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Relations With the Quantum Hall Effect

L. Accardi 1,3 and F. Bagarello2

Received June 30, 2003

We propose a model of an approximatively two-dimensional electron gas in a uniform
electric and magnetic field and interacting with a positive background through the
Fröhlich Hamiltonian. We consider the stochastic limit of this model and we find the
quantum Langevin equation and the generator of the master equation. This allows us to
calculate the explicit form of the conductivity and the resistivity tensors and to deduce a
fine tuning condition(FTC) between the electric and the magnetic fields. This condition
shows that thex-component of the current is zero unless a certain quotient, involving
the physical parameters, takes values in a finite set of physically meaningful rational
numbers. We argue that this behavior is quite similar to that observed in the quantum
Hall effect. We also show that, under some conditions on the form factors entering in
the definition of the model, also the plateaux and the “almost” linear behavior of the
Hall resistivity can be recovered. Our FTC does not distinguish between fractional and
integer values.
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1. INTRODUCTION

The Hamiltonian for the quantum Hall effect (QHE) is, see for instance
Bagarelloet al. (1993),

H (N) = H (N)
0 + λ(H (N)

c + H (N)
B

)
(1)

where H (N)
0 is the Hamiltonian for the freeN electrons,H (N)

c is the Coulomb
interaction:

H (N)
c = 1

2

N∑
i 6= j

e2

|r i − r j |
(2)
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andH (N)
B is the interaction of the charges with the positive uniform background.

In the present paper we consider a model defined by an Hamiltonian

H = H0,e+ H0,R+ λHeb (3)

which is obtained from the Hamiltonian (1) by introducing the following approx-
imations (for a more precise description ofH see the next section):

• the Coulomb background–background interaction is replaced by the free
bosons HamiltonianHO,R, (12);
• the Coulomb electron–electron and electron–background interaction is re-

placed by the Fr¨ohlich HamiltonianHeb (16) which is only quadratic rather
than quartic in the fermionic operators.

These are certainly strong approximations. However since, as explained in
Strocchi (xxxx), from the Fr¨ohlich Hamiltonian it is possible, with a canonical
transformation, to recover a quartic interaction, one can say that the Fr¨ohlich
Hamiltonian describes an effective electron–electron interaction which may mimic
at least some aspects of the original Coulomb interaction. From this point of view
it seems natural to conjecture that some dynamical phenomena deduced from this
Hamiltonian might have implications in the study of the real QHE. There exists
a huge bibliography concerning QHE. Here we refer only to Chakraborty and
Pietiläinen (1988) and, for a more recent review, to Girvin (1999).

This conjecture is supported by our main result, given by formulae (83) and
(84) where we deduce, directly from the dynamics, and not from phenomenological
arguments, an obstruction to the presence of a nonzerox-component of the current,
which is quantized according to the values of a finite set of rational numbers. This
result is, to our knowledge, new and the fact that such a mechanism can arise even
in relatively idealized models of electrical conductivity, seems to be at least worth
of some attention. More precisely we prove that thex-component of the mean value
of the density current operator is necessarily zero unless a certain quotient (2πeE

mω2Lx
,

cf. (9) and (11) for the definition of these parameters), involving the magnitudes
of the physical quantities defining the model, takes a rational value. This is what
we call afine tuning condition(FTC).

The rational numbers that appear in the FTC are quotients of the Bohr
frequencies of the free single-electron Hamiltonian. It is quite reasonable to expect
that, in a concrete physical situation, only a small number of these frequencies will
play a relevant role for the scale of phenomena involved. In this approximation
we can say that thex-component of the mean value of the density current operator
is nonzero only in correspondence of a finite number of rational values of the fine
tuning parameter. This feature will be discussed in Section 6.

The fine tuning condition strongly reminds the rational values of the filling
factor for which the plateaux are observed in the real QHE. Again, in Section 6
we will relate these two facts.
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The specification of the values of these physically relevant rational num-
bers and the comparison with those rational numbers which are experimentally
measured in the QHE, requires a detailed analysis which will be done elsewhere.

We use the technique of the stochastic limit of quantum theory and we refer to
the paper Accardiet al.(1996) for a synthetic description, to Accardiet al.(1999)
for more recent results, to Accardiet al. (1990) and Accardi and Lu (1960) for
mathematical details, and to Accardiet al. (2001) for a systematic exposition.

