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Abstract

The formal unitarity conditions for stochastic equations driven by the
renormalized square of white noise are shown to hold rigorously in the frame-
work of sesquilinear forms on the Fock space.



1 Introduction

Let Léym(R”) denote the space of square integrable functions on R" which
are symmetric under permutation of their arguments, and let F' := @ Lgym(R”)
where: if ¢ = {™} ;€ F, then ¢ € C, ¢ € Ly, (R"), and

1017 = [ (0))* + ) 00, s) Py ds < oo
n=1 "

Denote by S C L?(R") the Schwartz space of smooth functions decreasing
at infinity faster than any polynomial and let

D:= {w e F/y™ € 8 nllp™? < oo}
n=1

Following [5] for each ¢ € R define the linear operator valued distribution
b*(t) by

Vb(s)ds, B*(t) = [ b*(s)ds and

N(t) ::/O bt (s)b(s)ds

are, for each ¢, operators acting on D which correspond to the “annihilation”,
“creation”, and “number” operators respectively of linear quantum stochastic
calculus (cf. [10]).

The “white noise functionals” b and b™ satisfy the commutation relation
[b(t),b%(s)] = 0(t — s), or more general [b(t),b%(s)] = - d(t — s), where
v € (0, +00) is the variance of the quantum Brownian motion defined by B
and BT and ¢ is the delta function (cf. [5], [6]).

Linear quantum stochastic calculus dealt with evolutions driven by the
stochastic differentials dB(t) := b(t)dt, dB*(t) := bT(t)dt, and dN(t) :=
b*(t)b(t)dt. However, related to a problem arising from quantum optics, a
need appeared for the inclusion of differentials with respect to the square
of the white noise functionals b(t) and b"(¢), namely dBs(t) := b(t)*dt, and
dBy (t) = b (t)%dt (cf. [7]).



The “renormalized Ito table” corresponding to dt, dB, dB™, dBy, dBy
and dN was shown in [6] to be

dt dB  dB*  dB,  dBj dN
dt 0 0 0 0 0 0
dB 0 0 ~ydt 0 2vdB* ~dB
dB* 0 0 0 0 0 0
B, | 0 0  29dB 0 4vdN  2vdB,
iBf | 0 0 0 0 0 0
AN | 0 0 ~4dB* 0  29dBf  ~dN 0

Since Liym(R") = Lyn(R)®" we can identify F with the symmetric
(Boson) Fock space over S.

If ¢ = {(n)) "2 f®"} we denote 1 by ¥(f).

If the elements of S are defined on [0, +00) we denote the Fock space by
I'(S4). As usual (cf. [6]) we couple I'(S; ) with an “initial” Hilbert space Hy
and we define H := Hy® ['(S,).

Let B(Hy) denote the space of bounded linear operators from Hy to itself
and let B(H) be defined similarly for H. Early attempts were made in [3]
and [4] to study and give meaning to stochastic evolutions of the form

dU(t) = [Aydt+ AxdB(t) + A3d BT (t) + A4dBsy(t) + Asd By (t) + AgdN (1)U (1)
(2)
U)=1, 0<t<T <400
where A; € B(H) fori=1,2,...,6 and A; = A;®Id where A; € B(H,), Id is
the identity on I'(S;) and I is the identity on H. Formal unitarity conditions
for the “solution” U = {U(t)/0 <t < T} of (2) were also obtained in [3].

In this paper we show that the framework of sesquilinear forms on Hilbert
space enables us to give a rigorous meaning to (2) and to prove the unitarity
of the solution (in the sense of sesquilinear forms).

In what follows we will use the notations:

Ni(t)=1t-1 (3)
Ny (t) = B(t)
Ns(t) = B+(t)

Ny(t) = Ba(t)

ot



Ns(t) = By (t
Ng(t) = N(t)
and
Nl*:le N;:Ng, NZ:N5, Ng:Nﬁ (4)

2 Stochastic integrals with respect to second
order white noises

Let t € [0,T] with T" < 4+o00. For a sesquilinear form U(t) defined on the
linear span E of the vectors of the form

u®(g) : we€ Hy, g€ Sy

we will use the symbolic notation

Ut)(u@p(f), v @(g)) = (w@ e (f), Ut)v @ b(g))

In the following all the forms will be considered on this domain. The identity
form, U(t) = 1, is defined by the condition, for all vectors in the form domain:

(u@p(f), Ut @¢(9)) = (u@v(f), v @ ¥(9))n

where the right hand side denotes the scalar product in H. If there exists a
sesquilinear form U*(t) satisfying

U(O)u@(f), v@y(g)]=Ul)(uey(f),v@i(g))

where T is the complex conjugate of x, we say that U*(¢) is the adjoint of
U(t) and we use the notation

