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Abstract We review recent developments in the theory of quantum Mar-
kov states on the standard Zd–spin lattice. A Dobrushin theory for quantum
Markov fields is proposed. In the one–dimensional case where the order plays
a crucial role, the structure arising from a quantum Markov state is fully un-
derstood. In this situation we obtain a splitting of a Markov state into a
classical part, and a purely quantum part. This result allows us to provide
a reconstruction theorem for quantum Markov states on chains.
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tum Markov processes; Mathematical quantum statistical mechanics.

1 Introduction

The problem of introducing a notion of quantum Markov field, explicit enou-
gh to allow a quantum generalization of Dobrushin’s theory, has been open
for several years. Recent advances in the structure theory of Markov states
on chains ([3, 6]) have suggested a natural multi–dimensional generalization
of the notion of Markov state, see [4]. Such a notion has the advantage of
being entirely expressible in terms of Umegaki conditional expectations with
additional localization properties. This allows to formulate a quantum Do-
brushin theory for Markov fields which exactly parallels the classical theory,
at the basis of equilibrium statistical mechanics.

In the present paper we review recent developments in the theory of
quantum Markov states on the standard Zd–spin lattice.

In the one–dimensional case where the order plays a crucial role, the
structure arising from a quantum Markov state is fully understood. Follo-
wing previous results of [5, 6], a splitting of a Markov state into a classical
part, and a purely quantum part was obtained in [3]. This result allowed us
to provide a reconstruction theorem for quantum Markov states on chains.
Further, it emerged that the Markov property for a locally faithful state ϕ
on the spin algebra A on the chain, can be equivalently established through
properties of generalized conditional expectations defined in [2], which are
canonical objects intrinsically associated to the local structure of the quasi–
local algebra A, and the state ϕ under consideration. This was done by
discovering the existence of a very explicit nearest neighbour Hamiltonian
canonically associated to the Markov state ϕ, which generates on the quasi–
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local algebra A, a one–parameter group of automorphisms admitting ϕ as a
KMS–state.

Taking into account the suggestion emerging from one–dimensional mo-
dels, the intrinsic definition of the Markov property in terms of properties of
generalized conditional expectations, was the starting-point in [4], in order
to investigate the general multi–dimensional case. For these quantum Mar-
kov fields (i.e. quantum Markov processes with multi–dimensional indices),
deep connections with the KMS boundary condition, as well as phenomena
of phase transitions and symmetry breaking, naturally emerge, generalizing
the classical situation, see [10, 11, 12].

Every quantum Markov field is canonically associated to a (non–commutative)
potential. The problem to give a full reconstruction theorem for these poten-
tials remains still open. However, the conditions on the potential associated
to a Markov state, could be explicit enough to allow the construction of a
multiplicity of non trivial examples.

We conclude the introduction by recalling some standard definitions used
in the sequel.

We consider quasi–local algebras obtained in the following way. For each
j in an index set I, a finite–dimensional C∗–algebra M j is assigned and, for
each finite subset Λ ⊂ I, we define

AΛ := ⊗j∈ΛM
j

The quasi–local algebra A is the C∗–inductive limit associated to the
directed system {AΛ}Λ∈I with the natural embeddings

ιΛ,Λ̂ : AΛ ∈ AΛ → AΛ ⊗ IΛ̂\Λ ∈ AΛ̂ , Λ ⊂ Λ̂

In this situation we write

A := ⊗j∈IM j

where the infinite tensor product is defined w.r.t. the unique C∗–cross norm.
We often denote by ιΛ : AΛ 7→ A the canonical injection of AΛ into A and
refer to [8] for further details.

We associate a fixed bounded “boundary” ∂Λ ⊂ Λ′ to each bounded
region Λ, where Λ′ is the complement of Λ. In such a situation, we define

Λ := Λ ∪ ∂Λ
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and write Λ ⊂⊂ Λ̂ if Λ ⊂ Λ̂.
By a (Umegaki) conditional expectation E : A 7→ B ⊂ A we mean a

norm–one projection of the C∗–algebra A onto a C∗–subalgebra B with the
same identity. The map E is automatically a completely positive identity–
preserving B–bimodule map, see [20], Section 9. When A is a matrix algebra,
the structure of a conditional expectation is well–known, see [14], Proposition
2.2, together with [6], Lemma 3.1. Namely, suppose that A is a full matrix
algebra and consider the (finite) set {Pi} of minimal central projections of
the range B of E, we have