2. THE SINGLE-ELECTRON PROBLEM

In these notes we discuss a model ofN < ∞ charged interacting particles
concentrated around a two-dimensional layer contained in the (x, y)-plane and
subjected to a uniform electric fieldE = E ĵ , alongy, and to an uniform magnetic
field B = Bk̂ alongz.

The Hamiltonian for the freeN electronsH (N)
0 , is the sum ofN contributions:

H (N)
0 =

N∑
i=1

H0(i ) (4)

whereH0(i )describes the minimal coupling of theith electrons with the field:

H0(i ) = 1

2m

(
p+ e

c
A(ri )

)2
+ eE · r i (5)

To H (N)
0 we still have to add the interaction with the background and, then,

the free Hamiltonian for the background itself. This will be made in the following
section.

We fix the Landau gaugeA = −B(y, 0, 0). In this gauge the Hamiltonian
becomes

H0(i ) = 1

2m

[(
px − eB

c
y

)2

+ p2
y

]
+ eEy (6)

which, obeys the commutation rule [px, H0] = 0. The solutions of the eigenvalue
equation for the single-charge Hamiltonian (6)

H0ψnp(r ) = εnpψnp(r ), n ∈ N, p ∈ Z (7)

(where the double index is due to the fact that, two quantum numbers are necessary
to fix the eigenstate) are known, (Accardiet al., 1990; Accardi and Lu, 1960), to be
of the form:ψ(r ) = Ceikxϕ(y), whereC is a normalization constant fixed by the
geometry of the system. Using this factorization, the time-independent Schr¨odinger
equation (7) can be rewritten as an harmonic oscillator equation(

1

2m
p2

y +
1

2
mω2(y− y0)2

)
ϕ(y) = ε′ϕ(y) (8)
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depending on the parameters

ω = eB

mc
; ε′ = ε − h2k2

2m
+ 1

2
mω2y2

0;

y0 = 1

mω2
(h2kω − eE); ε = k2

2m
− 1

2
mω2y2

0 (9)

wherek is the momentum along thex-axis. If we require periodic boundary con-
dition on x, ψ(−Lx/2, y) = ψ(Lx/2, y), for almost ally, we also conclude that
the momentumk alongx, cannot take arbitrary values but must be quantized. In
particular, if the system is infinitely extended alongy, then all the possible, values
of k are

k = 2π

Lx
p, p ∈ Z (10)

Normalizing the wave functions in the strip [−Lx/2, Lx/2]× R, we finally get

ψnp(r ) = ei 2πpx
Lx√
Lx
ϕn
(
y− y(p)

0

)
εnp = hω(n+ 1/2)− eE

2mω2

(
eE− hhωπp

Lx

)
(11)

whereϕn is thenth eigenstate of the one-dimensional harmonic oscillator,ω and
y0 are given by (9), andp is fixed by (10).

Equation (11) shows that the wave functionψnp(r ) factorizes in ax-dependent
part, which is labeled by the quantum numberp, and a part, only depending ony,
which is labeled by bothn and p due to the presence ofy(p)

0 in the argument of the
functionϕn.

It may be interesting to remark that whenE = 0 the model collapses to the
one of a simple harmonic oscillator, see Girvin (1999) and Bagarelloet al., (1993)
for instance, and an infinite degeneracy inpof each Landau level (nfixed) appears.
Following the usual terminology we will calllowest Landau level(LLL) the energy
level corresponding ton = 0.

3. THE SECOND QUANTIZED MODEL

The HamiltonianH (N)
0 contains the interaction of the electrons with the elec-

tric and the magnetic field. In this paper we add the Fr¨ohlich interaction of the
electrons with a background bosonic field. The free Hamiltonian of the background
boson field is

H0,R =
∫
ω(k)b+(k)b(k) dk (12)
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whereω(k) is the dispersion for the free background. Its analytical form will be
kept general in this paper.