(uxd(f), Ut @y9(g)) = (U O)u@b(f),v®¢(9))




Definition 1 Let be given, for each t € [0,T], a sesquilinear form U(t) and,
fori=1,2,...,6, let A; € B(H,). The stochastic integral

Z /0 U(s)A;(s)dN;(s)

is the sesquilinear form, defined on E by:

6

Z [veaaveueu . vev) =3 [ aedseueun

1=

6

Aveile) =3 [ pdsue v VA ) O
=1
where )
(1 1=1
g 1=2
)T =3
pi = g22 i—4 (6)
f i=5

The adjoint stochastic integral of Yo, fg U(s)A;dN;(s) is the sesquilinear

form
6

3 / AT ()AN (3)

=1

defined on E by:

6

> [ A @an: s e, veie) = 3 [ ol (o) ause)
- i @
v®Y(g Z/Uz Yds{Au @ Y(f), U"(s)v @ ¥(g))



where Af is the adjoint operator of A; and

l 1=1
f 1=2
g 1=3
o; = 72 i—y (8)
gz 1=5
\ fg 1=6

In order for (5) and (7) to make sense we assume that

/0 U ()@ (), 0 ® (g)) 2dt = / {u® o (f), Uty ® w(g)) Pdt < +oo
(9)

and

| 1w ae i covaPa = [ woun. v erev@)P < +x
(10)
for allu, ve Hy and f, g € S, such that

T T
/|pi(t)]2dt<+oo, /|0i(t)|2dt<+oo (11)
0 0

fori=1,2,....,6.

Condition (11) is surely satistied if

fo)l<t 5 gls)) <1

for s € [0,7] and in the following we shall assume that all the test functions
of the exponential vectors satisfy this condition.

Definition (2.2) For each t € [0,7] define a sequence U,(t), n =
—1,0,..., 400, of sesquilinear forms on E by

U_1(t):=0 (12)



Then we define the adjoint sequence U (t) by
U*(t):=0 (14)

Ur(t):==1 + Z/ AU (s)dN; (s) ;n=0,...,400 (15)

Proposition (2.3) The complex valued sequences of functions

t= Un@)(u@d(f) . v@9(g) = (W@ y(f), Un(t)o@(g))  (16)
t= Up)(uwee(f), vei(g) = (ued(f), Utveidg) (17)

converge uniformly on [0,7], as n — +oo for all u,v € Hy and f,g € S,.
Proof. By (13) and (5), forn > 1

Un(@)(u@y(f), v@9(g)) = (w@d(f), Un(t)o @9(g)) =

(uRY(f), vy —I—Z Z // / 1o dtepi (t) - i (E)

k=1 t1,...,i=1

<u®1/}(f)7Alk"'Ai1v®¢(g)> (18>
where t, = t. Thus

| (w@d(f), Un(t)o @9(g)) — (u@¢(f), Una(t)v @1(9)) |=

S [ ) o), A Aveuta)|

B15eesin=1

< Y DA A e v I e v |

< O o, I w0 () | ) v w(o) | (19)
so that
Zl Un(t)o ® (9)) — (u @ b (f), Unoa(tho @ 0(9)) |<



exp 6t(mazi<ase || Aiy ) [lu@$(f) | v@y(g) |l (20)

and from this the uniform convergence on [0, 7], as n — 400, of the sequence
(uY(f), Uns(t)v @ 1(g)) follows. A similar argument holds for U;(t).

Let, for each t € [0,T1], the sesquilinear forms U(t) and U*(t) be defined
on E by

U)o u(f), veb) = lm UH@ew(f), vove) (21
U b(f), veu) = lin UOu /), veul) (22

Then, in the sense of equality of sesquilinear forms

_1+Z/ $)A;dNy(s (23)
0:1—%§:/ﬂ£U%QﬂW@) (24)

where the right hand sides of (23) and (24) are defined by (5) and (7) respec-
tively. Proof.

- (10 55 [ vonasio)

(u@Y(f) . vev(g) < [UEF) —Us®)] (wp(f), ved(g) |+

(3o} [t o3[ truane)

(w@P(f), ve(g) [SIUE) = Un()] (w@y(f) , v@¥(g)) | +

i=1
and this tends to zero as n — oo in (25), because the uniform convergence

in ¢ allows to pass to the limit under the integral sign. The proof of (24) is
similar.
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3 The renormalized product of stochastic in-
tegrals

Definition 3.1. For each ¢t € [0,T] let U,(t) and U,,(t) be defined as in
(12) and (13). For n, m = 0,1,2,... we define the renormalized product of
U,(t) and U,,(t) to be the sesquilinear form (U, (t), U, (t)) defined on E by
the recursion
(Un(t), 2Up (1)) (u @ (f), v @ 9(g)) :=
t_ 6
(O0lt),2Uo(t)) (w1, v0(0))+ | [ 3 0x(5)Unms(5),aUn(s)) (A ), v () +
0 "i=1
6

