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The Stochastic Limit of the Frohlich Hamiltonian:
Relations With the Quantum Hall Effect
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We propose a model of an approximatively two-dimensional electron gas in a uniform
electric and magnetic field and interacting with a positive background through the
Frohlich Hamiltonian. We consider the stochastic limit of this model and we find the
guantum Langevin equation and the generator of the master equation. This allows us to
calculate the explicit form of the conductivity and the resistivity tensors and to deduce a
fine tuning conditiorfFTC) between the electric and the magnetic fields. This condition
shows that thex-component of the current is zero unless a certain quotient, involving
the physical parameters, takes values in a finite set of physically meaningful rational
numbers. We argue that this behavior is quite similar to that observed in the quantum
Hall effect. We also show that, under some conditions on the form factors entering in
the definition of the model, also the plateaux and the “almost” linear behavior of the
Hall resistivity can be recovered. Our FTC does not distinguish between fractional and
integer values.

KEY WORDS: stochastic limit; Fohlich Hamiltonian.

1. INTRODUCTION

The Hamiltonian for the quantum Hall effect (QHE) is, see for instance
Bagarelloet al. (1993),

HO = HG™ + (R + HEY) ()

where H{™ is the Hamiltonian for the fre&\ electrons,H{) is the Coulomb
interaction:

HMN =

N
&
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2516 Accardi and Bagarello

and HéN) is the interaction of the charges with the positive uniform background.
In the present paper we consider a model defined by an Hamiltonian

H = Hoe+ Hor + AHep (3)

which is obtained from the Hamiltonian (1) by introducing the following approx-
imations (for a more precise descriptiontdEee the next section):

e the Coulomb background—background interaction is replaced by the free
bosons Hamiltoniatdo g, (12);

¢ the Coulomb electron—electron and electron—-background interaction is re-
placed by the Fotilich HamiltonianHe, (16) which is only quadratic rather
than quartic in the fermionic operators.

These are certainly strong approximations. However since, as explained in
Strocchi (xxxx), from the Fofilich Hamiltonian it is possible, with a canonical
transformation, to recover a quartic interaction, one can say that tidictr”
Hamiltonian describes an effective electron—electron interaction which may mimic
at least some aspects of the original Coulomb interaction. From this point of view
it seems natural to conjecture that some dynamical phenomena deduced from this
Hamiltonian might have implications in the study of the real QHE. There exists
a huge bibliography concerning QHE. Here we refer only to Chakraborty and
Pietilainen (1988) and, for a more recent review, to Girvin (1999).

This conjecture is supported by our main result, given by formulae (83) and
(84) where we deduce, directly from the dynamics, and not from phenomenological
arguments, an obstruction to the presence of a nonzeommponent of the current,
which is quantized according to the values of a finite set of rational numbers. This
resultis, to our knowledge, new and the fact that such a mechanism can arise even
in relatively idealized models of electrical conductivity, seems to be at least worth
of some attention. More precisely we prove thatthr@omponent of the mean value
of the density current operator is necessarily zero unless a certain qu%é&t,(
cf. (9) and (11) for the definition of these parameters), involving the magnitudes
of the physical quantities defining the model, takes a rational value. This is what
we call afine tuning conditiofFTC).

The rational numbers that appear in the FTC are quotients of the Bohr
frequencies of the free single-electron Hamiltonian. It is quite reasonable to expect
that, in a concrete physical situation, only a small number of these frequencies will
play a relevant role for the scale of phenomena involved. In this approximation
we can say that the-component of the mean value of the density current operator
is nonzero only in correspondence of a finite number of rational values of the fine
tuning parameter. This feature will be discussed in Section 6.

The fine tuning condition strongly reminds the rational values of the filling
factor for which the plateaux are observed in the real QHE. Again, in Section 6
we will relate these two facts.
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The specification of the values of these physically relevant rational num-
bers and the comparison with those rational numbers which are experimentally
measured in the QHE, requires a detailed analysis which will be done elsewhere.

We use the technique of the stochastic limit of quantum theory and we refer to
the paper Accardit al. (1996) for a synthetic description, to Accagdial. (1999)
for more recent results, to Accardi al. (1990) and Accardi and Lu (1960) for
mathematical details, and to Accastial. (2001) for a systematic exposition.

