P(k)); a} induces on the product (Ω̂, B̂) a cylindrical measure
(Ψk) defined by the equalities

Ψk(sJ1 ; . . . ; sJk) = aJ1t
(1)
J1,J2

. . . t
(k−1)
Jk−1,Jk

sJi ∈ Ω ; (1 ≤ i ≤ k) ; P(k) = (t
(k)
i,J ) ; k ∈ N

In all the paragraph, with the term “Markov–chain” we shall always denote
a finite Markov chain with discrete time, and such that: t

(k)
i,J > 0; aJ > 0.

Lemma 5 Let {(P(k)); a} be a Markov chain. The cylindrical measure indu-

ced by it on the product (Ω̂, B̂) is semi–stationary if and only if taP(k) = ta;
for every k.

Proof . The sufficiency of the conditions is clear. Conversely, suppose
(Ψk) semi–stationary. Then:

Ψ2(Ω, E2) =
∑
J2∈E2

∑
J1∈Ω

aJ1t
(1)
J1,J2

= Ψ1(E2) =
∑
J2∈E2

aJ2

from the arbitrariness of E2 it follows that taP(1) = ta. Suppose taP(h) = ta
for 1 ≤ h ≤ k − 1, then

Ψk,k+1(Ek+1) =
∑

Jk+1∈Ek+1

(∑
Jk∈Ω

. . .
∑
J1∈Ω

aJ1 · t
(1)
J1,J2

. . . t
(k)
Jk,Jk+1

)
= Ψ1(Ek+1) =

∑
Jk+1∈Ek+1

aJk+1

the arbitrariness of Ek+1 and the inductive hypothesis yield taP(k) = ta
which ends the proof.

In particular we have the well known fact:
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Lemma 6 A Markov chain {(P(k)); a} induces a stationary cylindrical mea-

sure on the product (Ω̂, B̂) if and only if

taP(k) = ta ; ∀ k ∈ N (6)

P(k) = P ; ∀ k ∈ N (7)

(i.e., a Markov chain induces a stationary cylindrical measure if and only
if it is an homogeneous Markov chain with an invariant distribution in the
usual sense (cfr. [11]).

Both lemmata extend “verbatim” to the case of a continuous state space.

Lemma 7 The cylindrical measure induced by the Markov chain {(P(k)); a}
is asymptotically indpeendent if and only if

lim
k→∞
|t(k)
i,J − [taQ(k)]J | · [taQ(k)]i = 0

where Q(k) = P(1) · . . . · P(k), and [taQ(k)]J denotes the j–th component of
taQ(k).

Proof . Let (Ψk) be the cylindrical measure induced by {(P(k); a}. Then:

Ψk,l(sJk+1
, . . . , sJl) =

∑
J1,...,Jk∈Ω

aJ1t
(1)
J1,J2

. . . γ
(l−1)
Jl−1,Jl

Thus: dΨl

dΨk·Ψk,l
(s1, . . . , sl), has the expression

γ(k)∑
J1...Jk∈Ω

aJ1γ
(1)
J1,J2
· . . . · γ(k)

Jk,Jk+1

=
γ

(k)
Jk,Jk+1

[taQ(k)]Jk+1

From Lemma (1.4) and the preceding equality the condition of asymptotic
independence can be written, in this case

lim
k→∞

∑
i,J∈Ω

∣∣∣∣∣ γ
(k)
i,J

[taQ(k)]J
− 1

∣∣∣∣∣ ·Ψk−1,k(si) ·Ψk,k+1(sJ) = 0

which is equivalent to:

lim
k→∞
|γ(k)
i,J − [taQ(k)]J | · |[taQ(k)]i = 0

14



and this concludes the proof.
Corollary (3.4). The cylindrical measure induced by the Markov chain

{(P(k)); a} is semi–stationary and asymptotically independent if and only if

lim
k→∞

γ
(k)
i,J = aJ ; 1 ≤ i, J ≤ n

Proof . Immediate from Lemma (5) and (7).

Proposition 2 Let {(P(k)); a} be a Markov chain on. Then the following
assertions are equivalent:
[t1] The cylindrical measure induced by {(P(k)); a} on the product (Ω̂, B̂), is
asymptotically independent and stationary.
[t2] γ

(k)
i,J = aJ ; (1 ≤ i, J ≤ n), for every k.

[t3] The measure induced by {(P(k)); a} on the product (Ω̂, B̂) coincides with

the product mesure
∏t

N a.

Proof . Obviously [t3]→ [t1], thus it will be sufficient to prove [t1]→ [t2]
→ [t3]. For Lemma (6), [t1] implies P(k) = P .

Therefore the condition of Corollary (3.4) becomes γi,J = aJ : (1 ≤ i, J ≤
n) which is [t2].

Finally, if (Ψk) is the measure induced by {P, a}, [t2] implies ρ

(
Ψk;

k∏
1

ta

)
=

1, which is [t3] and the proof is completed.
From Proposition (2) one deduces a characterization of the family of mu-

tually orthogonal measures built by Kakutani [2]; Section 10). They are
exactly those measures which arise from stationary, asymptotically indepen-
dent, two–dimensional Markov chains. Consider, for example, the particular
case when Ω = {0, 1}; B = P(Ω) = the family of the parts of Ω; 0 < γ < 1;
0 < α < 1. Define

P =

(
1− γ γ
α 1− α

)
; ta =

(
α

α + γ
;

γ

α + p

)
; P(k) = P k

The Markov chain {P(k); a} satisfies the conditions of Lemmata (5) and

(??), therefore the cylindrical measure (Ψα,γ
k ) induced by it on (Ω̂, B̂) is

semi–stationary and asymptotically independent. Denote Ψα,β the measure
induced by (Ψα,β

k ).

From Lemma (1.1) and Corollary (2.3) it follows that lim
k→∞

ρ(Ψ
(α,β)
k ; Ψ

(β,q)
k )

can be > 0 only if α
α+β

= β
β+q

. Thus the family Ψα,β 0 < γ < 1; 0 < α < 1;
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contains a two parameter family of mutually orthogonal measures. From
Lemma (??), the product measures

∏t
N a correspond to the case Ψβ,1−β;

P(k) = P . Thus Ψα,β ⊥ Ψβ,1−s for β = α
α+β

.
With this class of measures one can built a two parameter family of

mutually orthogonal factor states of “Markov type” on uniformly hyperfinite
algebras, which reduce to the states considered by Powers in [6] when one
takes γ = 1− α.
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