+> pi(8) - (Un(s), 2Un1(9))(u @ $(f), Ajo @ (g))+

J=1

+ Z W) (s ), a0 (8)) (A ® O(f), Ao © $(g))lds  (26)

where x is any bounded operator in the initial space (which we identify with
x® 1) and

(U_1(t),zUp(t)) = (Upn(t),zU_1(t)) :=0 n,m=—1,0,1,... (27)
(Uo(t), 2Uo(t)) := (I, 1) :=x (28)
(Un),200(0)) = (Ua(t),2) = Ust)e n=1,2,...  (29)
(Uo(t), 2Up(t)) := (I, 2Up(t)) := 2Upn(t) m=1,2,... (30)
o, p; are as in (6) and (8) and
[0 0 0 0 0 0
00 0 0 0 0
0 (A B O A BN (31)
0 0 2yg(s) 0 4yf(s)g(s) 2yg(s)?
[0 0 7f(s) 0 29f(s)*  7f(s)g(s)

11



Remarks. Using (13), (26) can be written as

3 [ V(a2 [ Va4V () e v(r).0 e v(e) =

= [ mton xz [ vt AN A ), v w10+

6 6

BTN / U (2) ANy (2), U (5)) (@ (), Ao © (g)) 4

J=1 J=1

+ 37 W (Un(s), aUn()) (A @ 0(F), Ao @ (9))]ds (32)

which can be thought of as the definition of the renormalized product of
the two stochastic integrals. Frequently, in the following we shall omit the
symbol x from the notation of the quadratic form (U(t),zU(t)).

The recursive scheme underlying (26) is

(Uy, Up) (Uo, Uh) ... (Up, Up) ...
(U1, Up) (U, Uh) ... (U, Up) ...
: (33)
<Un717 U0> v <Un717 Um71><Un717 Um> e
(Un, Up) e AUy Upo 1) (Up, U -
where the first two rows and the first column are computed with the use

of (27), (28), (29) and (30), and for n > 2 and m > 1 the entry (U,, Up,)
depends on (U, _1,Upn), (Un,Upn—1) and (U,_1,U,,_1) only.

Definition 3.2. If F is a sesquilinear form on H x H and K € B(H,)
then KF and F'K are the sesquilinear forms defined on F by

Flu@y(f),v@¢(g)) = F(Ku@¢(f),v @9(g)) (34)

K(u®@p(f),v@9(g)) = Flu@p(f), Kv®i(g)) (35)

Definition 3.3. Let K, L € B(Hp) and t € [0,7]. We define the
renormalized product of the sesquilinear forms KU (t) and LU/ (t) to be the
sesquilinear form defined for n, m = 0,1,2,... by the recursion

(KU, (1), LUL () (u @ ¢(f),v © ¥(g)) = (K, L) (u @ ¢(f),v @ ¢(g))+

12



/o [ZM (K AZU (5), LU () (u @ $(f), 0 @ $(g))+
+Zaj VKU (s), LATUZ, 1 (s))[u @ $(f), v @ t(g))+

+ D WK ATU_(s), LAUS, 1 () (w @ O (f), 0 @ 4(g)) |ds (36)

where
(KU* (@), LU (1) = (KU:(t), LU (t)) =0 n,m=-1,0,1,... (37)
(KU:(t),L) :==U,(t)K*L n=0,1,2,... (38)
(K, LU (t)) := K*LU} (%) n=0,1,2,... (39)

. ’y . . .
0j, pj and w;; are as in Definition 3.1.

Remarks. For K = L = I (36) can be written as

/ ATU (5)aN: (s / AU (8)AN? (3)) (u & 0(f), v @ (g)) 1=

{/;[2 .3 ez
g] Z/ A;U(s)dN; (s), ASU (s))+

30 A (), AU () | ds f (w @ w(f) v @ v(g)  (40)

4,7=1
We remark also that Definitions 3.1 and 3.3 have the renormalized [to
table (1) built in.
In fact one arrives at (26), (40) and then also to (26) and (36) by as-
suming that everything works as in the linear noise case and then use the

renormalized It table (1) to compute the matrix element of the product of
two stochastic integrals.
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Proposition 3.4. Let t € [0,7), u,v € Hy, f, g € Sy with |f], |g] < 1.
For n, m =0,1,... define

Enm(t) = [{Un(t) = Un-1(1), Un(1))| (41)
Then
Ln—l—mtn

Enm () (u@Y(f),v@9(g)) < [ — lu@y ()] [lvey(g)l
(42)

where )
W =1+ 24 max | A T2 + 4v/2y (6 Imax ||Az||) (43)

and )
L:=(1+T) (1+61H<l?<}%||14i”> + 4y (611'I<15i<}(é||147,||> (44)

Proof. We will prove (42) by using double induction on n, m as follows:
consider the matrix

[ 5070 5()71 ce (.c:(),m ]
Eo  E Ein
52‘70 52.71 Ce 52,m (45>
: : Eam
gn—l,O gn—l,l s gn—l,m—l gn—l,m
L gn,O gn,l s gn,m—l gn,m .