2. THE SINGLE-ELECTRON PROBLEM

In these notes we discuss a modelNdok oo charged interacting particles
concentrated around a two-dimensional layer contained inxhg-plane and
subjected to a uniform electric fieEl = Ej, alongy, and to an uniform magnetic
field B = Bk alongz.

The Hamiltonian for the fredl eIectronsHéN), is the sum oN contributions:

N
HE™ = 3 Ho(i) (4)
i=1
whereHo(i )describes the minimal coupling of titl electrons with the field:
) 1 e 2
Holi) = 5= (P+ CAM)) +eE-r, (5)

To HéN) we still have to add the interaction with the background and, then,
the free Hamiltonian for the background itself. This will be made in the following
section.

We fix the Landau gaugé = —B(y, 0, 0). In this gauge the Hamiltonian
becomes

2
Hol) = 5 [(p -y) + ps} +eEy ©

which, obeys the commutation rulg,{, Ho] = 0. The solutions of the eigenvalue
equation for the single-charge Hamiltonian (6)

HO‘/fnp(L) = Snplﬂnp([)a neN,peZ (7)

(where the double index is due to the fact that, two quantum numbers are necessary
to fix the eigenstate) are known, (Accaedlal,, 1990; Accardi and Lu, 1960), to be

of the form:y(r) = C&*¢(y), whereC is a normalization constant fixed by the
geometry of the system. Using this factorization, the time-independerda@nber
equation (7) can be rewritten as an harmonic oscillator equation

(5P + Mo = 307 o) = £009) ©
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depending on the parameters

=S8 oo h2k2+1m 2y2
“Tme T om T2
1 2 . k? 1 2\,2
yo—@(h ka)—eE), 8—%—§ma) yO (9)

wherek is the momentum along theaxis. If we require periodic boundary con-
dition onx, ¥(—Lx/2,y) = ¥(Lx/2,Y), for almost ally, we also conclude that
the momentunk alongx, cannot take arbitrary values but must be quantized. In
particular, if the system is infinitely extended algnghen all the possible, values
of kare

k="p pez (10)

Normalizing the wave functions in the strip L«x/2, Lx/2] x R, we finally get

i 2 px

€ ©)
Ynp(r) = onlY —
np(1) T n(y Yo )
eE hh
enp = ho(n +1/2) = 5= (eE— I‘_‘)X”p> (11)

whereg;, is thenth eigenstate of the one-dimensional harmonic oscillai@nd
Yo are given by (9), ang is fixed by (10).

Equation (11) shows that the wave functigr(r ) factorizes in -dependent
part, which is labeled by the quantum numpeand a part, only depending on
which is labeled by both and p due to the presence gigp) in the argument of the
functiong,.

It may be interesting to remark that whé&n= 0 the model collapses to the
one of a simple harmonic oscillator, see Girvin (1999) and Bagagehd, (1993)
for instance, and an infinite degeneracpiof each Landau leveh(fixed) appears.
Following the usual terminology we will cdtbwest Landau levgLLL) the energy
level corresponding ta = 0.

3. THE SECOND QUANTIZED MODEL

The HamiltoniarHéN) contains the interaction of the electrons with the elec-
tric and the magnetic field. In this paper we add thehfich interaction of the
electrons with a background bosonic field. The free Hamiltonian of the background
boson field is

Hor = / o(K)b* (K)b(k) dk (12)
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wherew(K) is the dispersion for the free background. Its analytical form will be
kept general in this paper.

The electron—background interaction is given here by tloalkefi Hamilto-
nian (Strocchi, xxxx)

Hep = f P OVOEE — 1)) drdr’ (13)

wherey (r) andé(r’) are respectively the electron and the bosonic fields, while
is a form factor. Expanding(r’) in plane wavesy (r) in terms of the eigenstates
¥q(r), see (11), introducing the form factors

1 Vas(o
gaﬁ(l_() = (271_)2 Za)(K) (14)
where
Vg () 1= / T Ly B (1) dr (15)

and takingF (r) = €28(r) (Strocchi, xxxx), we can write
Hen =€)  alas(b(gus) + b* (T5) (16)
op

which is quadratic in the fermionic operatoas, ai are fermionic operators
satisfying
{aw s} =1{a;,8;) =0 {au, a5} =8us (17)
The boson operatotgk) satisfy the canonical commutation relations:
[b(k), b*(K)] = 8(k —K) [b(K), b(k)] = [b"(k),b"(K)] =0  (18)