E(x) =
∑
i

E(PixPi)Pi

Then E is uniquely determined by its values on the reduced algebras

APi
:= PiAPi = Ni ⊗ N̄i

where Ni ∼ BPi and N̄i ∼ Pi(B
′ ∧ A)Pi. In fact, there exist states φi on N̄i

such that
E(Pi(a⊗ ā)Pi) = φi(ā)Pi(a⊗ I)Pi . (1)

Let N ⊂ M be an inclusion of von Neumann algebras equipped with a
normal faithful state on M . By the ϕ–conditional expectation we mean the
identity–preserving normal faithful completely positive map

Eϕ : M 7→ N

defined in [2]. Such a map preserves the state ϕ and seems to be the natu-
ral generalization of the concept of conditional expectation in the sense of
Umegaki, even if the former is not in general a norm–one projection.

Such a ϕ–conditional expectation is written as

πϕdN (Eϕ(a)) = JϕdNPϕdNJϕπϕ(a)JϕJϕdN

where the J are the Tomita antiunitary conjugations, and PϕdN ∈ πϕ(N)′ is
the cyclic projection relative to πϕ(N).

2 The quantum Markov property on the spin

algebra

The investigation of the quantum Markov property relies on the concept of ge-
neralized conditional expectation (denoted also by ϕ–conditional expectation
when the state ϕ is specified) firstly introduced in [2].
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Let A be the spin algebra on Zd given by

A := ⊗i∈ZdM i

where M i = Mk(C), a fixed full matrix algebra. Suppose we have a locally
faithful state ϕ on A with restrictions ϕΛ, Λ ⊂ Zd bounded, to local algebras
AΛ. Consider a pair Λ ⊂⊂ Λ̂ of bounded regions of Zd. Denote

E
ϕ

Λ̂

Λ̂\Λ
: AΛ̂ 7→ AΛ̂\Λ

the ϕΛ̂–conditional expectation relative to the inclusion AΛ̂\Λ ⊂ AΛ̂.

Definition 2.1 The locally faithful state ϕ ∈ S(A) is said to be a Markov

state if for every pair of regions Λ, Λ̂ as above, we have

AΛ̂\Λ ⊂ Fix(E
ϕ

Λ̂

Λ̂\Λ
) (2)

Condition (2) simply means that E
ϕ

Λ̂

Λ̂\Λ
acts trivially on the observables

localized in Λ̂\Λ.
It is of interest to formulate the quantum Markov property in terms of a

net of Umegaki conditional expectations which leave the state ϕ invariant.
This can be easily done for each finite–volume theory.

Namely, fix a large but bounded region Λ̂ and consider all the bounded
regions Λ with Λ ⊂⊂ Λ̂. Then, taking the ergodic averages of the ϕΛ̂–
conditional expectations (see [15] for the most general situation), we obtain
a set {EΛ̂\Λ}Λ⊂⊂Λ̂ of Umegaki conditional expectations as

EΛ̂\Λ := lim
n

1

n

n−1∑
k=0

(E
ϕ

Λ̂

Λ̂\Λ
)k (3)

By Theorem 5.1 of [2], such conditional expectations project onto the
largest expected subalgebras of AΛ̂\Λ, and leave invariant by constuction the

state ϕ. Moreover, by the Markov property (2), the EΛ̂\Λ factorize as

EΛ̂\Λ = EΛ̂\Λ ⊗ idA
Λ̂\Λ

(4)

where EΛ̂\Λ : AΛ̂ 7→ BΛ̂
∂Λ ⊂ A∂Λ is given by

EΛ̂\Λ := EΛ̂\ΛdAΛ

In order to understand the infinite–volume theory, one should investigate
the behavior of BΛ̂

∂Λ ≡ R(EΛ̂\Λ) as Λ̂ increases in order to exhaust oll of Zd.
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Theorem 1 (Theorem 3.3 of [4])
Let ϕ ∈ S(A) be a Markov state.

For each bounded region Λ ⊂ Zd there exists a Umegaki conditional
expectation EΛ′ on A, which projects into AΛ′.

Moreover, the net {EΛ′}Λ⊂Zd satisfies:

(i) EΛ′(AΛ) ⊂ A∂Λ,

(ii) EΛ′dA
Λ
′= idA

Λ
′ ,

(iii) ϕ ◦ EΛ′ = ϕ,

(iv) if Λ1 ⊂ Λ2 then
EΛ′2

EΛ′1
= EΛ′2

Proof 1 We report only a sketch of the proof given in [4]. By Theorem 5.1

of [2], it follows that the ranges BΛ̂
∂Λ of the EΛ̂\Λ give rise to a decreasing net

of subalgebras of A∂Λ, taking into account (4).