We first show that (42) holds for the first row and the first column. Then
we assume that (42) holds for &,—1m-1, En—1.m, Enm—1 and we show that it
is also valid for &, ,,.

The idea behind this inductive scheme lies in the inequality

Enm(t)(u ® 0(f), v @ 6(g) /[Zenlm (A ® ¥(f),0 ® ¥lg))+

+ Z Enm1(5) (U (f), Ajo@i(g))+47 Z En1,m-1(8)(Au@y(f), Ajuoi(g)) |ds

7,7=1

(46)

14



which is a direct consequence of (26) for n, m = 1,2,.... For m = 0 and
n=20,1,... by (19), (27), (28) and (29)

Euol)(u® V()0 @ 6(g) = UML) — Unr (6), 1) @ 6(), 0 @ ¥(g))(47)
Omaxsise AN 1wl o o am

lu @ (NI v gl (49)

since 6 max<;<¢ || Ai]| < L, so (42) holds. For n = 0 (42) reduces to

<

L”t"
<

wm m/2
Eom(D)(w (), 0@ 1(g)) < [ ! Ln] lu@ (A ool (50)
m
which we will prove by induction on m =0,1,2,.. ..

For m =0,
Eoolt) (0 (), ® V() = |{Uolt) — U-1(2), Do) (u @ () v @ ()
= (=0, (w2 (). v (a))] = [ (). vl < ()] oew(a)]
< [+ 2 lus vl b o vio)]

so (47) is valid. Suppose that (51) holds for m — 1. We will show that it also
holds for m. By (5) and (13) we have

Eom(u@U(f), v @¢(g)) = [(Uo(t) = U1(t), Un (1)) (u @ (f), v @ 1(g))]
= [{L, Un () (u @ ¢ (f), v @ 9(9))] = [Un(t)(u @ (), v @ 9(g))]

I+ Z / t Upo—1(5) AsdN;(s)

(u®@P(f), v ©U(g))

— e v ve vl H+Z/ L AdN() (@ B (f), v @ 6(g))

(W B(f),v 2 B(g))n + Z / 0i(8)Un-1(5) (1 @ B(F), Agw ® ¥(g))ds

< lu@ (Nl v ylg |+Z/ |Un—1(s)(u @ (f), A @ 9(g))lds

15



— Ju® ()] v e w(g ||+Z/ Eomr(3)(u ® O(f), A @ ¥(g)ds

wnt m-1
< [lu@d (NIl lve (g H+Z/ [ +Lm1] ds|lu@y(f)|| Az (g)ll

Wm—l tm—l—%
(m =11 57

< [lu@ (N [lved(g)]]+6 max || Ai] ( +Lm_1t> lu@d(f)| [lvey(g)]

< [6&1?36”14 I \/—
—1

{27’1/26 max [|4; 1 gt (1+T)Lm_1] lu @ (A lv @ (g)l]

L mor2 41 4TI } lu@w(F)] u® (o)l

wM m m
< [ﬁt ) ]Hu@w(f)HHv@w(g)H

thus proving (51). We have thus proved (42) to hold true for the first row and
column of matrix (45). We will now show that if it holds true for &,_1 1,
En—1m, and &, ,,,—1 then it does for &, ,, as well, thus completing our induc-
tion. In view of (46) we have

t_ 6 Wrtm— 13"+m 1 L nptm—1gn—1
001, 00(0) < [ [Z( + I )||Az~||

P V(n—1)n! (n
6 nt+m—1 n+m 2
Wn—i—m—lST Ln+m 1 " n+m 28
+ + 14, + 4 ( +
;( nl(m — 1)] ) 14 7;1 Dl(m — 1!

Ln+m ZSn 1

T A 14511 dslle @ w()lo @ ()]

t Wntm—1 =t W ntm—1 g R
<{J [61“%?«( Ny m)*
2 pyntme2 =2
) V(n—1)l(m—1)!