The form factorsg,s depend on the level indices,(8). Notice that we have
adopted here and in the following the simplifying notation for the quantum numbers
a = (ny, p.) and that we have introduced the smeared operators

b(g) = [ dk BG4 0 (19)
In terms of the fermion operators, the free electron Hamiltonian (4) becomes
Hoe =Y _ cad (20)

whereg, the are the single-electron energies, labeled by the paitqn, p) as
explained in formula (11).
Therefore, the total Hamiltonian is

H= HO,e + HO,R + AHep = Hg + AHep (21)
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4. THE STOCHASTIC LIMIT OF THE MODEL

In this section we briefly outline how to apply the stochastic limit procedure
to the model introduced above. The stochastic limit describes the dominating
contribution to the dynamics in time scales of the ortiér?, wherex is the
coupling constant. Thetochastic golden rulés a prescription which, given a
usual Hamiltonian equation, allows to write, with a few simple calculations, the
Langevin and the master equation (Accaedlial, 1990, 1996, 2001; Accardi
and Lu, 1960). In this paper we will be mainly concerned with the master
equation.

The starting point is the Hamiltonian (21) together with the commutation
relations (17) and (18). Of course, the Fermi and the Bose operators commute.
The interaction HamiltoniarHey, for this model is given by (16) and the free
HamiltonianHy is given by (20), (12), and (21).

The time evolution oHey, in the interaction picture is then

Hep(t) = €' Hepe™ "

= &Y ata;(b(gse D) 4 b (Gt ) (22)
af

where
Eap = Ea — Ep (23)
Therefore, the Sclodinger equation in interaction representation is
8" = —i2Hen®U (24)

After the time rescaling — t/A2, Eq. (24) becomes

[
U = —— Henlt/2%)U)), (25)
whose integral form is
i t
Ui, =1- . /0 Hen(t'/22)U{"),. dt’ (26)

We see that the rescaled Hamiltonian

1 2 T 1 —i L2(6‘)*801 )
xHeb(t/A ) = ezaiﬁ:aaaﬁxb(e B o) + h.C. (27)
depends on the rescaled fields

1 i L (w—¢
by (1) = b2 gyp) (28)
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The first statement of the stochastic golden rule see Acearai (2001) is that
the rescaled fields converge (in the sense of correlators) to a quantum white noise

_jim L i (0—cup)
Dys (t) = l";no i b(g.pe ) (29)
characterized by the following commutation relations
[Dap (1), Do ()] = [b5 (1), by ()] = O (30)
[by(t), bﬁﬁ (t)] = 8c ey S(t — NGHFE (31)

where the constan3*#*#’ are given by

GBYs :/ dt/dkgxﬂ(K)gargr(K)eiT(‘“@_M)

=2n / dkgs(K)Gup (K)S(w(K) — £ap) (32)
will be denoted byyo. The vacuum of the master fieltgs(t)
bus(t)no =0 Vap, vt (33)

Moreover, the appearancedf, .., in the commutator (31) and of tisefunction
in (32) is a first indication of the reIevance of the integer numbers for this model.
This point will be better clarified in the following and will be relevant in the
computation of the conductivity tensor.

The limit Hamiltonian is, then, see Accareli al. (2001).

HEV(t) = €? Z(aa aghys(t) + h.c.) (34)

Inthis sense we saythbléf,"(t) isthe “stochastic limit” oHgy(t) in (22). Moreover,
the stochastic limit of the equation of motion is (25)

nUy = —i HE (1)U, (35)
or, in integral form,
Uy =T—i /O t HE) (t)Up dt! (36)
Finally, the stochastic limit of the (Heisenberg) time evolution of any observ-
able X of the system is
jt(X) = U XU, = U (X ® 1R)U; (37)

Since theb,s(t) are quantum white noises, Eq. (35), and the corresponding differ-
ential equation forj;(X), are singular equations and to give them a meaning we
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bring them in normal form. This normally ordered evolution equation is céied
quantum Langevin equatiofts explicit form is

& ji(X) = € Z{jt<[qaﬁ, XIr*” — r¥[ajfa,, X))}
+e? Z{b s i85 a0, X)) + je([afag, XDbes®)}  (38)

where

P = ey B G (39)
o'’

0 .
G = / dr / Ky (K) Qg (K)E 70—
1 srs 1
= SGPV —iPP. / L —— (40)

2 — Eup

The master equation is obtained by taking the mean value of (38) in the state
(S) =1 ® &, £ being a generic vector of the system. This gives

(B ;X)) 0 = €D (jearas, XIFY =T [a, a,, X))o (41)
af

and from this we find for the generator

LX) =€ Y 8, (a7 a5, X]aga, G
afa’p’

—alaglafa,, X]GPF) (42)

The expressions fdr(X) obtained above will be the starting point for our
successive analysis.