The electron–background interaction is given here by the Fr¨ohlich Hamilto-
nian (Strocchi, xxxx)

Heb=
∫
ψ†(r )ψ(r )F̃(r − r ′)φ(r ′) dr dr ′ (13)

whereψ(r ) andφ(r ′) are respectively the electron and the bosonic fields, whileF̃
is a form factor. Expandingφ(r ′) in plane waves,ψ(r ) in terms of the eigenstates
ψα(r ), see (11), introducing the form factors

gαβ(k) := 1√
(2π )2

V̂αβ(k)√
2ω(k)

(14)

where

V̂αβ ′ (k) :=
∫
ψα(r )eik·rψβ ′(r ) dr (15)

and takingF̃(r ) = e2δ(r ) (Strocchi, xxxx), we can write

Heb= e2
∑
αβ

a+α aβ
(
b(gαβ)+ b+(gβα)

)
(16)

which is quadratic in the fermionic operatorsaα, a+α are fermionic operators
satisfying

{aα, aβ} = {a+α , a+β } = 0 {aα, a+β } = δαβ (17)

The boson operatorsb(k) satisfy the canonical commutation relations:

[b(k), b+(k′)] = δ(k− k′) [b(k), b(k′)] = [b+(k), b+(k′)] = 0 (18)

The form factorsgαβ depend on the level indices (α, β). Notice that we have
adopted here and in the following the simplifying notation for the quantum numbers
α = (nα, pα) and that we have introduced the smeared operators

b(gβα) =
∫

dk b(k)gβα(k) (19)

In terms of the fermion operators, the free electron Hamiltonian (4) becomes

H0,e =
∑
α

εαa+α aα (20)

whereεα the are the single-electron energies, labeled by the pairsα = (n, p) as
explained in formula (11).

Therefore, the total Hamiltonian is

H = H0,e+ H0,R+ λHeb= H0+ λHeb (21)
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4. THE STOCHASTIC LIMIT OF THE MODEL

In this section we briefly outline how to apply the stochastic limit procedure
to the model introduced above. The stochastic limit describes the dominating
contribution to the dynamics in time scales of the ordert/λ2, whereλ is the
coupling constant. Thestochastic golden ruleis a prescription which, given a
usual Hamiltonian equation, allows to write, with a few simple calculations, the
Langevin and the master equation (Accardiet al., 1990, 1996, 2001; Accardi
and Lu, 1960). In this paper we will be mainly concerned with the master
equation.

The starting point is the Hamiltonian (21) together with the commutation
relations (17) and (18). Of course, the Fermi and the Bose operators commute.
The interaction HamiltonianHeb for this model is given by (16) and the free
HamiltonianH0 is given by (20), (12), and (21).

The time evolution ofHeb, in the interaction picture is then

Heb(t) = ei H0t Hebe
−i H0t

= e2
∑
αβ

a+α aβ
(
b
(
gαβe−i t (ω−εαβ)

)+ b+
(
ḡβαeit (ω−εβα )

))
(22)

where

εαβ = εα − εβ (23)

Therefore, the Schr¨odinger equation in interaction representation is

∂tU
(λ)
t = −iλHeb(t)U

(λ)
t (24)

After the time rescalingt → t/λ2, Eq. (24) becomes

∂tU
(λ)
t/λ2 = − i

λ
Heb(t/λ

2)U (λ)
t/λ2 (25)

whose integral form is

U (λ)
t/λ2 = I− i

λ

∫ t

0
Heb(t

′/λ2)U (λ)
t ′/λ2 dt′ (26)

We see that the rescaled Hamiltonian

1

λ
Heb(t/λ

2) = e2
∑
αβ

a†ααβ
1

λ
b
(
e−i t

λ2 (ω−εαβ )gαβ
)+ h.c. (27)

depends on the rescaled fields

bαβ,λ(t) = 1

λ
b
(
e−i t

λ2 (ω−εαβ )gαβ
)

(28)
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The first statement of the stochastic golden rule see Accardiet al. (2001) is that
the rescaled fields converge (in the sense of correlators) to a quantum white noise

bαβ(t) = lim
λ→0

1

λ
b
(
gαβe−i t

λ2 (ω−εαβ )) (29)

characterized by the following commutation relations

[bαβ(t), bα′β ′ (t
′)] = [b+αβ(t), b+α′β ′ (t

′)] = 0 (30)

