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The weak coupling limit without rotating wave

approximation

L. ACCARDI Y. G. LU(*)
Centro Matematico V. Volterra,

Dipartimento di Matematica, Universita di Roma II, Italy

Ann. Henri Poincaré, ’

Vol.54,n°4,1991, Physique theorique

ABSTRACT. - We investigate the behaviour, in the weak coupling limit,
of a system interacting with a Boson reservoir without assuming the
rotating wave approximation, i. e. we allow the system Hamiltonian to
have a finite set of charactristic frequencies rather than a single one
[cf equation (1.4)]. Our main result is the proof that the weak coupling
limit of the matrix elements with respect to suitable collective vectors of
the solution of the Schrodinger equation in interaction representation (i. e.
the wave operator at time t) exists and is the solution of a quantum
stochastic differential equation driven by a family of independent quantum
Brownian motions, one for each characteristic frequency of the system
Hamiltonian.

RESUME. - Nous etudions Ie comportement dans la limite de couplage
faible d’un systeme interagissant avec un reservoir de bosons sans supposer
1’approximation d’onde tournante, c’est-a-dire que nous permettons a
l’hamiltonien du systeme d’avoir plusieurs frequences caracteristiques au
lieu d’une seule equation (1.4)]. Notre resultat principal est une

preuve de 1’existence de la limite de couplage faible des elements de matrice
par rapport a certains vecteurs collectifs de la solution de 1’equation de
Schrodinger dans la representation interaction (c’est-a-dire de l’opérateur
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436 L. ACCARDI AND Y. G. LU

d’onde a 1’instant t). De plus cette limite est solution d’une equation
differentielle stochastique contenant une famille de mouvements browniens
quantiques independants, un par frequence caracteristique de 1’hamil-
tonien.

1. INTRODUCTION

The attempt to produce a satisfactory quantum description of irrevers-
ible phenomena has motivated many investigations. In the last 30 years
these investigations have produced a number of interesting models, but
the theoretical status of these models has remained, for a long time,
uncertain and even (in some cases) contradictory [14]. The standard

approach to the problem is the following: one starts from a quantum
system coupled to a reservoir (or heat bath, or noise - according to the
interpretations). The reservoir is physically distinguished by the system
because its time correlations decay much faster and one expects that, by
the effect of the interaction, and in some limiting situations some energy
will flow irreversibly from the system to the reservoir. One of the best
known, among these limiting situations, is the so-called van Hove (or
weak coupling) limit, in which the strength of the coupling system-reservoir
is given by a constant ~, and one studies the average values of the
observables of the system, evolved up to time t with the coupled Heisen-
berg evolution of the system + reservoir, in the limit ~, ---+ 0, ~,2 t -+ ’t as

Â ---+ 0. This limiting procedure singles out the long time cumulative beha-
viour of the observables and the weakness of the coupling implies, in the
limit, an effect of lost of memory (Markovian approximation).

In a first stage of development of this approach one only considered
averages with respect to the Fock vacuum or to a fixed thermal state.
This limitation has the effect of sweeping away, in the limit, all the terms
of the iterated series except those which, in the Wick ordering procedure,
correspond to the scalar terms. The resulting reduced evolution was a
quantum Markovian semigroup and the corresponding equation - a quan-
tum master equation (cf [6], [7], [8], [ 11 ]).

Independently of these developments, and on a less rigorous mathemati-
cal level, the notion of quantum Brownian motion emerged from investiga-
tions of quantum optics, especially in connection with laser theory and,
with the work of Hudson an Parthasarathy this notion was brought ot its
full power with the construction of the quantum stochastic calculus for
the Fock Brownian motion [13].

Annales de l’Institut Henri Poincaré - Physique theorique



437THE WEAK COUPLING LIMIT

The new idea of quantum stochastic calculus is that one does not limit
oneself to the reduced evolution (i. e. the master equation) but one con-
siders the noise (quantum Brownian motion) as an idealized reservoir and
one studies the coupled evolution of the system coupled to the noise.
This evolution is not a standard quantum mechanical one, because it is not
described by the usual Heisenberg equation, but by a quantum stochastic
differential equation, called the quantum Langevin equation.
The physical importance of this more complete description has been

pointed out by many authors and, from an intuitive point of view is quite
clear: if the noise is looked at as an approximate description of the
reservoir field (or gas), then in order to extract experimental information
on the coupled system, one can choose to measure either the system or
the reservoir, while in the previous approach one could only predict the
behavior of the observables of the system ([9], [ 10]).