5. THE CURRENT OPERATOR IN SECOND QUANTIZATION

The current is proportional to the sum of the velocities of the electrons:
- Nod -
Ia) = e ; RO 43)

Here A is the two-dimensional region corresponding to the physical layer,
ac Is a proportionality constant which takes into account the electron charge, the
area of the surface of the physical device and other physical quantitie®; &hd
is the position operator for thith electron. Moreovel\ is the number of electrons
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contained inA. Defining

N
Xat) =Y Ri(t) (44)
i=1
we conclude that
Ja(t) = ac XA (L) (45)

SinceX, isasum of single-electron operators its expression in second quantization
is given by

Xa =Y Xy.afa, (46)
yi
where
)zyu = <1//)/7 XAW}L) = f %(L)U/m(i)df (47)

Recall that they, (r) are the single-electron wave functions given by (11) and
anda; satisfy the anticommutation relations (17).

The next step consists in computing the matrix elements (47). This can be
done exactly, due to the known expressionggKr), even without restricting the
analysis to the LLL. In fact the two components)ﬁfu in (47) have the form:

L[ @iten
X :_/ x 1P/ e
Y Lx _L,2
e ) (0
: f on, (Y =30 )en, (¥ = o) dy (48)
—00
@_ L [ anip-pL
X@ = = €2 (PP X Lx i
v Ly /_Lx/z
e ) (p)
: / yon, (Y — Y67 en, (Y — Yo ' )dy (49)
—00

and these integrations can be easily performed by making use of the following
formulas (cf. Cohen-Tannoudjit al., 1977; Gradshteyn and Ryzhik, 1980):

+o00
/ dX € ¥ Hn(X + Y)Hn(X 4+ 2) = 2" /amiz"™ . Ly ™(—2y2) (50)

[e.¢]

if m<n,and

+oo_ h
| oy dy = ool F Dymes + Vbl (6D

o]
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where Hn and L™ are respectively Hermite and Laguerre polynomials. With
these ingredients we get

Lees)s
X(l) =(1-§ -1 Pr—Py &E 52
pn=(1=38pp,)(=1) 271w — ) " (52)

[ h
Xg,zg = Sp“ Py {y(()py)(snynu + m (\/ nM + 18nyvnu+1 + A n/tanynyl)} (53)

where

2hyny! nv_nu Ny =Ny .
. 27un, |Yp,L Py n,[ (Zypup ) if n,<n,
ﬁ}’ﬂ = (54)

2"un,! n,—n, n,-n, 2 .
\V 2vn, (= Youp,) Ln, (2pr py) if n, <n,

o, = g (6 ) = S\ o p - (55)

Notice that, whenevep, = p,, formula (52) must be interpreted simply)ﬁ%i =
0.

These results are simpler if we restrict to the LLL. In this case we have
n, = n, = 0 and therefore, since§(x) = 1, we simply get

XU = (1—5 1)PePr L e 56
= _ —_ " v

(= @0 )PP by (56)
X@ =y 55,5, (57)

To show how these results can be useful in the computation of the electron current
we start noticing that, ip is a state of the electron system, then

. d - . .
Fat), = ac<axA<t)> — ae(L(Kn ) = acTHoL(Za®)  (58)
o

The vector(jA(t)) will be computed in the next section for a particular class of
statesp, and we will use this result to get the expressions for the conductivity
tensor and for its inverse, the resistivity matrix.