Namely, {EΛ̂\Λ}Λ̂⊃⊃Λ is a decreasing net of conditional expectations de-
fined on the full matrix algebra AΛ, which converges to a conditional ex-
pectation by a standard martingale convergence theorem, see [22], Theorem
3.

Denoting
EΛ′ := lim

Λ̂↑Zd

EΛ̂\Λ

the expectation EΛ′ projects onto1

B∂Λ :=
⋂

Λ̂⊂Zd

BΛ̂
∂Λ ⊂ A∂Λ

and gives rise to the searched conditional expectation

EΛ′ := EΛ′ ⊗ idA
Λ
′

The net {EΛ′}Λ⊂Zd is projective, and leaves by construction the state ϕ
invariant.

1The Umegaki conditional expectations {EΛ′} are called sometimes transition
expectations.
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In order to investigate the converse of Theorem 1, we consider the po-
tential associated to a locally faithful state ϕ consistent with a net {EΛ′} of
conditional expectations as that in Theorem 1.

Suppose we have a locally faithful state on the quasi–local algebra A, then
a selfadjoint operator hΛ ∈ AΛ is canonically defined for each finite subset
Λ ⊂ Zd as

ϕΛ = TrAΛ
(e−hΛ · ) (5)

The potential {hΛ}Λ⊂Zd satisfies standard normalization conditions, to-
gether with compatibility conditions. In addition, if the state ϕ is consi-
stent with a net {EΛ′}Λ⊂Zd of conditional expectations as that in Theorem 1,
then the potential satisfies some nice commutation relations. For example,
if Λ ⊂⊂ Λ̂ are bounded regions, then

hΛ̂ = HΛ̂\Λ +KΛ ,

hΛ̂\Λ = HΛ̂\Λ +M∂Λ (6)

for selfadjoint operators HΛ̂\Λ ∈ AΛ̂\Λ, KΛ ∈ AΛ, and M∂Λ ∈ A∂Λ. Further,
the above operators satisfy the following commutation relations

[HΛ̂\Λ, KΛ] = [HΛ̂\Λ,M∂Λ] = 0 (7)

see [4], Lemma 4.1.
Now we are in position to give the converse of Theorem 1.

Theorem 2 (Theorem 4.2 of [4])
Let be given a locally faithful state ϕ ∈ S(A), together with a net {EΛ′}Λ∈F of

Umegaki conditional expectations satisfying conditions (i)–(iii) of Theorem
1.

Then ϕ is a Markov state in the sense of Definition 2.1.

Proof 2 The proof easily follows from (6), (7). Namely, we have for the
ϕΛ̂–conditional expectation,

E
ϕ

Λ̂

Λ̂\Λ
(A) = (idA

Λ̂\Λ
⊗ TrAΛ

)(k∗
Λ̂,Λ
AkΛ̂,Λ)

where kΛ̂,Λ is the transition operator given by

kΛ̂,Λ = e−
1
2
h

Λ̂e
1
2
h

Λ̂\Λ

Thus, in our situation we get

kΛ̂,Λ = e−
1
2
KΛe

1
2
M∂Λ ∈ AΛ

that is E
ϕ

Λ̂

Λ̂\Λ
acts as the identity on AΛ̂\Λ.
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3 The relation with statistical mechanics

We start with a Markov state ϕ on the quasi–local algebra A. The potential
{hΛ}Λ⊂Zd associated to ϕ by (5) satisfies nice properties like those given

in (6), (7). This allows us to check that, w.r.t. the order Λ ⊂⊂ Λ̂, the
pointwise–norm limit

αt(a) := lim
Λ↑Zd

e−ithΛaeithΛ (8)

exists and defines a strongly continuous one–parameter automorphisms group
of A. By constuction, ϕ is automatically a KMS state for αt (i.e. a KMS
state at inverse temperature β = −1). In addition, ϕ is faithful, see [4],
Section 5.

