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Abstract

We construct a family of classical deterministic dynamical systems (triples formed by a
state space, an initial distribution, a dynamics) parametrized by pairs of vectors (a, b) in the
unit circle in R2. The systems describe pairs of particles and the dynamics is strictly local,

i.e. the dynamics T
(j)
a of particle j = 1, 2 depends only on one of the two unit vectors, but

not on the other. To each particle one associates a family of ±1–valued observables S
(j)
a

(j = 1, 2), also parametrized by vectors a in the unit circle in R2. Moreover we assume that,

if observable S
(j)
a is measured on particle j = 1, 2, then the dynamics of this particle will be

T
(j)
a (chameleon effect).

Using these ingredients we prove that the dynamics and the initial distributions of the

given systems can be chosen in such a way that, if the observable S
(j)
aj is measured on particle

j = 1, 2, then the EPR correlations −cos(a1 − a2) are reproduced.
This theoretical construction is then used to realize the following experiment: a central

computer S (source) sends the same signal to two local computers A and B. After receiving
the signal A (resp. B) chooses one vector a (resp. b) in the unit circle in R2 and computes

the value of the corresponding observable S
(1)
a (resp. S

(2)
b ). These values are uniquely defined

by the deterministic dynamics and the choices are independent of one–another.
The local computers send back to the central one the results of the evaluation of these

±1–valued functions and the central computer evaluates the empirical correlations according
to the usual statistical rules.

As a result the EPR correlations are reproduced with very good approximation and the
Bell inequality is violated by a classical, macroscopic deterministic system performing purely
local choices.

The program to run the experiment is available from the WEB-page: http://volterra.mat.uniroma2.it.

1 Physical interpretation of the experiment

The present paper extends and clarifies the result of the EPR–chameleon experiment, pro-
posed in [?, ?]. The goal of the experiment is (i) to construct a classical, deterministic,
reversible, dynamical system which reproduces the EPR correlations by local choices; (ii)
to use this model to give an experimental proof of the fact that macroscopic systems with
the above mentioned characteristics can violate Bell’s inequalities for principle and not for
contingent reasons.
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We do not pretend our model to be a hidden variable model for the EPR experiments.
Our goal is to prove that Bell’s statement [?]: “... the statistical predictions of quantum

mechanics are incompatible with local predetermination ...” is theoretically and experi-
mentally unjustified if by ”statistical predictions of quantum mechanics” we mean the EPR
correlations and by ”local predetermination” the possibility of reproducing these correlations
by a classical deterministic macroscopic system subject to local choices.

The main hidden mathematical assumption in Bell’s argument was pointed out in [?] (cf.
[?] for a survey) where the nonkolmogorovian character of the EPR correlations was first
noticed and the crucial role played by conditional probability emphasized.

In [?] (cf. also [?, ?]) von Neumann’s measurement theory was extended to include in it
the two basic conditions of locality and causality and the physical principle which allows to
exploit Bell’s hidden mathematical assumption was individuated in the “chameleon effect”:
the dynamics of a system may depend on the observables we want to measure (or, more
generally, on the local environment).

For such systems what you measure is a response to an interaction and therefore, when
dealing with them, one should not speak of platonic (i.e. in principle unobservable) things
such as ”values of non measured observables”, but rather of ”instruction kits telling them
what to do when meeting a measurement apparatus” [?]. This is opposed to ballot box (or
Einstein) reality in which you measure what was there (independently of the environment).

More recently the main idea of the chameleon effect, i.e. that the local interaction with
the apparatus may have observable effects on the global statistics, has been used to construct
models related to the “detection loophole” [?, ?, ?, ?] (cf. [?, ?, ?, ?, ?] for earlier discussions).
In these papers one constructs local hidden variable models in which, by assuming a partial
inefficiency of the detectors, one can riproduce the EPR correlations (or similar).