6. THE FINE TUNING CONDITION AND THE RESISTIVITY TENSOR

In this section we will use formula (58) above in order to obtain the con-
ductivity and the resistivity tensors. To do this we begin computing the electric
current. We first need to find(X,), L being the generator given in (42). Since
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X, = X!, we have
L(X,) = L1(Xa) + h.c.
where, as we find after a few computations,
Li(X,) = €2 > Sepenn G‘iﬁ“/ﬂ/(f(,gya;a,,a;aa/ — Xyoafagaay) (59)
apa’ By

In the present paper we consider a situation of zero temperature and we compute
the mean value of 1(X,) on a FockN—particle statey, :

i =ar..a Yo, kA, VKA (60)

wherel is a set of possible quantum numbekrs( (Ng, Z)), N, is the number of
elements ifl and4g is the vacuum vector of the fermionic operatagyo = 0
for all «. The order of the elements bfs important to fix uniquely the phase of
¥ . Equation (58) gives now

(1, Ia (O 1 =0 = ac(vr, L(Xa)¥) (61)
Introducing now the characteristic function of the ket

1 if ael

1n@=1q i adl

(62)
we get

(@la, ¥, a;/aa/lﬁl ) = 8aySarp X1 (@) x1 (@) + 8aadyp x1 (@)L = x1 (). (63)
Using this equality, together with

Ssaﬁ,aarmr = Ssu,sﬁ asaﬁ,sdﬂ/ = Bsﬁ,sﬁr (64)
we find that the average current is proportional to
(L(Xa)yy = La(Xa) + L2(Xa) (65)

where we isolate two contributions of different structure:
L1(Xn) = €Y 8e,e, b1 (@) = X1 (B)} - X1 (@) Kap G2 + X G7)  (66)

afa’

Lo(Xn) = €Y 8, 0, (X [GP 31 (@)1 — 11 (B))
app’

—GP 7 (B)(L — 11 (@)] = Xps[ G 3 (B)L — x1 (@)
—G y (@)L — i (BN} (67)
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Remark 6.1. It is interesting to notice that if we replacg, ., by d.,4 and

Seq,e;, DY 85,5/, then we easily obtau(lL(X )}y = 0, which would imply that no
current transportation is compatible with this constraint. This means that this
approximation (takinge = 8 andg = g’ means to consider only one among the
many contributions in the sums in (66), (67)!) is too strong and must be avoided
in order not to get trivial results.

Using Egs. (52) and (53) fok(), we are able to obtalﬁl(x(')) andC,(X (),
i =1, 2. First of all we can show that, evenﬂi(x )|s not zero, nevertheless it

does not depend on the electric field. Therefore
d
— £, (X)) =
SEL(X7) =0 (68)

Secondly, the computation aﬁz(xgl)) gives rise to an interesting phenomenon:
due to the definition oK (), the sum in (67) is different from zero onlyjif; # pg..
Moreover, we also must havg = ¢4, that is

— Pp) (69)

This equality can be satisfied in two different ways: let us defiotihe set of
all possible quotients of the formng — ng)/(ps — Pg). This set, in principle,
coincides with the set of the rational numbers. Therefore,R Then

(1) if Z£E isnotinR, (69) can be satisfied onlyff = . But this condition
|mpI|es in particular thapg = pg, and we know already that whenever
this condmon holds, thex), =0, so tharcz(x‘l) 0).

nﬂ—nﬁ/ =

2 If 2”
B=p
which, as we have just shown, does not contributézt@(%)) =0.The
second is

Ng — Ng _ 2neE
Py —Pp  Mw?ly
which gives a nontrivial contribution to the current.

(70)

Therefore, we can state the following

Proposition 1. Inthe context of Model (21) there exists a set of rational numbers
‘R with the following property: if the electric and the magnetic fields are such that
if the quotient

2rekE
Mw?L
does not belong t® then

(9P),, =



The Stochastic Limit of the Frohlich Hamiltonian 2527

On the other hand, if condition (70) is satisfied, we can conclude that the sum
ZappOeqe (- --) in (67) can be replaced by

D ey ()= () (71)

app’ o BB

whereX, ¥j, means that the sum is extended to all ¢hand to thoseg and g’
with pg # pg satisfying (70) (which automatically implies thag = ¢4/).
Since, as it is easily seeg.s(K)du s (K) does not depend o, we find that

0

he

o aﬂa/ﬂ/ _ s . Ot,BDt/ﬂ/
3E °- Imex(pa P)A” (72)
where
0
A% = [t [ dkgpgp®@e o) (73)
so that, using also (71), we get
ad he
— L (X = = ¢ 74
7 L2 Mol X (74)

where

O i= Y Y (Ps — PR @)L= 1 (B)) - (A7 4 A7)

a pp
—x1 (B = x1 (@)A" + APF) (75)
and
%5 =ix§) (eR) (76)
Therefore, we conclude that
aiE(Jip(t))% _ r‘:}i‘i O, (77)

Let us now compute the second component of the average current:
(Wi, LOXP)wo) = L2(XD) + £2(XD).