The disintegration theory of states which are invariant w.r.t. a net of
conditional expectations which act locally, was developed in [1]. For such a
disintegration, one should start by considering the natural extensions εϕΛ′ of
the Eϕ

Λ′ to all of πϕ(A)′′ given by

εϕΛ′ := EΛ′ ⊗ idπϕ(A
Λ
′ )′′

The projections {eϕΛ′}Λ⊂Zd are then the cyclic projections relative to the
ranges R(εϕΛ′) of the εϕΛ′ . The orthogonal measure ([19], Section 3) correspon-
ding to such a disintegration is precisely the {πϕ(A), {eϕΛ′}}

′–measure, see [1],
Theorem 3.2.

In addition, a Markov state ϕ is also a KMS state, then one can use
standard results relative to the disintegration of a KMS state into states de-
scribing pure phases, see e.g. [9]. The main result is that both disintegrations
coincide. Namely, in the situation under consideration we have

Z⊥ϕ = {πϕ(A), {eϕΛ′}}
′ = Zϕ

where, for Λ bounded,

Z⊥ϕ :=
∧

Λ⊂Zd

πϕ(AΛ′)
′′

is the algebra at infinity, and

Zϕ := πϕ(A)′ ∧ πϕ(A)′′

is the centre of the GNS representation of the state ϕ.
We collect the main properties of a Markov state in the following
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Theorem 3 (Theorem 5.4 of [4])
Let ϕ ∈ S(A) be a Markov state.

(i) The state ϕ is a {αt}–KMS state, where αt is the automorphisms group
given in (8),

(ii) the state ϕ admits a disintegration

ϕ =

∫
S(A)

ψµ(dψ) (9)

where the measure µ is concentrated on the factor states of A,

(iii) Almost all ψ appearing in (9) are {αt}–KMS states, and Markov states
in the sense of Definition 2.1.

To conclude, we shortly describe the possible appearence of the well-
known phenomenon of symmetry breaking. In order to do this, we consider
translationally invariant Markov states.

Let τx : A 7→ A be the shift generated in a natural way on the spin
algebra by the translation x ∈ Zd, and consider a Markov state ϕ ∈ S(A)
invariant w.r.t. {τx}x∈Zd . One easily verifies that the generalized conditional
expectations associated to the restrictions of ϕ satisfy

E
ϕ

Λ̂

Λ̂\Λ
= τ−1

x ◦ E
ϕ

Λ̂+x

Λ̂+x\Λ+x
◦ τx , (10)

which yields for the corresponding Umegaki conditional expectations given
in Theorem 1,

EΛ′ = τ−1
x ◦ EΛ′+x ◦ τx (11)

Consider the dual action {Tx}x∈Zd on the state space of A. It is straight-
forward to verify that Tx maps the set SE ⊂ S(A) of all {EΛ′}–invariant
states into itself, leaving globally stable the set ∂SE of its extremal states.
We easily conclude by the uniqueness of the maximal measure ([7], Theorem
II.3.6), that Tx preserves the measure µ given in (9):

µ ◦ Tx = µ .

We then have a measure–preserving Zd–action x 7→ Tx on the state space
S(A) of A.
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Fix our attention on an ergodic component m of the ergodic disintegration

µ =

∫
mν(dm)

of the measure µ.2 If the standard measure space (S(A),m) is essentially
transitive for the action of Zd (that is when m is concentrated on a single
orbit), then the Zd–space (S(A),m) is similar to the Zd–space (Zd/H, λ)
based on the homogeneous space Zd/H, see [17], Theorem 4.12 (see [16] for
the original result). Here H ⊂ Zd is a subgroup of Zd, and λ is a probability
measure equivalent to the Haar measure on the Abelian group Zd/H.

In the {EΛ′}–extremal disintegration of a {τx}–invariant Markov state ϕ,
states with a smaller symmetry might occur. In our example, the surviving
symmetry group is precisely the subgroup H ⊂ Zd. This is an instance of
the phenomenon of symmetry breaking, see e.g. [8, 9, 18] for quite similar
situations and for technical details.

4 Markov states on non homogeneous chains:

general properties

General properties of quantum Markov states were firstly investigated for
one–dimensional models where the order plays a crucial role. Recently, taking
into account results contained in [5, 6], the emerging structure has been fully
understood, see [3]. Here we report the main results relative to quantum
Markov states on chains.