4~y <6 max || A;|

1<i<6

}ds—i—
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t Ln+m71 n—1 Ln+m71 n 2
/ 6 masx |4, i =) + 44 (6 max |4y
o L 1<i<6 (n—1)! n! 1<i<6

Ln+m—2 Sn—l

]ds}Hu @) v e v(g)]

(n—1)!
Wn—i—m—lt""";_l Wn+m—1t7"+7;+1
< {[6 max 14/ +
1<i<6 vV (n—=1Dml(n+m+1)/2 nl(m—1)l(n+m+1)/2
2 _9,ntm —
Wn+m 2t Ln+m 1tn
+4y (6 max HAZ||> - }4—[6 max ”Az||<—+
1<i<6 V(= 1D)l(m —1)!(n+m)/2 1<i<6 n!

Ln+mfltnT 2 Ln+m72tn

o)t (%g%;gilAiH) =] Hue vl e el

n+m nt+m

Wntm—1455 2T1/2 Wntm—1p%5 2T1/2
< {[6 max || Aj| +

1<i<6 vn!m! vnlm!

2 — n+m —
IJVn+m 1t 5 2 Ln+m ltn
4y (6 max ||Ai\|> \/_] + [6 max || 4| (— +
1<i<6 vn!lm! 1<i<6 n!

2 Lnerfl tn

TLnerfl n
) v (o lal) o fus vl ol

n!

(where we have used the inequality nJ%m < \/‘7/1%)

<

2
[6 max [[A]|(1+T) + 4y (6 max IIAZ-II)

n+m

Wn+mfltT

2
/2 |
24 max || A T2 + 42y <6 lrgl.ag%HAlH) i

Ln+m—1tn

T}Hu@wf)llllv@@b(g)ll

n+m

Wnert 5 Ln+mtn
+ n!

<

lu @ P flv @ p(g)l]

nlm!

Remarks. Since (U, (t),Upn(t) — Upn-1(t))(u @ ¥(f),v @ 1(g)) is the
complex—conjugate of (Up,(t) — Up—1(t), Upn(t)) (v @ ¢¥(g), u @ (f)) it follows
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that Jy, ,(t) == [(Un(t), Un(t) — Upn—1(t))| satisfies

n+m n-gm n+mqn
T ) uH(1), 050(9) < [W L husvl leewtl

(51)
where W, L are as in (43) and (44).

Moreover, a method similar to that used in the proof of Proposition 3.4
can be employed to show that if £, A € B(Hy) then &, (t) := [(k(U;(t) —
Un1(1)), AU ()| and J; (1) == [(RU (1), AU, (1) — Uy, (1)))] satisfy the
inequalities

n+m

Mnert 5 Cnertn

nlm! n!

lu@d(FIl [lveb(g)
(52)

EnmB)(w@Y(f),v@1(g)) < [

and

n+m

Mn-l—mtT Cn+mtn

vnlm! * n!

lu@d ()l lv@d()]
(53)

Jnm (D) (W@Y(f), vR1(g)) < [

for suitable constants M, C' > 0 which are independent of t, n, m.

Proposition 3.5. For each k = 0,1,2,... and t € [0,T] the sequences
{an ()} and {b,, ()}, of sesquilinear forms defined pointwise on E by

an k() (u @ Y(f), v @ Y(g)) == (Un—k(t), Un(D))(u @ ¥(f), v @¢(g)) (54)
and

bn e (8)(u @ P (f), 0 @9(9)) := (Un(t), Un—k(t)) (u @ D(f), v ®1(g))  (55)

converge as n — +o00, uniformly with respect to t € [0, 7] and k.
Moreover, if

oo k(1) 1= lirrln 1 (1) (56)
and
then
Qoo ey () = oo iy () 1= aoo (1) (58)

18



and
bOO,kl (t) = bOO,kz <t> = bOO<t) (59)
for all k1, ko =0,1,2,... and t € [0, 7] and also

Uoo(t) = boo(t) := A(t) (60)
Proof.

|an k() (u @ Y(f), 0 ©Y(9)) = an1x(t)(u @ Y(f), v ©P(9))| =

[(Un—(t), Un(£)) (u@p(f), v@1p(9)) = (Un-1-k(t), Un-1(£)) (u@ (), v@%(g))|
< [(Unk (), Un (@) (w@(f), v&@3(g)) = (Un—1-1(£) Un (1)) (u@(f), v@¥(g)) |+
[(Un—1-#(t), Un () (u@t(f), v@1(9)) = (Un—1-k(t), Un—1(£)) (u@3p(f), v@20(g))]
= |(Un—i(t) = Un—s- 1(75) Un())(u @9 (f),v @ ¥(g)) 1+
[(Un—t=1(2), Un(t) = Un—1(£)) (u @ ¥ (f),v @ ()] (61)
By (42) for m =n

[(Un—(t) = Un—r-1(£), Un(£)) (u @ 9 (f), 0 @ ¥ (g))] <

2n—k

W2n kt S
+
(n —k)n!