The first contribution is easily shown, from (66) and (53), to be identically
Zero, since

ssmsﬁ ) PaPp = 80{/3 (78)

On the contrary the second termg(xf\z)), is different from zero and it has
an interesting expression: in fact due to the faétor, , the only nontrivial con-

tributions in the sunkgg s, ¢, in (67), are exactly those with = g’. Taking all
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this into account, we find that

£2(xP) =& 2006 P~y 01 @)@~ 5 (BNG™ + Gy (79)
which is different from zero. Furthermore, using (72), we get

2 h )\’
—LZ(X( ) = —2¢° <me ) Oy
X

were we have defined

Oy = > (P — Pp)2x1 (@)L — x1 (B)I(ATP) (80)
o,p

and A***” is given by (73). If we call now

(3 )) ” (LX) ”
]X,E = T t=0 = aCT
o 9Pw),, dL(XP)),,
We= "3 o= HE

we obtain the conductivity tensor (see Chakraborty and Rieé&l, 1988)
Oxx = Oyy = jy,E Oxy = —Oyx = jx,E (81)

and the resistivity tensor
Oyy Oxy

Pxx =Pyy = 5 51 Pxy= "Oyx = 5 5 (82)
ogy + oy ogy +ody
After minor computations we conclude that
0 if 2155 ¢ R
Py = Mk B i 2eE R 3)
© [(—)§+(mx) ()2]
Lx\2 1 2neE
o (mar: ) 20630 if mZEL £R
= c) 84
Pxx _28%% y if n%zar)zef eR ( )
[()2+(m{)LX) ()2}

We want to relate these results with the experimental graphs concerning the
components of the resistivity tensor, see Girvin (1999). To avoid confusions, let
us remark that our choice for the direction of the electric field,yHais, is not
the usual one, thr-axis, see Girvin (1999). Therefore, in our notation, the Hall
resistivity is reallypxx, while our pyy corresponds to thex component ofp as
given in Girvin (1999).
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Let us now comment these results that are consequences of the basic relation
(70). As it is evident from the formula above, the fact thatfthe tuning condition
(FTC) (27rEE € R) is satisfied implies tha;bxy # 0, so that the resistivity tensor
is nondlagonal Vice versa, if the FTC is not satisfied, thes pxI, I, being
the 2x 2 identity matrix. This implies that, whenever the FTC holds, therxthe
component of the mean value of the density current operator is in general different
from zero, while it is necessarily zero if the FTC is not satisfied.

If the physical system is prepared in such a way tﬁ@L— € R, then an
experimental device should be able to measure a nonzero current aloagpise
Otherwise, this current should be zero Wheneﬁgﬁi—x ¢ R. A crucial point is
now the determination of the s@&, of rational numbers. From a mathematical
point of view, all the natural integers, and all the relative integeg, are allowed.
However, physics restricts the experimentally relevant values to a rather small set.
In fact eigenstates corresponding to high valuesofind p, are energetically
not favored because the associated eigenenedgigs in (11) increases and the
probabilities of finding an electron in the corresponding eigenstate decrease (this is
a generalization of the standard argument that restrict the analysis of the fractional
QHE to the first few Landau levels). Moreover, high positive values pf are
not compatible with the fact thaty must be bounded from below, to be a “honest”
Hamiltonian.

Therefore, in formula (70) not all the rational numbers are physically allowed
but only those compatible with the above constraints. For this reason it is quite
reasonable to expect that the $&tonsists only of dinite setof rational values.

The determination of this set strongly depends on the physics of the experimental
setting and we shall discuss it in a future paper.

We end this section, and the paper, with the following two remarks.

The sharp values of the magnetic field involved in the FTC may be a consequence
of the approximation intrinsic in the stochastic limit procedure, which consists
in taking A — 0 andt — oo. In intermediate regionsi.(> 0 andt < oc0), it
is not hard to imagine that th&function giving rise to the FTC becomes a
smoother function.

Under special assumptions on tBedependence o®, and ®y, together with
some reasonable physical constraint on the value of the magnetic field, it is not
difficult to check thatoxx has plateaux, corresponding to the zerog,gfand
that, outside of these plateaux, it grows linearly vith
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