We start by considering a totally ordered countable discrete set I contai-
ning, possibly a smallest element j− and/or a greatest element j+. Namely,
if I contains neither j−, nor j+, then I ∼ Z. If just j+ ∈ I, then I ∼ Z−,
whereas if only j− ∈ I, then I ∼ Z+. Finally, if both j− and j+ belong to I,
then I is a finite set and the analysis becomes easier. If I is order–isomorphic
to Z, Z− or Z+, we put simbolically j− and/or j+ equal to −∞ and/or +∞
respectively. In such a way, the objects with indices j− and j+ will be missing
in the computations. The bounded sets Λk,j := [k, j] assume a fundamental
role in the sequel.

2The ergodic disintegration of the measure µ corresponds to the direct–integral di-
sintegration ([21], Theorem 8.21) of the von Neumann algebra L∞(S(A), µ) w.r.t. the
fixed–point subalgebra relative to the natural Zd–action on L∞(S(A), µ).
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In this situation, the spin algebra is the quasi–local algebra A obtained by
the infinite C∗–tensor product of full matrix algebras {M j}j∈I with possibly
different dimensions:

M j := Mkj(C) .

Notice that the present situation naturally arises from the previous one
when we restrict ourselves to any increasing sequence of bounded regions
{Γk}k∈N of Zd satisfying

Γk+1 = Γk

and exhausting all of Zd: ⋃
k∈N

Γk = Zd

We have,
M j = AΓ−k\Γ−k−1

and I ∼ Z− .3
We start with a locally faithful state ϕ on the quasi–local algebra A.

Denote
E
ϕΛk,l+1

Λk,l
: AΛk,l+1

7→ AΛk,l

the ϕΛk,l+1
–conditional expectation relative to the inclusion AΛk,l

⊂ AΛk,l+1
,

k ≤ l.

Definition 4.1 The locally faithful state ϕ ∈ S(A) is said to be a Markov
state on the chain if for every k, l ∈ I with k ≤ l, we have

AΛk,l−1
⊂ Fix(E

ϕΛk,l+1

Λk,l
) (12)

Also in this situation, we can find a net of Umegaki conditional expec-
tations which act locally, and leave fixed the Markov state ϕ. This can be
done by recovering a very explicit structure of the potential associated to ϕ.

Theorem 4 (Theorem 5.1 of [3])
Let ϕ ∈ S(A) be locally faithful.

Then the following assertions are equivalent.

(i) ϕ is a Markov state on the chain.

3According to the previous literature ([5, 6]), we are using the reverse order.
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(ii) For each k ≤ l, the potential {hΛk,l
} associated to ϕ by (5), can be

recovered by

hΛk,l
= Hk +

l−1∑
j=k

Hj,j+1 + Ĥl (13)

from sequences {Hj}j−≤j≤j+, {Ĥj}j−≤j≤j+ and {Hj,j+1}j−≤j<j+ of sel-
fadjoint operators localized in AΛj,j

and AΛj,j+1
respectively. Such se-

quences satisfy the commutation relations

[Hj, Hj,j+1] = 0,

[Hj,j+1, Ĥj+1] = 0 ,

[Hj, Ĥj] = 0, [Hj,j+1, Hj+1,j+2] = 0

(iii) For every k ≤ l ≤ j there exists a sequence of Umegaki conditional
expectations {Ek,j} defined on the algebras {AΛk,j+1

}. Such a sequence
satisfies

Ek,j(AΛk,j+1
) ⊂ AΛk,j

,

Ek,jdAΛk,j−1
= idAΛk,j−1

,

Ek,jdAΛl,j
= El,j

and leaves invariant the state ϕ:

ϕΛk,j
◦ Ek,j = ϕΛk,j+1

The proof of the last theorem parallels those of Theorem 1 and Theorem
2. We refer the reader to [3] for details.

For one–dimensional models, the connection with statistical mechanics is
fully clarified. Namely, the Markov property for a locally faithful state ϕ is
characterized by the existence of a very explicit nearest neighbour Hamil-
tonian (13) canonically associated to ϕ. Such a potential generates a one–
parameter group of automorphisms of the quasi–local algebra A, admitting
ϕ as a KMS–state, see [3], Theorem 5.3.