[bαβ(t), b+α′β ′ (t
′)] = δεαβ ,εα′β′ δ(t − t ′)Gαβα′β ′ (31)

where the constantsGαβα′β ′ are given by

Gαβα′β ′ =
∫ ∞
−∞

dτ
∫

dkgαβ(k)gα′β ′ (k)ei τ (ω(k)−εαβ )

= 2π
∫

dkgαβ(k)gαβ(k)δ(ω(k)− εαβ) (32)

will be denoted byη0. The vacuum of the master fieldsbαβ(t)

bαβ(t)η0 = 0 ∀αβ, ∀t (33)

Moreover, the appearance ofδεαβ,εα′β′ in the commutator (31) and of theδ-function
in (32) is a first indication of the relevance of the integer numbers for this model.
This point will be better clarified in the following and will be relevant in the
computation of the conductivity tensor.

The limit Hamiltonian is, then, see Accardiet al. (2001).

H (sl)
eb (t) = e2

∑
αβ

(a+α aβbαβ(t)+ h.c.) (34)

In this sense we say thatH (sl)
eb (t) is the “stochastic limit” ofHeb(t) in (22). Moreover,

the stochastic limit of the equation of motion is (25)

∂tUt = −i H (sl)
eb (t)Ut (35)

or, in integral form,

Ut = I− i
∫ t

0
H (sl)

eb (t ′)Ut ′ dt′ (36)

Finally, the stochastic limit of the (Heisenberg) time evolution of any observ-
ableX of the system is

jt (X) = U+t XUt = U+t (X ⊗ 1R)Ut (37)

Since thebαβ(t) are quantum white noises, Eq. (35), and the corresponding differ-
ential equation forjt (X̃), are singular equations and to give them a meaning we
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bring them in normal form. This normally ordered evolution equation is calledthe
quantum Langevin equation. Its explicit form is

∂t jt (X) = e2
∑
αβ

{ jt ([a+α aβ , X]0αβ− − 0αβ− [a+β aα, X])}

+ie2
∑
αβ

{b+αβ(t) jt ([a
+
β aα, X]) + jt ([a

+
α aβ , X])bαβ(t)} (38)

where

0
αβ
− :=

∑
α′β ′

δεαβ ,εα′β′a
+
β ′aα′G

αβα′β ′
− (39)

Gαβα′β ′
− =

∫ 0

−∞
dτ
∫

dkgαβ(k)gα′β ′ (k)ei τ (ω(k)−εαβ )

= 1

2
Gαβα′β ′ − i P.P.

∫
g(k)
αβg(k)

α′β ′
1

ωk − εαβ (40)

The master equation is obtained by taking the mean value of (38) in the state
η

(ξ )
0 = η ⊗ ξ, ξ being a generic vector of the system. This gives

〈∂t jt (X)〉
η

(ξ )
0
= e2

∑
αβ

〈 jt ([a+α aβ , X]0αβ− − 0αβ+− [a+β , aα, X])〉
η

(ξ )
0

(41)

and from this we find for the generator

L(X) = e
∑
αβα′β ′

δεαβ ,εα′β′ {[a+α aβ , X]a+β ′aα′G
αβα′β ′
−

−a+α′aβ ′ [a
+
β aα, X]Gαβα′β ′

− } (42)

The expressions forL(X) obtained above will be the starting point for our
successive analysis.

5. THE CURRENT OPERATOR IN SECOND QUANTIZATION

The current is proportional to the sum of the velocities of the electrons:

EJ3(t) = αc

N∑
i=1

d

dt
ERi (t) (43)

Here3 is the two-dimensional region corresponding to the physical layer,
αc is a proportionality constant which takes into account the electron charge, the
area of the surface of the physical device and other physical quantities, andERi (t)
is the position operator for theith electron. Moreover,N is the number of electrons
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contained in3. Defining

EX3(t) =
N∑

i=1

ERi (t) (44)

we conclude that

EJ3(t) = αc ĖX3(t) (45)

SinceEX3 is a sum of single-electron operators its expression in second quantization
is given by

EX3 =
∑
γµ

EXγµa+γ aµ (46)

where

EXγµ = 〈ψγ , EX3ψµ〉 =
∫
ψγ (r )rψµ(r ) dr (47)

Recall that theψγ (r ) are the single-electron wave functions given by (11) andaα
anda+α satisfy the anticommutation relations (17).