In order to put to effective use this new connection with the experimental
evidence, a last step had to be accomplished: to prove the internal coherence
of this picture. This means essentially two things:

(i) to explain precisely in which sense the quantum Brownian motions
are approxiamtions of the quantum fields (or of Boson or Fermion gases
at a given temperature);

(ii ) to explain precisely in which sense a quantum stochastic differential
equation is an approximation of a ordinary Hamiltonian equation.
Once answered the questions (i) and (ii), all the previous results on the

master equation follow easily applying a (by now standard) quantum
probabilistic technique - the quantum Feynman-Kac formula (cf [0]).

In a series of papers [ 1 ], ..., [5] (cf also [ 12], for more recent results),
we have solved the problems (i ) and (ii ) in a variety of models which
include the most frequently used models in quantum optics.
The present paper points out two qualitatively new phenomena which

arise when there are several characteristic frequencies in the original
system:

(i ) In the limit, not a single quantum Brownian motion arises, but
several independent and mutually non isomorphic ones: one for each
frequency of the system.

(ii ) The collective vectors suitable to evidentiate the weak coupling
behavior, in this case are not the same as in previous papers. This suggests
the appearence of a interesting new phenomenon, namely: that the chioce
of the correct collective vectors needed to evidentiate the weak coupling
limit behaviour should depend on the form of the interaction. We expect
this new phenomenon to play an important part in the study of macro-
scopic, i. e. collective, quantum effects.
A natural extrapolation of our result to the case of continuous spectrum,

leads to conjecture that in this case one should have a continuous tensor

Vol. 54, n° 4-1991.
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product of quantum Brownian motions labeled by the energy spectrum of
the original system. However it is not clear to us how to adapt the
techniques developed so far to the case of a system with continuous
spectrum.

Let us now fix the notations and state our basic assumptions.
We consider a quantum "System + Reservoir" model. Let Ho be the

system Hilbert space; H 1 the one particle reservoir Hilbert space; Hs
the system Hamiltinian; HR = ( - A) where A is a negative self-adjoint
operator - the one particle reservoir Hamiltonian - and S~:=~~. The
total space is

where r (H1) is the Fock space over H1 and the total Hamiltonian is

where,

D is a bounded operator on Ho and gEH1.
The rotating wave approximation corresponds to the two following

assumptions:
(i ) in the interaction there are no terms of the form or

(ii ) D is an eigenvector of the free evolution of the system, i. e.

In [6], condition ( 1. 3) is replaced by the following weaker condition: Hs
has pure non-degenerate discrete spectrum and the system Hilbert space
is finite dimensional. This assumption implies that

where the Dd (d =1, ..., N) are bounded operators on Ho and 
for In the present paper, we shall prove that if condition (1. 3) is
replaced by condition ( 1. 4), then all the results of [2] are still valid with
the only difference that the resulting quantum stochastic defferential equa-
tion is driven not by a single quantum Brownian motion, but by N-
independent ones [in the sense of Definition ( 1.1 )] . The reason of the
appearance of these N-independent Brownian motions is explained in
Section 2.

Now let H(0) = H(Î..) - Â V = Hs~1 + 1 8&#x3E;HR, then the operator

Annales de Henri Poincare - Physique - theorique -



439THE WEAK COUPLING LIMIT

satisfies the equation

where

In the following, we shall use the notation

where,

and

In our assumptions, the iterated series

converges weakly on the domain of vectors of the form where uEHo
and 03C8 is a coherent vector in r (H1).

In order to formulate our results we have to introduce the notion of

N-independent Boson Brownian motions.

DEFINITION ( 1.1 ). - Let K1, ..., KN be Hilbert spaces and let, for
each d= l, ..., N, be given a self-adjoint operator Qd~1 on Kd. The
process of N-independent Boson Brownian motions, respectively with
values in K1, ..., KN and covariances Q1’ ... , QN is the process obtained
by taking the tensor product of the Qd-quantum Brownian motions on

L 2 (R, dt; Kd)

(cf Def. (2 . 3) of [2]) for d =1, ..., N. In other terms this is the cyclic
quasi-free representation W of the CCR on

Vol. 54, n° 4-1991.
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with respect to the state cp characterized by

If

then we speak of N-independent Boson Fock Brownian motions.
The Hilbert space where this representation lives is the tensor product

of the spaces Je (d= 1, ..., N). Denoting

the annihilation and creation operators acting on the d-th factor of the
tensor product, one often uses the unbounded form of the quantum
Brownian motion process given by the pair of operators