From {Ek,l}, we recover a sequence {E j}j−≤j<j+ of transition expectations

E j : M j ⊗M j+1 7→ R(E j) ⊂M j
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Namely,
Ek,j = idAΛk,j−1

⊗ E j (14)

where
E j = Ek,jdAΛj,j+1

It is straightforward to show that such transition expectations satisfy4

E j−1(A⊗B) = E j−1(A⊗ E j(B ⊗ I)) j− < j < j+ (15)

Finally, we remark that also the last situation can be fitted into quan-
tum Markov processes on directed sets. Namely, the directed set is precisely
{Λk,l}j−<k≤l<j+ , with boundary

∂Λk,l = Λk−1,k−1 ∪ Λl+1,l+1

5 The structure of Markov states on chains:

a reconstuction theorem

We start by studying the structure of Markov states on chains. This can be
done by using the explicit description of Umegaki conditional expectations
on matrix algebras. In such a way, we obtain a disintegration of a Markov
state into “elementary Markov states” in a sense we are going to explain.

In order to treat also the most general case of non locally faithful states,
only in the present section we adopt the following definition for quantum
Markov states on chains.

Definition 5.1 Let ϕ ∈ S(A). The state ϕ is said to be a Markov state if ϕ
satisfies condition (iii) of Theorem 4, for some sequence {Ek,l}j−≤k≤l≤j+ of
Umegaki conditional expectations.

As the sequence {Ek,l} determines and is determined by a sequence of
transition expectations {E j} as in (14), we speak about the Markov property
w.r.t. the sequence {E j}.

Let ϕ be a Markov state on the quasi–local algebra A w.r.t. the sequence
{E j}j−≤j<j+ of transition expectations. We consider the centre Zj, with

4In the most general case of non locally faithful states considered in the next section,
relations (15) could be not satisfied in general.
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spectrum Ωj, of the range R(E j) of E j, together with the generating family
{P j

ωj
}ωj∈Ωj

of atomic projections. We set

Bj := ⊕ωj∈Ωj
P j
ωj
M jP j

ωj

and define
B :=

(
⊗j−≤j<j+Bj

)
⊗M j+ (16)

Then we obtain in a canonical way, a conditional expectation

E : A 7→ B

defined to be the (infinite) tensor product of the following conditional expec-
tations

a ∈M j 7→
∑
ωj∈Ωj

P j
ωj
aP j

ωj
(17)

together with the identity map on M j+ . The reduced algebra

M j

P j
ωj

≡ P j
ωj
M jP j

ωj

can be written as
M j

P j
ωj

= N j
ωj
⊗ N̄ j

ωj
(18)

with N j
ωj

and N̄ j
ωj

all finite–dimensional factors. Again, the states φjωj
on

N̄ j
ωj
⊗M j+1 are uniquely recovered by the transition expectation E j according

to Formula (1).
Following [6], we can recover

a classical Markov process on the compact space

Ω :=
∏

j−≤j<j+

Ωj (19)

whose law µ is uniquely determined by the initial distribution and transition
probabilities given respectively by

πj−ωj−
:= ϕ(ιΛj−,j−

(P j−
ωj−

)) (20)

πjωj ,ωj+1
:= φjωj

(I ⊗ P j+1
ωj+1

)

The measure space (Ω, µ) is obtained as the projective limit of compatible
measure spaces {(ΩΛ, µΛ)}Λ⊂I , we denote by qΛ : Ω 7→ ΩΛ the canonical
projection of Ω onto ΩΛ.
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Let Ω0 ⊂ Ω be the set consisting of those ω ∈ Ω such that all πjqΛj,j
(ω)

together with πjqΛj,j
(ω),qΛj+1,j+1

(ω) are nonvanishing. the set Ω0 is a measurable

set of full µ–measure.
Consider, for each ω ∈ Ω, the (infinite) tensor product Bω given by

Bω := (⊗j−≤j<j+M
j

P j
ωj

)⊗M j+ (21)

≡ N j−
ωj−
⊗ (⊗j−≤j<j+−1(N̄ j

ωj
⊗N j+1

ωj+1
))⊗ (N̄ j+−1

ωj+−1
⊗M j+)

A completely positive identity–preserving map Eω : A 7→ Bω is uniquely
defined as the (infinite) tensor product of the maps

a ∈M j 7→ P j
qΛj,j

(ω)aP
j
qΛj,j

(ω) (22)

together with the identity map on M j+ . We have trivially

Eω ◦ E = Eω (23)

where E is obtained by the (infinite) tensor product of the maps given in
(17).