The next step consists in computing the matrix elements (47). This can be
done exactly, due to the known expression forψγ (r ), even without restricting the
analysis to the LLL. In fact the two components ofEXγµ in (47) have the form:

X(1)
γµ =

1

Lx

∫ Lx/2

−Lx/2
x e2π i (pµ−pγ )x/Lx dx

.

∫ +∞
−∞

ϕnγ

(
y− y(pγ )

0

)
ϕnµ

(
y− y

(pµ)
0

)
dy (48)

X(2)
γµ =

1

Lx

∫ Lx/2

−Lx/2
e2π i (pµ−pγ )x/Lx dx

.

∫ +∞
−∞

yϕnγ

(
y− y(pγ )

0

)
ϕnµ

(
y− y

(pµ)
0

)
dy (49)

and these integrations can be easily performed by making use of the following
formulas (cf. Cohen-Tannoudjiet al., 1977; Gradshteyn and Ryzhik, 1980):∫ +∞

−∞
dx e−x2

Hm(x + y)Hn(x + z) = 2n√πm!zn−m · Ln−m
m (−2yz) (50)

if m≤ n, and∫ +∞
−∞

ϕn(y)yϕm(y) dy=
√

h

2mn
[
√

m+ 1δn,m+1+
√

mδn,m−1] (51)
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whereHm and Ln−m
m are respectively Hermite and Laguerre polynomials. With

these ingredients we get

X(1)
γµ =

(
1− δpµ pγ

)
(−1)pµ−pγ

Lxe−y2

pµ pγ

2πi (pµ − pγ )
Lγµ (52)

X(2)
γµ = δpµ pγ

{
y

(pγ )
0 δnγ nµ +

√
h

2mω

(√
nµ + 1δnγ ,nµ+1+√nµδnγ nγ−1

)}
(53)

where

Lγµ :=

√

2nγnµ!
2nµnγ ! y

nγ−nµ
pµ pγ L

nγ−nµ
nµ

(
2y2

pµ pγ

)
if nµ ≤ nγ√

2nµnγ !
2nγ nµ!

(− ypµ pγ

)nµ−nγ L
nµ−nγ
nγ

(
2y2

pµ pγ

)
if nγ ≤ nµ

(54)

ypµ pγ :=
√

mω

4h

(
y

(pµ)
0 − y

(pγ )
0

) = π

Lx

√
h

mω
(pµ − pγ ) (55)

Notice that, wheneverpµ = pγ , formula (52) must be interpreted simply asX(1)
γµ =

0.
These results are simpler if we restrict to the LLL. In this case we have

nγ = nµ = 0 and therefore, sinceLa
0(x) = 1, we simply get

X(1)
γµ = (1− δpµ pγ )(−1)pµ−pγ Lx

e−y2
pµ pγ

2π i (pµ − pγ )
(56)

X(2)
γµ = y

(pγ )
0 δoµ pγ (57)

To show how these results can be useful in the computation of the electron current
we start noticing that, if% is a state of the electron system, then

〈 EJ3(t)〉% = αc

〈
d

dt
EX3(t)

〉
%

= αc〈L( EX3(t))〉% = αcTr(%L( EX3(t))) (58)

The vector〈 EJ3(t)〉 will be computed in the next section for a particular class of
states%, and we will use this result to get the expressions for the conductivity
tensor and for its inverse, the resistivity matrix.

6. THE FINE TUNING CONDITION AND THE RESISTIVITY TENSOR

In this section we will use formula (58) above in order to obtain the con-
ductivity and the resistivity tensors. To do this we begin computing the electric
current. We first need to findL( EX3), L being the generator given in (42). Since
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EX3 = EX†3, we have

L( EX3) = L1( EX3)+ h.c.

where, as we find after a few computations,

L1( EX3) = e2
∑

αβα′β ′,γ

δεαβ ,εα′β′G
αβα′β ′
−

( EXβγ a+α aγa+β ′aα′ − EXγαa+γ aβa+β ′aα′
)

(59)

In the present paper we consider a situation of zero temperature and we compute
the mean value ofL1( EX3) on a FockN–particle stateψI :