All these operators are defined on the domain of the vectors

Where xd E L2 (R), fd E Kd and is the cyclic vector of the representation
WQ,.
As in [2], we shall suppose that there exists a non-zero subspace KcH1,

such that

This condition implies that, for each d=1, ... , N, the sesquilinear form

[where S~ is defined by ( 1.11 )] defines a pre-scalar product on K. In the
following, for each d=1, ..., N, Kd shall denote the Hilbert space comple-
tion of the quotient space of K for ( . ~ . )d-null space.
With these notations we can state our main result:

Annales de Henri Poincaré - Physique theorique



441THE WEAK COUPLING LIMIT

t ~ 0, u, v E Ho, the limit as À, ~ 0 of the matrix element

exists and, in the notation (1.16), is equal to

where, U (t) is the solution of the quantum stochastic differential equation

and Ad (s, g) is given by ( 1.15).
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2. THE CONVERGENCE OF THE RESERVOIR PROCESS

In this section, we prove the convergence of the reservoir process to
a N-independent quantum Brownian motion. This corresponds to the

convergence of the 0-th order term of ( 1.13) in the series expansion ( 1.12).
The following result generalizes Lemma (3.2) of [2]:

Vol. 54, n° 4-1991.
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By the Riemann-Lebesgue Lemma, one gets

and this ends the proof.
The following lemma shows in which sence the "collective Hamiltonian

process" converges to N-independent quantum Brownian motion.

Annales de l’Institut Henri Poincaré - Physique theorique
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exists uniformly , for {x(k)d}1~d~N,1~k~n, {S(k)d, T(k)d}1~d~N,1~k~n Zn a

bounded set 0 R ’ and ’ is e ual to

Vol. 54, n" 4-1991.
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and obviously, the convergence is uniform for

3. THE WEAK COUPLING LIMIT

The strategy of the proofs in the section is similar to that applied in
[2], therefore we shall only outline the proofs, giving the full details only
of those statements which are qualitatively different from the correspond-
ing ones in [2].

First of all, in analogy with Lemma (4 .1 ) of [2], we have the following

can be written as a sum of two types of terms (called terms of type I and of

with

de l’Institut Henri Poincaré - Physique théorique
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and

As in [2], j1  ... jk are the indices of the creators ; qh (resp. ph) are the
indices of those creators (resp. annihilators) which have given rise to a scalar

,

product. Moreover, we recall from [2] that ~ means that the

~P1~ ~ ~ ~ fqh)h= 1)

sum which runs over all 1 _ pl, ... , m satisfying

The proof is the same as in [2] except for the fact that now the D

depend on t.

LEMMA (3 . 2). - For each g E K, and DEB (Ho), there exists a constant
C, such that for each a, v E Ho, n EN, and t ~ o,

Proof. - The difference between (3.4) and the uniform estimate of
Lemmata (5 . 2), (5 . 3) of [2] consists only in the following two points:

(i ) replacing D by D (t) : 
(ii ) replacing the scalar product

Vol. 54, n° 4-1991.
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by

Since ~ D D II, the difference (i) can’t influence the uniform estimate.
But also the difference (ii) is not important since (3 . 5 b) is majorized by

So, we get the uniform estimate with the same arguments as in the above
mentioned Lemmata of [2].
The following lemma states the irrelevance, in the weak coupling limit,

of the terms of type II in the decomposition (3 .1 ).

LEMMA (3 . 3). - For each g E K, and DEB (Ho), there exists a constant
C, such that for each u, v E Ho, n EN, and t ~ o,

Proof. - With the same arguments as in the proof of the Lemma (4. 2)
in [2] we obtain the inequality

Replacing St by S°, we see that the right hand side of (3 . 8) has the same
form as (4.21) of [2]. So we can conclude the proof with the same
arguments as in Lemma (4. 2) of [2].

l’Institut Henri Poincaré - Physique theorique
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The following lemma gives the explicit from of the limit of the terms of
type I.

THEOREM (3.4). - For each nEN, the limit

exists and is equal to

where,

and

Vol. 54, n° 4-1991.
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.