Denoting (with an abuse of notation) by ωj the canonical projection
qΛj,j

(ω) of ω in Ωj, we further recover for ω ∈ Ω0

states ψω on Bω given by

ψω :=η
j−
qΛj−,j−

(ω)⊗(⊗j−≤j<j+−1η
j
qΛj,j

(ω),qΛj+1,j+1
(ω))⊗η

j+−1
qΛj+−1,j+−1

(ω) (24)

determined by the initial distribution, which is the state on N j−
ωj−

given by

ηj−ωj−
(a) :=

ϕ(ιΛj−,j−
(P j−

ωj−
(a⊗ I)P j−

ωj−
))

π
j−
ωj−

(25)

by the states ηjωj ,ωj+1
on N̄ j

ωj
⊗N j+1

ωj+1
, given by

ηjωj ,ωj+1
(ā⊗ b) :=

φjωj
(ā⊗ P j+1

ωj+1
(b⊗ I)P j+1

ωj+1
)

πjωj ,ωj+1

(26)

and by the final distribution which is the state on N̄ j+−1
ωj+−1

⊗M j+ given by

ηj+−1
ωj+−1

(ā⊗B) := φj+−1
ωj+−1

(ā⊗B) (27)
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Finally, we recover
a sequence {Eωj}j−≤j<j+ of conditional expectations

Eωj : M j

P j
ωj

⊗M j+1

P j+1
ωj+1

7→M j

P j
ωj

,

Eωj+−1 : M
j+−1

P
j+−1
ωj+−1

⊗M j+ 7→M
j+−1

P
j+−1
ωj+−1

given by

Eωj((a⊗ ā)⊗ (b⊗ b̄)) = ηjωj ,ωj+1
(ā⊗ b)ηj+1

ωj+1,ωj+2
(b̄⊗ I)a⊗ I ,

Eωj+−1((a⊗ ā)⊗B) = ηj+−1
ωj+−1

(ā⊗B)a⊗ I (28)

It is easy to verify that the states ψω, ω ∈ Ω0, are Markov states on Bω

w.r.t {Eωj}j−≤j<j+ given by (28), respectively. Further, the map

ω ∈ Ω0 7→ ψω ◦ Eω ∈ S(A)

is σ(A∗,A)–measurable.
We are ready to report the announced result concerning the disintegration

of a Markov state into elementary Markov states which are minimal in the
sense that the ranges of the associated transition expectations have a trivial
centre.

Theorem 5 (Theorem 3.2 of [3])
Let ϕ be a Markov state on the quasi–local algebra A w.r.t. the sequence
{Ej}j−≤j<j+ of transition expectations.

Define the set Ω by (19); the probability measure µ on Ω, by (20); the
quasi–local algebra Bω by (21), the map Eω by the projections (22); the state
ψω on Bω by (24).

Then ϕ admits a disintegration

ϕ =

∫
Ω

ϕωµ(dω) (29)

where ω ∈ Ω 7→ ϕω ∈ S(A) is a σ(A∗,A)–measurable map satisfying, for
µ–almost all ω ∈ Ω,

ϕω = ψω ◦ Eω

17



The proof of the above theorem relies on standard techniques of the theory
of direct–integral decomposition of representations of C∗–algebras. Such a
proof can be found in [3].

Notice that the GNS representations πϕω of ϕω give rise to von Neumann
factors. The proof of the last assertion follows from [8], Theorem 2.6.10.
Further, the disintegration (29), even if it is made of factor states, does not
correspond to the central disintegration given in Theorem 3.

The following theorem is the converse of Theorem 5 and can be also
regarded as a reconstruction result for quantum Markov states on chains.

Consider for j− ≤ j < j+, a sequence Zj of commutative subalgebras
of M j with spectra Ωj and generators {P j

ωj
}ωj∈Ωj

; a Markov process on the
product space

Ω :=
∏

j−≤j<j+

Ωj

with law µ determined, for ωj ∈ Ωj, ωj+1 ∈ Ωj+1, by all marginal distribu-
tions πjωj

, and all transition probabilities πjωj ,ωj+1
.

For ωj ∈ Ωj such that πjωj
> 0, fix a splitting as (18)

M j

P j
ωj

= N j
ωj
⊗ N̄ j

ωj

by finite–dimensional factors.
For ωj− ∈ Ωj− such that πj−ωj−

> 0, choose a initial distribution ηj−ωj−
on

N j−
ωj−

.

For each pair (ωj, ωj+1) ∈ Ωj × Ωj+1 such that πjωj ,ωj+1
> 0, consider a

state ηjωj ,ωj+1
on N̄ j

ωj
⊗N j+1

ωj+1
.