L2n kt”

lu @ P lv @ p(g)ll (62)

Distinguishing the cases t € [0,1] and ¢ € (1,7 we obtain

[{Un—k(t) = Un—k-1(1), Un()) (u @ $(f), v @ 9(9))] <

S{W"(mjﬁ;_(!l )" +L”<ma;<1aT>>"} lu@w(n)] o) (63)

and so

[(Un—k(t) = Un—r1(t), Un(8)) (u @ ¢ (f), v @ 9(g))] = 0 (64)

as n — +oo uniformly with respect to ¢ and k.
Similarly, from (51) with m =n — k — 1, we obtain that

[(Un—k-1(8), Un(t) = Un-1(£))(u @ P(f), v © ¥(g))| = 0
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as n — +0o uniformly with respect to t and k. Thus, by (61), {a,x(t)(u ®
U(f),v@1(g))}1%, converges as n — +oo uniformly with respect to t and k.
Similarly, {b,x(t )(u RY(f), v ®@1(g))} 2, converges as n — +o0, uniformly
with respect to t and k. For £k =0, 1, 2,

|Goo k1 () (U @ D(f), v @P(9)) = oo k() (u @ P(f), 0 @Y (g))|
)

)
< oo k1 (0)(u @ P(f), v @ 9(9)) = an k1) (u @ P(f), v @ p(g)) |+
|an k1 () (u @ $(f), v @ Y(g)) — ani(t)(u @ Y(f), v @ P(g)) |+
(

)
|an k() (@ Y(f), v @ Y(9)) = s k(t)(u @ Y(f), v @ P(g))]
— 0 as n — +oo by (55) and the fact that

|an ki1 () (u @ P (f), 0 @ (9)) = ani(t)(u @ P (f),v @1(g))l

= |(Un—k(t) = Un—p-1(2), Un(t)) (u @ (f), v @ P(g))|
— 0 as n — +o0 by (64). Thus

aoo,k—l—l(t) = aoo,k(t) (65>

forall k =0,1,2,... and t € [0,7] which implies (58). The proof of (59) is
similar.

Since a,0(t) = by o(t) and by (56), (57) awo(t) = lim, a,0(t) and by (t) =
limy,, b, o(t) it follows that ax(t) = beo(t).

Remarks. For k& = 0 the sequences defined in (54) and (55) correspond
to the main diagonal of (33). For k = 1,2, 3, ... they correspond to diagonals
above and below the main diagonal of (33) respectively. The analogue of
(33) for the renormalized products (KU (t), LU} (t)) where K, L € B(H,)
and n, m=0,1,2,... is the matrix

(KUg, LU (KUE, LUYY ... (KUZ, LU:) ...

(KU, LUKU;, LUY) ... (KU, LU ...
: (66)

(KU; 1,LU5‘> <KU;§ 1,LU;;)...

(KU, LUY) ... (KU LU:)...

In a way similar to that used in the proof of Proposition 3.5 we can show
that all left—to-right diagonal sequences {(KU}_.(t), LU (t))(u @ ¥(f),v ®

¥(g)) 2. and
(KU, LU (0) (0 & 6.0 0 Da)}E5 . k= 0.1,2,...
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converge as n — 0o to the same limit and the convergence is uniform with
respect to k and ¢ € [0, 7.

Theorem 3.6. For all u, v € Hy, f,g € Sy with |f| < 1 and |g| < 1,
t €10,T], and K, L € B(H,) the double sequences of sesquilinear forms

{{UL), Un(®))(u @ (f), v @1(9)) =0 (67)

and
{(KU (@), LU, (1) (u @ ¢ (f),v @ ¥(9)) }rimeo (68)

converge as n, m — oo and the convergence is uniform with respect to
t € 10,77

Proof. We will show that the sequences defined by (67) and (68) converge
to the common limit of the diagonal sequences of the infinite matrices (33)
and (66) respectively.

Let A(t)(u @ ¥(f),v ® ¥(g)) be the common limit, uniform in ¢ and k,
of the left—to-right diagonal sequences of (33). By the uniformity of the
limit, with respect to k, in Proposition 3.5, every neighborhood of A\(t) (u ®
U(f),v®1(g)) will eventually contain all terms of all diagonal sequences of
(33). Therefore it will eventually contain all terms of the double sequence
(67) which therefore converges to A(t) (u®v(f), v®1(g)) and the convergence
is, in view of Proposition 3.5, uniform with respect to t. The rest of the proof
is similar.

Definition 3.7. Let K, L € B(Hy) and let U,(t) and U,,(t) be as in
Definition 2.2.