Proof., - Using the expression (3 . 2 a) of the type I terms, one has for

From this, using ( 1. 4), we know that (3 .13) is equal to

Annales de l’Institut Henri Poincare - Physique " theorique "
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Now, multiplying and dividing by a factor e-i03C9dt and using ( 1. 4), we can
reduce the Sd - S0 - scalar products to Sd - Sd - scalar products. Thus the
expression (3 .14) becomes

With the same changes of variables as those used in Theorem (5 .1 ) of [2]
we reduce (3.15) to the form

Vol. 54, n° 4-1991.
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By the Riemann-Lebesgue lemma, in the limit only those terms will survive
for which Therefore the expression (3.15), in the limit ~0, is
equal to the limit, as À -+ 0, of the expression

Annales de l’Institut Henri Poincaré - Physique 
" théorique "
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Notice that,

and

for each/, gEK, d =1, ... , N and S, TER, So we can apply again
the Riemann-Lebesgue Lemma and conclude that, in the limit for Â. 

-t 0

of the expression (3 .17), only the terms with

will survive. This implies that apart from the (irrelevant) sum over

dt, ..., d", the terms non vanishing in the limit of the expression (3.17)
are exactly of the same form as the expression (5.10) of Theorem (5 .1 )
of [2]. Applying this Theorem, (3.10) follows easily, and this ends 

the

proof.
From the above we obtain the explicit form of the limit ( 1.11 ).

exists and is equal to ,

Vol. 54, n° 4-1991.
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Proof. - Expand U~’~~ (t/~,2) using the iterated series and use

Lemmas (3.1), (3.2), (3. 3) and Theorem (3.4).

4. THE QUANTUM STOCHASTIC DIFFERENTIAL EQUATION

In the section, we shall prove that the limit (3.20) is the solution of a
quantum stochastic differential equation (q. s. d. e.) whose explicit form we
are going to determine.
We shall first determine an equation satisfied by the limit (3 . 20) and

then we shall identify this equation with a q. s. d. e.
From Lamma (3 . 2) we know that for each Me Ho, ~0, there exists a

G(t)EHo, such that (3 . 21 ) can be written to

Denote for each ~&#x3E;0,

then Theorem (3.5) shows that

Moreover for each ~ ~ 1,

Annales de l’Institut Henri Poincaré - Physique ’ theorique ’
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Notice that == so, using the proof of Theorem (6.4) in [2],
we know that there exists a constant C2 such that

Therefore the function t 2014~ u, Gl (t) ~ is differentiable and its derivative
is equal to

From (4. 3) and (4. 5), one gets

Vol. 54, n° 4-1991.
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If we call I (t, ~) [resp. II (t, ~)] the piece of the scalar product in (4 . 6)
contaning the terms (resp. - Dd 0A), then (4 . 6) can be written
as

Notice that

Annales de l’Institut Henri Poincare - Physique theorique "
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Therefore, by the Riemann-Lebesgue Lemma, Theorem (3 . 5), the defini-
tions (4 .1 ), (4 . 2) and dominated convergence, one has

The - II t ~) term is dealt with the same strategy for the term in

[2] (cf formula (6.14) of [2]). That is:
- one brings - Dd 01 on the left hand side of the scalar product.
- one writes

- the first term on the right hand side of (4.9) acts on the coherent
vector giving rise to an expression similar to (4.7) which, in the limit
Â. -t 0 convergences a. e. to

- the commutator term is the sum, for d=1, ..., N, of

Expressing of (t/~,2) in terms of the itrated series, the n-th order term
in Â. is

Vol. 54, n° 4-1991.
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But the limit, as Â. -t 0, of (4 . 12) is the same as the limit, as Â. -t 0, of

because all the other terms will contain scalar products of the form

with ~2 which are terms of type II in the sense of Lemma (3 . 3), and
therefore vanishing in the limit ~, -t 0. Moreover the commutator in the
expression (4. 13) is equal to

and since

the Riemann-Lebesgue Lemma implies that only the term with d= d’
survives. So the limit, as Â. -&#x3E; 0, of integral of (4 .11 ) is equal to the limit,
as Â. -t 0 of

But this limit is exactly of the same type as that considered in (4. 7) and
therefore it exists. The estimate (4.4) guarantes that, in the expansion of
(4 .11 ) with the iterated series, one can go to the limit term by term.
Resumming the limit (4.15) in n and using Theorem (3 . 5), one gets that
the limit of (4.15) is equal to

Annales de l’Institut Henri Poincaré - Physique theorique
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Summing up:

THEOREM (4 .1). - For each uEHo, the map G(t), defined by
(4 . 1), is differentiable almost everywhere and satisfies the integral equation

From the above we can easily deduce the proof of our main result

It is clear that F (u, t) satisfies (4.17) the equation with the same initial
condition. Hence by the uniqueness of the solution of the q. s. d. e. (4.17),
we have

Vol. 54, n° 4-1991.
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which, because of (4 .19) and (4 . 2 a), implies the thesis.
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