On the contrary, the dynamical theory of [?] is based on first principles, and does not
introduce contingent limitations of efficiency: even postulating 100% efficiency of all the
instruments involved, because of the chameleon effect, the local deterministic dynamics of
the two particles are different and one can use this freedom to construct examples of local
deterministic classical dynamical systems as specified by:

– a state space (hidden parameters)
– a deterministic dynamics (chameleon effect)
– an initial probability measure (preparation of the experiment)
whose statistics is non classical.
The present paper produces a concrete example of such a system, which reproduces the

EPR correlations hence violates Bell’s inequality. Moreover we give an experimental proof
of its local simulability.

The conceptual and experimental differences between the present approach and the de-
tection loophole are discussed in Section (??) below. Beyond the physical considerations,
discussed in this section, there is also a mathematical argument that proves the disjoint na-
ture of the two topics concerning coincidences and efficiency of the detectors. In all papers
involving efficiencies of detectors, these are explicitly built into the model. On the contrary,
as anybody can verify looking at Section (??) below, in our mathematical model nei-
ther inefficiencies nor coincidences play any role. We have only a deterministic
dynamics and an initial probability distribution. It is only at the simulation level that
the natural interpretation of the local factors as conditional probabilities over coincidences
emerges. This is because a factor 2π, appearing in a change of variables both in numerator
and denominator is simplified in the calculations but must not be simplified in order to
allow local simulation (cf. Section (2), (3), (4)).
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Our experiment describes the following classical dynamical system. A source C (cen-
tral computer) produces pairs of particles (S1, S2) which travel in different directions and
after some time, each particle interacts with a measurement apparatus (M1,M2). By the
chameleon effect the dynamical evolution of each particle depends on the setting of the
nearby apparatus, but not on the setting of the apparatus interacting with the other particle
(locality).

Even if, as just stated, our model has not the pretense to mimick the real singlet ex-
periments, an analogy with them will be useful for the intuition of what is going on in it.
In this analogy one can interpret (S1, S2) as a pair of photons and M1, M2 as polarizers.
The detector and the coincidence counters as well as the space–time trajectories of the two
particles are not explicitly modeled in our dynamical system.

Following the standard prescriptions of (von Neumann) measurement theory, we model
the joint evolution of the system S = (S1, S2) (i.e. the two particles) and the apparatus M =
(M1,M2) (i.e. the two measurement apparata). We want to incorporate in von Neumann’s
scheme of measurement the two requirements of locality and causality. The local structure
of our dynamical system will be reflected in the model through:

(i) a local structure of the initial state (probability measure) of the composite (S,M) system
(cf. (??))

(ii) a local structure of the dynamics of the sub–systems (S1,M1) (particle 1, apparatus 1),
(S2,M2) (cf. (??), (??), (??)).

We formulate these locality conditions only in the classical case and for our specific model,
but there is no difficulty in rephrasing them so to include the general (classical and quantum)
case.

We assume that, at the moment of emission from the source, the two particles are in the
same (microscopic) state (cf. (??)) and that the state of the apparatus is not changed by
the interaction with the particle. For example, if the polarizer was oriented in direction a
before interacting with the photon, the same will be true after interaction (cf. (??), (??)).

The causality condition is reflected in the fact that the initial state of (S1, S2) does not
depend on the settings of the apparata M1, M2: in fact, at the time of emisison from the
source, the particles cannot know which measurements will be done on them.

We assume moreover that the dynamics of the two sub–systems (S1,M1), (S2,M2) are
independent, i.e. either sub–system does not feel the influence of the other one. This is the
locality condition as formulated by EPR, Bell,... . We discretize time and consider only the
initial and final time of the experiment.

To each particle S1, S2 we associate a set of observables

{S(1)
a : a ∈ [0, 2π}} ; {S(2)

b : b ∈ [0, 2π]}

These observables are modeled by functions defined on a space Ω and with values +1 or −1.
In our model just as for photons, the actual detection takes place after interaction with

the polarizers. Thus, if experimenters 1, 2 want to measure S
(1)
a , S

(2)
b respectively then they

will prepare the polarizer (or magnet) 1, 2 oriented in direction a (resp. b). In other words
the initial state of the polarizer depends on the observable we want to measure. Since the
particle interacts with the polarizer, the same will be true for its dynamics. In other words:
the chameleon effect is a natural consequence of standard measurement theory.