ψI = a+i1 . . .a
+
i NI
ψ0, i k 6= i l , ∀k 6= l (60)

whereI is a set of possible quantum numbers (I ⊂ (N0, Z)), NI is the number of
elements inI andψ0 is the vacuum vector of the fermionic operators,aαψ0 = 0
for all α. The order of the elements ofI is important to fix uniquely the phase of
ψI . Equation (58) gives now

〈ψI , EJ3(t)ψI 〉|t=0 = αc〈ψI , L( EX3)ψI 〉 (61)

Introducing now the characteristic function of the setI,

χI (α) =
{

1 if α ∈ I

0 if α /∈ I
(62)

we get

〈a†γaαψI , a†β ′aα′ψI 〉 = δαγ δα′β ′χI (α)χI (α
′)+ δαα′δγβ ′χI (α)(1− χI (γ )). (63)

Using this equality, together with

δεαβ ,εα′α′ = δεα ,εβ δεαβ ,εαβ′ = δεβ ,εβ′ (64)

we find that the average current is proportional to

〈L( EX3)〉ψI = L1( EX3)+ L2( EX3) (65)

where we isolate two contributions of different structure:

L1( EX3) = e2
∑
αβα′

δεα ,εβ {χI (α)− χI (β)} · χI (α
′)(EXαβGαβα′α′

− + ExβαGαβα′α′
− ) (66)

L2( EX3) = e2
∑
αββ ′

δεβ ,εβ′ { EXββ ′ [Gαβαβ ′
− χI (α)(1− χI (β

′))

−Gβαβ ′α
− χI (β

′)(1− χI (α))] − EXβ ′β [Gβαβ ′α
− χI (β

′)(1− χI (α))

−Gαβαβ ′
− χI (α)(1− χI (β

′))]} (67)
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Remark 6.1. It is interesting to notice that if we replaceδεα ,εβ by δα,β and
δεβ ,ε′β by δβ,β ′ , then we easily obtain〈L(X(1)

3 )〉 = 0, which would imply that no
current transportation is compatible with this constraint. This means that this
approximation (takingα = β andβ = β ′ means to consider only one among the
many contributions in the sums in (66), (67)!) is too strong and must be avoided
in order not to get trivial results.

Using Eqs. (52) and (53) forX(i )
γµ we are able to obtainL1(X(i )

3 ) andL2(X(i )
3 ),

i = 1, 2. First of all we can show that, even ifL1(X(1)
3 ) is not zero, nevertheless it

does not depend on the electric field. Therefore
∂

∂E
L1
(
X(1)
3

) = 0 (68)

Secondly, the computation ofL2(X(1)
3 ) gives rise to an interesting phenomenon:

due to the definition ofX(1)
γµ, the sum in (67) is different from zero only ifpβ 6= pβ ′ .

Moreover, we also must haveεβ = εβ ′ , that is

nβ − nβ ′ = 2πeE

mω2Lx
(pβ ′ − pβ) (69)

This equality can be satisfied in two different ways: let us denoteR the set of
all possible quotients of the form (nβ − nβ ′ )/(pβ ′ − pβ). This set, in principle,
coincides with the set of the rational numbers. Therefore, 0∈ R. Then

(1) if 2πeE
mω2Lx

is not inR, (69) can be satisfied only ifβ = β ′. But this condition
implies in particular thatpβ = pβ ′ , and we know already that whenever
this condition holds, thenX(1)

ββ ′ = 0, so thatL2(X(1)
3 = 0).

(2) If 2πeE
mω2Lx

is inR, then we have two possibilities: the first one is again

β = β ′
which, as we have just shown, does not contribute toL2(X(1)

3 ) = 0. The
second is

nβ − nβ ′

pβ ′ − pβ
= 2πeE

mω2Lx
(70)

which gives a nontrivial contribution to the current.