The sesquilinear form (U, (t)K, U,(t)L) is defined for n, m = 0,1,... on
E by

(Un(0) K, Un (t) L) (u@(f), v0¢(g)) := (Un(t), Um(t)>(Ku®w(f),Lv®w<(9)§

69

Definition 3.8. In view of Theorem 3.6 and Definition 3.7, for t €

[0,7] and K, L € B(Hy) we define sesquilinear forms (U (t)K,U(t)L) and
(KU*(t), LU*(t)) on E by

(UK, U)L) (ued(f), v@(g)) = ImUa () K, Un () L) (@ (f), v (g))

= lim(U,(t), Up () (Ku @ ¥ (f), Lv @ ¥(g)) = (70)

n,m
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and

(KUT(1), LU (1)) (u@y(f), v@v(g)) = Im (KU, (t), LU, (1)) (u@p(f), v&¥(g))
(71)

4 Unitarity in the sense of sesquilinear forms

Theorem 4.1. If the coefficients A; € B(Hp), i = 1,...,6 satisfy the
conditions

A+ Al +vAA5 =0
AT+ A +~vA5A45=0

Ay + A5 + 27 A A+ vAA; =0

A5+ Ay + 2vA A3 + 7ALAs =0 (72)
Ay + A; 4+ 2vALAE =0
A+ Ay + 2vA A6 =0

Ag + Af + Ay ALA, + yAgA; =0

A+ Ag + 4y A As + vAEAs =0

then for all t € [0,T], u, v € Hy, and f, g € S with |f], [g] <1

{U), U(1)(u@d(f),v®1(g)) = (I, ) (uey(f),v@¢(g)) (73)

and

U (), U (0)(uw @ ¢(f),v@¥(g)) = (L, Hue@d(f),v@d(g)  (74)

where the left hand sides of (73) and (74) are in the sense of Definition 3.8
and the right hand sides equal (u ® ¥(f),v ® ¥(g))g, the inner product of

u®1p(f) and v @ ¥(g).

Proof. To prove (74) we notice that using (71) and, i.e. the recurrent
definition of U;::

[(U"(), U () = (I, D](u @ ¢(f), v @ ¢(g)) =
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i [(U, (1), U, (1)) — (L, D] (u @ p(f),v @9(g)) =

n

6

(13 [ A 0o+ (3 [ A a1

+<Z / A;U;_l(s)dN;(s),Z /0 A;U;_l(s)dN;‘(s»} (u@Y(f),v®Y(g))

(by <15>;)
~ lim /0 t i oi(s) (T, ASU*_ ())ds + /0 t 26; (VAU (s), I)ds
- t [Z pilS)(ATU; (), U (5)) = (ATU; (), 1)+
gaxs)(w;@),A;U;l(s» — (L AU, (9)+
> Wl (AU (), AU ()| ds b @ w(f), v @ w(g))
(by (40) and (15))

=tim [ [ AV 6.V 6) + 2 (s U3, AV 1)

£ WA (), AU () ] ds (w@ (1), 0 @ ()

t,j=1

= [ [ AT (5,070 + 2 ()07 (9. AU ()

3 WHEATT (), AU (5)) | ds (w@ w(f), v @ w(g)
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by dominated convergence, Theorem 3.6, and Definition 3.8 this is

-

Let C' denote the quantity in brackets. We will show that C' = 0. By the
definition of o;, p; and w}., after collecting terms we have

Zm A+Zaz A*+wa JAAT| U (s))ds (u2y(f), v (g))

i,7=1

Z_]’

C = [A} + Ay + yALAs] + AL + As + 2y AL A5 + AL As)+

GIAL + Ag + yALAG + 27 AL A + T[AL + As + 27 AL A5+
G[A: + Ay + 2vA5 Ag) + fglAs + A + 4y AL As + v AL Ag] = 0

b

v (72), thus proving (74). To prove (73) we notice that, for n > 1 and
tell

)
[0, 77, using (13) we have
(Un(t)u @ 9 (f), Un(t)v @ 9(g)) = (Un(t), Un(t))(u @ ¢ (f), v @ 1(g)) =

= [ / (Zm Un-1(s)As, Un(s +sz Un(s), Un-a(5)4)

b G5 Unr (5145 U A7) )ds| (e w(f),v@v(g)  (75)

i,7=1

By (75)

d
5 {UnQu@ v (f), Un(thv @ ¥(g)) =

6

(O Una (DAL Un()) + Y pi(8)(Un(t), Un1 (8) A) +

i=1 i=1

i
9

+Zwu (H4; Un s (DA (w@ w(f) 02 w(g)  (76)

By Theorem 3.6 the right hand side of (76) converges uniformly in ¢ as
n — 400, so the sequence {(U,(t)u ® ¥(f), Un(t)v @ ¢ (g))}5>, and its time
derivative converge uniformly with respect to t as n — +o0o0. Thus we may
let n — 400 in (4.5) and interchange the limit and differentiation operations
to obtain J