Another consequence of what just said is that the state of the composite system (S1, S2,
M1,M2) will depend on the pair of measurements a, b. This is the known contextuality
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requirement but, as shown in section (??), by itself this is by far not sufficient to rule out
the validity of Bell’s inequality: for this a more subtle analysis is required.

Because of the different dynamics (chameleon effect) the two particles have different
trajectories hence even if they leave the source at the same time, they do not necessarily
interact simultaneously with the corresponding apparatus. When they do we say that a
coincidence takes place. In agreement with what is done in all the EPR type experiments
also in our experiment the statistical countings are conditioned on coincidences because the
correlations are equal time correlations: this also assures that only photons coming from
entangled pairs are considered in the correlations. Since the measurement apparata are
approximatively equidistant from the source, if the time interval between the emission of
two consecutive pairs is much larger than the coincidence interval (i.e. the time interval
within which two events are considered as simultaneous) then, assuming 100% efficiency of
the detectors and of the clocks (what we will always do in the present paper), we can be sure
that only particles belonging to the same pair can give rise to coincidences.

In EPR type experiments coincidences are measured either with very precise clocks (co-
incidence intervals of order of nanoseconds) as in [?] or by direct connection of the polarizers
to a coincidence counter, as in [?]. The former technique allows a larger space separation
among the polarizers (a feature which is relevant for quantum cryptography); the latter, as
advocated in [?], improves precision in the coincidence counting.

If the initial state of the two particles is chosen at random, also the number of coincidences
will be random. Assuming reasonable ergodic properties of the system, we can expect that
this number will have small fluctuations around its mean value.

In our model this mean value is independent of any special choice, in particular it does
not depend on the setting of the far away apparata. Also this fact is in agreement with the
experimental fact that: the size of the selected sample is found constant [?].

2 A local, deterministic, reversible, classical dy-

namical system realizing the EPR correlation

In this section we describe the mathematical model on which the computer experiment is
based. According to the general description of the chameleon effect [?, ?] we need an initial
probability measure and a dynamics. We construct these objects in the present section and
we will discuss their interpretation in the following sections.

Define, for σ1, σ1 ∈ [0, 2π], the functions

T ′1,a(σ1) =

√
2π

4
| cos(σ1 − a)|, T ′2,b(σ2) =

√
2π (1)

and define the maps (dynamics)

T1,a(p1) = (s1,a(p1),m1,a(p1)) , T2,b(p2) = (s2,b(p2),m2,b(p2)) (2)

p1 = (σ1, λ1) ; s1,a(σ1, λ1) = σ1, m1,a(σ1, λ1) = λ1
1

T ′1,a(σ1)
(3)

p2 = (σ2, λ2) ; s2,b(σ2, λ2) = σ2, m2,b(σ2, λ2) = λ2
1

T ′2,b(σ2)
(4)
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Define moreover the measures (σ1, λ1, σ2, λ2 ∈ [0, 2π]):

pS(σ1, σ2) =
1

2π
δ(σ1 − σ2)dσ1dσ2 (5)

p1,a(σ1, λ1) = δ(m1,a(σ1, λ1)−ma)dλ1 (6)

p2,b(σ2, λ2) = δ(m2,b(σ2, λ2)−mb)dλ2 (7)

Lemma 1 The measure

pS(σ1, σ2)p1,a(σ1, λ1)p2,b(σ2, λ2)dσ1σ2dλ1dλ2 (8)

is a probability measure on [0, 2π]4.

Proof . The positivity is obvious. The normalization condition∫
pS(σ1, σ2)p1,a(σ2, λ1)p2,b(σ2, λ2)dσ1σ2dλ1dλ2 = 1 (9)

follows from a simple calculation (cf. also the proof of Lemma (??)).