For ωj+−1 ∈ Ωj+−1 such that πj+−1
ωj+−1

> 0, consider a final distribution

ηj+−1
ωj+−1

on N j+−1
ωj+−1

⊗M j+ .

Then, on the measurable set Ω0 of full µ–measure consisting of sequences
ω such that all the πjqΛj,j

(ω), and πjqΛj,j
(ω),qΛj+1,j+1

(ω) are nonvanishing, the

state ψω in (24) is a well–defined Markov state on the quasi–local algebra
Bω given in (21) w.r.t. the sequence {Eωj}j−≤j<j+ of transition expectations
(28). Finally, defining Eω : A 7→ Bω by (22), the map

ω ∈ Ω0 7→ ψω ◦ Eω =: ϕω ∈ S(A) (30)

is σ(A∗,A)–measurable.

18



Theorem 6 (Theorem 4.1 of [3])
Let ϕω be the measurable field on S(A) given by (30).

Then the state ϕ on A given by

ϕ :=

∫
Ω0

ϕωµ(dω)

is a Markov state w.r.t. any sequence {E j}j−≤j<j+ of transition expectations
with Z(R(E j)) = Zj, determined according to (1), by states φjωj

satisfying,
for each j− ≤ j < j+ and ωj ∈ Ωj,

πjωj
φjωj

(ā⊗ P j+1
ωj+1

(b⊗ b̄)P j+1
ωj+1

)

=
∑

ωj+2
πjωj

πjωj ,ωj+1
πj+1
ωj+1,ωj+2

ηjωj ,ωj+1
(ā⊗ b)ηj+1

ωj+1,ωj+2
(b̄⊗ I) ,

πj+−2
ωj+−2

φj+−2
ωj+−2

(ā⊗ P j+−1
ωj+−1

(b⊗ b̄)P j+−1
ωj+−1

) (31)

= πj+−2
ωj+−2

πj+−2
ωj+−2,ωj+−1

ηj+−2
ωj+−2,ωj+−1

(ā⊗ b)ηj+−1
ωj+−1

(b̄⊗ I) ,

πj+−1
ωj+−1

φj+−1
ωj+−1

(ā⊗B)

= πj+−1
ωj+−1

ηj+−1
ωj+−1

(ā⊗B)

The proof of the last theorem consists in showing that the state ϕ is a
Markov state w.r.t. any sequence of transition expectations {E j} constucted
by (1), taking into account (31). The reader is referred to [3] for the complete
proof.

6 Quantum Markov states on general quasi–

local algebras

The investigation of the quantum Markov property for multi–dimensional
spin systems suggests us the natural definition for Markov states on general
quasi–local algebras.

A quasi–local algebra ([8], Definition 2.6.3) is a C∗–algebra A obtained
by the C∗–inductive limit of a net {Aα}α∈A of C∗–subalgebras with the same
identity. The directed set A has also an orthogonality relation ⊥ such that

[Aα,Aβ] = {0}, α ⊥ β (32)

For each α ∈ A, one can define

Aα′ :=
∨
β⊥α

Aβ
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where the bar denotes the uniform closure.
In the previous situations, A =

{
Λ ⊂ Zd, Λ bounded

}
and Λ1 ⊥ Λ2 if

Λ1 ∩ Λ2 = ∅.
This general situation covers also cases arising from Quantum Field Theo-

ry where the α consist of bounded regions of physical space–time, and the
orthogonality relation ⊥ describes Einstein causality, see e.g. [13]. Further,
the commutation relations (32) can be suitably replaced in order to include
Fermion algebras, or field algebras with different commutation relations.

We are ready to give the definition of the quantum Markov property for
the general situation of quasi–local algebras.5

Let A be a quasi–local algebra together with the local filtration {Aα}α∈A
as above. Suppose that for each α ∈ A, another index ᾱ ∈ A is assigned with
α ≺ ᾱ.

Definition 6.1 A state ϕ ∈ S(A) is said to be a Markov state if there exists
a filtration 6 {Bα′}α∈A of C∗–subalgebras of A such that

Aᾱ′ ⊂ Bα′ ⊂ Aα′

together with a projective net {Eα′}α∈A of Umegaki conditional expectations
such that

(i) Eα′ : A 7→ Bα′,

(ii) ϕ ◦ Eα′ = ϕ.

We conclude by noticing that, in order to recover the expected filtration
{Bα′ , Eα′}α∈A by more manageable properties, we need additional conditions
on the quasi–local algebra A, as well as on the state ϕ under consideration.
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