—U®, U@ @ p(f),v@(g) =
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= (X OO V0 + 2 a0 U0 A+

+ Z SO AL UMA)| (@ v(f),v @ v(g) (77)

For t € [O,T] let F(t) : Hy x Hy — C be the sesquilinear form defined,
for fixed f, g € S with |f| <1 and |g| <1, by

F(t)(u, v) == (U(1), U)) (u @y (f),v@1(g)) = ({UR)ux ¢ (f), U(t)v®¢<(g;§

Since

[E () (w, )] = (U @), U0) (w2 (f), v@i(g))| = lim [(Un(t), Un(t)) (u@t(f), v@23(g))]

n

(Uo(t), Uo(t)) + p_((Uk(t), Uk(t)) = (Uk-1(t), Upr(1))) | (u @ D(f), v ®1(g))

k=1

= lim

n

< [(u@y(f), v@¥(g H|+hmZ| (Uk(t), Ur(t)) = (Uk-1(t), Ur—1(£))) (u@ (f), 029 (9) )]

< [Juey (f)lllvp(g H+hmz (KUk(#) =Ug-1(t), U () (u@d(f), v@1p(g)) |+

[(Uk-1(t), Ur(t) — Up—1(t))(u @ (f), v @ 9(9))])

W?k:tk: Lthk . W2k—14k—3 +L2k—1tk
k! (k — 1)k! k!

Nlu@ D (DI v e gl

< Juev(f)| lvev(g H+hmZ

(by (42) and (51))

1 —i—hmz ( ( (W2)kh (LZ)!ktk) ) (WT((Tgfi)’;:t’“‘l N % (LZ)!ktk))]

Nlu@ D (NI lve gl

1
< 1T T LW T 4 T o] 9@l o]

25



< (v aewne e (1 L)) e ful ol 7o

it follows that F\(t) is, for each t € [0,7] and f, g € ST with |f] < 1 and
lg| < 1, a bounded sesquilinear form on Hy x Hy. Thus there exists an
operator F'(t) € B(H,), depending on f, g, such that for all u, v € Hy

(u, F(t)o) = F(t)(u,v) = (U@), U)(u@y(f),v@9(g))  (80)
By (77) F(t) satisfies the ordinary Banach space differential equation

Zal HALF —I—Zpl A+ wltAF(A;  (81)

ij=1

with initial condition
F(0) = (&(f), d(gh) (82)
where [ is the identity operator in B(H), since by (80)

(u, F(0)v) = (U(0),U(0))(u®@¢(f),v@(g)) (83)
= 1 (U,(0), Un(0))(u @ (), v @ ¢(9)) = (I, ) (u @ (), v ® ¥(83)
= (W y(f),v®@(g)) = (u,v)((f),¥(9)) = (u, (¥ (f), ¥(g))Iv(85)

We will show that

F(t) = @), vlah! (86)
is the unique solution of (81), (82). Clearly (82) is satisfied. Moreover
dF d
W L G, wtann =0 (57)

and

Z o (AT F(t) + Z pit)F()A; + > wl()ATF(t)A; =

ij=1

_ Za’l A*—i—Zpl A+wa OATA; | ((f),%(9))

2,7=1
Let D denote the quantity in brackets. As before, by (72), D = 0. Thus

6

S aATF) + ) pt)F()A+ > wi(ATF(t)A; =0 (88)

i=1 ij=1
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By (87) and (88), (86) defines a solution of (81), (82). It is a well known
result of classical theory that such a solution is unique. Thus, by (78), (80),
and (86)

{U@), U)(u@p(f),v@d(g) = (w@d(f),v@d(g)n  (89)
proving (73).

Remark (1). It was shown in [1] that if

Ay =il — %L*L, Ay = —L'W, Ay =L

B 1/2 B 1/2
A= I— ReW MW, Ay = M* I— ReW
82 82

and

W -1

2y
where L, H, W, M € B(H,) with H self-adjoint and W, M unitary operators
satisfying

Ag =

L*(I = W)+ V2(I — Re W)Y>ML =0 (90)
then Ay, As, ..., Ag satisfy the unitarity conditions (72).

Remark (2). Our theory can be immediately extended to include coef-
ficients of the form

Ai(t) = o4(t) - A (91)

where «; is a scalar function on [0, 7] and A; € B(H,).

Remark (3). Concerning the quantum stochastic differential equation
dU(t) = —i-c(t)U(t)dt —ig(t)U(t)dBy (t) —ig(t)U(t)dBa(t) —iw(t)U (t)dN(t)
Uuo)=1I (92)

where ¢, g, w are complex—valued functions of ¢, which was derived in [7], we
remark that unitarity conditions (72) are satisfied if

Ime=0
2 Im w + g4y + |w[>y =0 (93)
Im g+ ~vygw =0
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