Remark 1 It would be tempting to interpret the measures (??), (??) as conditional distri-
butions of the state of the apparatus given the incoming state of the correponding photon.
However this is not possible because it happens that:∫

p1,a(σ1, λ1)dλ1 =

√
2π

4
| cos(σ1 − a)| 6= 1,

∫
p2,b(σ2, λ2)dλ2 =

√
2π 6= 1 (10)

As shown in section (??) the inequalities in (??) are necessary for the violation of Bell’s
inequality.

Lemma 2 Let the ±1–valued maps S
(1)
a (σ1, µ1), S

(2)
x (σ2, µ2) (σj , µj ∈ [0, 2π]) be given by

S(1)
a (σ, µ) = sgn(cos(σ − a)) , S(2)

x = −S(1)
x (11)

then, in the above notations,∫
S

(a)
1 (s1(σ1, λ1),m1(σ1, λ1))S

(b)
2 (s2(σ2, λ2),m2(σ2, λ2)) (12)

×pS(σ1, σ2)p1,a(σ1, λ1)p2,b(σ2, λ2)dσ1dσ2dλ1dλ2 = − cos(a− b)

Proof . With the choices (??), (??), (??), the correlations (??) become∫ ∫ ∫ ∫
S(1)
a (s1,a(σ1, λ1),m1,a(σ1, λ1))S

(2)
b (s2,b(σ2, λ2),m2,b(σ2, λ2)) (13)

δ(m1,a(σ1, λ1)−ma)δ(m2,b(σ2, λ2)−mb)pS(σ1, σ2)dλ1dλ2dσ1dσ2

Changing variables
m1,a(σ1, λ1) = µ1

m2,b(σ2, λ2) = µ2

m′1,a(σ1, λ1)dλ1 = dµ1
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m′2,b(σ2, λ2)dλ2 = dµ2

and noting that for almost all a, b, σ1, σ2 ∈ [0, 2π] the functions

m1,a(σ1, ·), m2,b(σ2, ·) : [0, 2π]→ [0, 2π] (14)

are invertible, one has from (??), (??), (??)

dλ1 =
1

m′1,a(σ1,m
−1
1,a(σ1, µ1))

dµ1 =: T̃ ′1,a(σ1, µ1)dµ1 (15)

dλ2 =
1

m′2,b(σ2,m
−1
2,b(σ2, µ2))

dµ2 =: T̃ ′2,b(σ2, µ2)dµ2 (16)

and, after the change of variables, (??) becomes∫ ∫ ∫ ∫
S(1)
a (s1,a(σ1,m

−1
1,a(σ1, µ1)), µ1)S

(2)
b (s2,b(σ2,m

−1
2,b(σ2, µ2)), µ2)

T̃ ′1,a(σ1, µ1)T̃ ′2,b(σ2, µ2)δ(µ1 −ma)δ(µ2 −mb)pS(σ1, σ2)dµ1dµ2dσ1dσ2 (17)

Because of our choice of the functions S
(1)
a , S

(2)
b , T ′1,a, T

′
2,b, these have the form

S(1)
a (σ1) := S(1)

a (s1,a(σ1,m
−1
1,a(σ1,ma), µ1)

S
(2)
b (σ2) := S

(2)
b (s2,b(σ2,m

−1
2,b(σ2,mb), µ2)

T ′1,a(σ1) := T̃ ′1,a(σ1,ma) (18)

T ′2,b(σ2) := T̃ ′2,b(σ2,mb) (19)

in the sense that the right hand side depends only on the variables written on the left hand
side. Therefore (??) becomes∫ ∫

S(1)
a (σ1)S

(2)
b (σ2)T ′1,a(σ1)T ′1,b(σ2)pS(σ1, σ2)dσ1dσ2 (20)

Finally, since

pS(σ1, σ2) =
1

2π
δ(σ1 − σ2) (21)

we arrive at∫
S(1)
a (σ)S

(2)
b (σ)T ′1,a(σ)T ′1,b(σ)

dσ

2π
= −

∫ 2π

0
cos(σ − b)sgn(cos(σ − a))dσ = − cos(b− a)

which is the thesis.