Therefore, we can state the following

Proposition 1. In the context of Model (21) there exists a set of rational numbers
R with the following property: if the electric and the magnetic fields are such that
if the quotient

2πeE

mω2Lx

does not belong toR then 〈
J(1)
3 (t)

〉
ψI
= 0
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On the other hand, if condition (70) is satisfied, we can conclude that the sum
6αββ ′δεβ ,εβ′ (. . .) in (67) can be replaced by

∑
αββ ′

δεβ ,εβ′ (. . .) =
∑
α

′∑
ββ ′

(. . .) (71)

where6α6′ββ means that the sum is extended to all theα and to thoseβ andβ ′

with pβ 6= pβ ′ satisfying (70) (which automatically implies thatεβ = εβ ′ ).
Since, as it is easily seen,gαβ(k)gα′β ′ (k) does not depend onEE, we find that

∂

∂E
Gαβα′β ′
− = −i

he

mωLx
(pα − pβ)3αβα′β ′

− (72)

where

3
αβα′β ′
− =

∫ 0

−∞
dt
∫

dkgαβ(k)gα′β ′ (k)ei τ (ω(k)−εαβ ) (73)

so that, using also (71), we get

∂

∂E
L2
(
X(1)
3

) = he

mωLx
2x (74)

where

2x :=
∑

a

′∑
ββ ′

(pβ − pα)x̃(1)
ββ ′ {χI (α)(1− χI (β

′)) · (3αβαβ ′
− +3αβαβ ′

− )

−χI (β
′)(1− χI (α))(3βαβ ′α

− +3βαβ ′α
− )} (75)

and

x̃(1)
ββ ′ = i X (1)

ββ ′ (∈ R) (76)

Therefore, we conclude that

∂

∂E

〈
J(1)
3 (t)

〉
ψI
= αche3

mωLx
2x (77)

Let us now compute the second component of the average current:
〈ψI , L(X(2)

3 )ψ0〉 = L1(X(2)
3 )+ L2(X(2)

3 ).
The first contribution is easily shown, from (66) and (53), to be identically

zero, since

δεα ,εβ δpα pβ = δαβ (78)

On the contrary the second term,L2(X(2)
3 ), is different from zero and it has

an interesting expression: in fact due to the factorδpµ, pγ , the only nontrivial con-
tributions in the sum6ββ ′δεβ ,εβ , in (67), are exactly those withβ = β ′. Taking all
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this into account, we find that

L2

(
X(2)
3

)
= e2

∑
αβ

(
y

(pβ )
0 − y(pα )

0

)
χI (α)(1− χI (β))(Gαβαβ

− + Gαβαβ
− ) (79)

which is different from zero. Furthermore, using (72), we get

∂

∂E
L2
(
X(2)
3

) = −2e3

(
h

mωLx

)2

2y

were we have defined

2y =
∑
α,β

(pα − pβ)2χI (α)(1− χI (β))J(3αβαβ
− ) (80)

and3αβαβ
− is given by (73). If we call now

jx,E =
∂
〈
J(1)
3 (t)

〉
ψI

∂E
|t=0 = αc

∂
〈
L(X(1)

3 )
〉
ψI

∂E

jy,E =
∂
〈
J(2)
3 (t)

〉
ψI

∂E
|t=0 = αc

∂
〈
L(X(2)

3 )
〉
ψI

∂E

we obtain the conductivity tensor (see Chakraborty and Pietil¨ainen, 1988)

σxx = σyy = j y,E σxy = −σyx = jx,E (81)

and the resistivity tensor

ρxx = ρyy = σyy

σ 2
yy+ σ 2

xy

, ρxy = −σyx = σxy

σ 2
yy+ σ 2

xy

(82)

After minor computations we conclude that

ρxy =


0 if 2πeE

mω2Lx
/∈ R

mωLx
2e3hαc

2x[
22

x+
(

h
mωLx

)2
22

y

] if 2πeE
mω2Lx

∈ R (83)

ρxx =


− (mωLx

h

)2 1
2αce32y

if 2πeE
mω2Lx

/∈ R
− 1

2e3αc

2y[
22

x+
(

h
mωLx

)2
22

y

] if 2πeE
mω2Lx

∈ R (84)

We want to relate these results with the experimental graphs concerning the
components of the resistivity tensor, see Girvin (1999). To avoid confusions, let
us remark that our choice for the direction of the electric field, they-axis, is not
the usual one, thex-axis, see Girvin (1999). Therefore, in our notation, the Hall
resistivity is reallyρxx, while ourρxy corresponds to thexx component ofρ as
given in Girvin (1999).
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Let us now comment these results that are consequences of the basic relation
(70). As it is evident from the formula above, the fact that thefine tuning condition
(FTC) ( 2πeE

mω2Lx
∈ R) is satisfied implies thatρxy 6= 0, so that the resistivity tensor

is nondiagonal. Vice versa, if the FTC is not satisfied, thenρ = ρxxI, I, being
the 2× 2 identity matrix. This implies that, whenever the FTC holds, then thex-
component of the mean value of the density current operator is in general different
from zero, while it is necessarily zero if the FTC is not satisfied.