Remark 2 Given (??) the expression (??), (??) is precisely the one which was taken as
starting point in the paper [?]. The result of the present section proves that the interpretation
in terms of reduced dynamics proposed in that paper was correct: the Heisenberg dynamics
used in [?] is indeed the reduced dynamics of the reversible dynamics considered in the present
paper.
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3 The simulation problem

Starting from this section until the end of Section (??) we describe two methods of local
simulation of the deterministic model described in Section (??). The method we actually
used in the realization of our experiment, is the one described in Section (??). The other
method corresponds to previous versions of the experiment [?] (this method corresponds to
the option “old” in the menu of the programme in the web) and is interesting because it
illustrates the difference between the theoretical problem, solved in Section 2, and the actual
simulation method.

In order to simulate locally the probability measure (??) we normalize the local factors
at a and b, obtaining the following expression for the correlations (??)∫ 2π

0

∫ 2π

0

dσ1dσ2

2π
δ(σ1 − σ2)

2π

4
| cos(σ1 − a)| (22)

[∫ 2π

0
S(1)
a (σ1, λ1)

p1,a(σ1, λ1)dλ1

Z
(1)
a (σ1)

][∫ 2π

0
S

(2)
b (σ2, λ2)

p2,b(σ2, λ2)dλ2

Z
(2)
b (σ2)

]
Integrating the δ–function, simplifying the 2π–factor and introducing the notations

p̃j,x(σj , λj)dλj =
pj,x(σj , λj)

Z
(j)
x (σj)

dλj ; j = 1, 2 ; x = a, b (23)

(Z
(j)
a (σj) being the normalization factor) we obtain∫ 2π

0
dσ

[∫ 2π

0

| cos(σ − a)|
4

S(1)
a (σ, λ1)p̃1,a(σ, λ1)dλ1

] [∫ 2π

0
S

(2)
b (σ, λ2)p̃2,b(σ, λ2)dλ2

]
Given our choice (??) of S

(1)
a , S

(2)
b , the second integral in square brackets is equal to

S
(2)
b (σ). This is evaluated locally by computer 2. The integrand of the first integral in

square brackets is equal to 1
4 cos(σ − a). In order to simulate locally this integral we replace

in it the function 1
4 | cos(σ − a)|S(1)

a (σ, λ1) by any function Ŝ
(1)
a (σ, λ), with values ±1, such

that ∫ 2π

0
Ŝ(1)
a (σ, λ)p̃1,a(σ, λ1)dλ1 =

1

4
cos(σ − a).

Such function is easily constructed because p̃1,a(σ, λ1)dλ1 is a probability measure. This
integral is evaluated locally by computer 1. After this, and with the notation

Ŝ
(2)
b (σ, λ) = S

(2)
b (σ, λ)

we arrive to integral∫ 2π

0
dσ

[∫ 2π

0
Ŝ(1)
a (σ, λ1)p̃1,b(σ, λ1)dλ1

] [∫ 2π

0
Ŝ

(2)
b (σ, λ2)p̃2,b(σ, λ2)dλ2

]

=

∫ 2π

0
dσ

cos(σ − a)

4
(−sgn(cos(σ − b))) (24)

To simulate this integral directly would be easy (this is what was done in the first experiment
[?]). However this would require that the integrals in dλ1, dλ2 should be calculated locally
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by computer 1 and 2 respectively and only the two integrals in square brackets would be
sent to the central computer. If, in greater coherence with the experiments, we want the
local computers to send to the central computer only sequences of ±1 (i.e., the values of

Ŝ
(1)
a (σ, λ1), Ŝ

(2)
b (σ, λ2)), then we have to generate a sequence of (σj) in [0, 2π] which realizes

this goal. To this purpose, following the standard Monte Carlo procedure, we normalize the
dσ-integral by dividing and multiplying by 2π

2π

[∫ 2π

0

dσ

2π

cos(σ − a)

4
(−sgn(cos(σ − b)))

]
(25)

this leads to the integral

2π

{∫ 2π

0

dσ

2π

[∫ 2π

0
Ŝ(1)
a (σ, λ1)p̃1,a(σ, λ1)dλ1

] [∫ 2π

0
Ŝ

(2)
b (σ, λ2)p̃2,b(σ, λ2)dλ2

]}
(26)

in which one can now easily approximate locally each piece with Riemann sums

2π

N

∑
σj

 1

K1

∑
k1

Ŝ(1)
a (σj , λ

(j)
a,k1

)