If the physical system is prepared in such a way that2πeE
mω2Lx

∈ R, then an
experimental device should be able to measure a nonzero current along thex-axis.
Otherwise, this current should be zero whenever2πeE

mω2Lx
/∈ R. A crucial point is

now the determination of the setR, of rational numbers. From a mathematical
point of view, all the natural integersnα and all the relative integerpα are allowed.
However, physics restricts the experimentally relevant values to a rather small set.
In fact eigenstates corresponding to high values ofnα and pα are energetically
not favored because the associated eigenenergiesεnα pα , in (11) increases and the
probabilities of finding an electron in the corresponding eigenstate decrease (this is
a generalization of the standard argument that restrict the analysis of the fractional
QHE to the first few Landau levels). Moreover, high positive values of−pα are
not compatible with the fact thatH0 must be bounded from below, to be a “honest”
Hamiltonian.

Therefore, in formula (70) not all the rational numbers are physically allowed
but only those compatible with the above constraints. For this reason it is quite
reasonable to expect that the setR consists only of afinite setof rational values.
The determination of this set strongly depends on the physics of the experimental
setting and we shall discuss it in a future paper.

We end this section, and the paper, with the following two remarks.

The sharp values of the magnetic field involved in the FTC may be a consequence
of the approximation intrinsic in the stochastic limit procedure, which consists
in taking λ→ 0 andt →∞. In intermediate regions (λ > 0 andt < ∞), it
is not hard to imagine that theδ-function giving rise to the FTC becomes a
smoother function.

Under special assumptions on theB-dependence of2x and2y, together with
some reasonable physical constraint on the value of the magnetic field, it is not
difficult to check thatρxx has plateaux, corresponding to the zeros ofρxy and
that, outside of these plateaux, it grows linearly withB.

ACKNOWLEDGMENTS

Fabio Bagarello is grateful to the Centro Vito Volterra and to CNR for its
financial support. The authors thank Prof. Toyoda for his interesting comments
and suggestions.



P1: JLS

International Journal of Theoretical Physics [ijtp] pp994-ijtp-473614 November 12, 2003 2:41 Style file version May 30th, 2002

2530 Accardi and Bagarello

REFERENCES

Accardi, L., Frigerio, A., and Lu, Y. G. (1990).Communications in Mathematical Physics131, 537–570.
Accardi L., Kozyrev, S. V., and Volovich, I. V. (1996). Dynamics of dissipative two-state systems in

the stochastic approximation.Physical Review A56 (3).
Accardi, L., Kozyrev, S. V., and Volovich, I. V. (1999). Dynamical origins ofq-deformations, in

QED and the stochastic limit.Journal of Physics A, Mathematical and General32, 3485–3495;
q-alg/9807137.

Accardi, L. and Lu, Y. G. (1960).Communications in Mathematical Physics180, 605–632.
Accardi, L., Lu, Y. G., and Volovich, I. (2001).Quantum Theory and Its Stochastic Limit, Springer,

Berlin.
Bagarello, F., Marchio, G., and Strocchi, F. (1993).Physical Review B48, 5306.
Chakraborty, T. and Pietil¨ainen, P. (1988).The FQHE, Springer, Berlin.
Cohen-Tannoudji, C., Diu, B., and Lal¨oe, F. (1977).Quantum Mechanics, Wiley, New York.
Girvin, S. M. (1999).The Quantum Hall Effect: Novel Excitations and Broken Symmetries, Springer,

Berlin.
Gradshteyn, I. S. and Ryzhik, I. M. (1980).Table of Integrals, Series and Products,Academic Press,

New York and London.
Strocchi, F. (xxxx).Elements of Quantum Mechanics of Infinite Systems, World Scientific, Singapore.