 1

K2

∑
k2

Ŝ
(2)
b (σj , λ

(j)
b,k2

)

 (27)

This gives the following prescriptions: let

C denote central computer

A Experimenter 1

B Experimenter 2

1. C produces any sequence σj in [0, 2π] distributed according to dσ
2π . It is not necessary

that the sequence (σj) has good chaotic properties: any equidistributed sequence in
[0, 2π] can be used.

2. For each σj , A produces (λ
(j)
a,k1

)k1 distributed according to p̂1,a(dλ) and produces the

sequence of values Ŝ
(1)
a (σj , λ

(j)
a,k1

) ∈ {±1}

3. For each σj , B produces (λ
(j)
b,k2

)k2 distributed according to p̂2,b(dλ) and produces the

sequence of values Ŝ
(2)
b (σj , λ

(j)
b,k2

) ∈ {±1}.
4. A and B send these two sequences to C

5. C takes the arithmetic mean of the product of the two sequences and multiplies the
result by 2π thus compensating the division by 2π, introduced in Step (1).

Remark 3 The above simulation procedure has two unsatisfactory features: (i) the artificial
(although standard in Monte Carlo simulations) “multiplication and division by 2π”; (ii) the
fact that, before multiplication by 2π, the correlations (??) for a = b are not equal to −1 but

to −1/2π, hence the singlet condition S
(1)
a = −S(2)

b , although globally satisfied due to Lemma
(2), is not satisfied at each step of the simulation procedure.

In Section (5) below we describe a simulation method which is free from these drawbacks.
Before that, in the following section, we describe the probabilistic origins of this difficulty.
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4 Probabilistic interpretation of the multiplication

and division by 2π

In this section we propose a probablistic interpretation of the decomposition (??) before
simplification of the two 2π factors. This interpretation gives the key for the simulation used
in Section (??).

Let us first discuss, in some generality, which kind of properties it is reasonable to expect
from a “locally simulable” measure, i.e. a measure that, in addition of having the local
structure (??) is also such that it can be split into 3 pieces each of which is simulable in a
different computer.

Recall that in real experiments the countings are conditioned on coincidences and that
these occur at the polarizers site. By locality we can expect, for a locally simulable probability
measure a structure of the form

pS(σ1, σ2)EΓc(·)(σ1, σ2)dσ1dσ2

where pS is the distribution at the source and EΓc(·)(σ1, σ2) denotes the conditional dis-
tribution of the apparatus variables given simultaneous interaction with particles S1, S2 in
the state σ1, σ2 respectively. Denoting Γc the event: “a coincidence occurs at the time of
measurement”, the conditional expectation EΓc can be written as

EΓc(F ) =
E(FχΓc)

P (Γc)

where F is any function, χΓc(ω) = 1 if ω ∈ Γc and = 0 if ω /∈ Γc and P (Γc) is the probability
of Γc.

Moreover it is reasonable to expect that, given coincidence and the pair (σ1, σ2), the
results of measurement at instruments 1 and 2 should be independent events: in fact,
once given Γc, σ1, σ2, what happens at 1 (resp. 2) only depends on the local apparatus
variable λ1 (resp. λ2). Thus, if F1,a, F2,b are local observables (local in the sense that
Fj,x(σ1, σ2, λ1, λ2) = Fj,x(σj , λj) (j = 1, 2, x = a, b)), one should have

E(F1,aF2,bχΓc)(σ1, σ2) = E(F1,aχΓc)(σ1, σ2)E(F2,bχΓc)(σ1, σ2)

Our model is Section (2) also satisfies the additional condition

E(Fj,xχΓc)(σ1, σ2) = E(Fj,xχΓc)(σj) ; j = 1, 2

but a model not satisfying this condition would not violate locality because (σ1, σ2) is the
state at the source, where the 2 particles may be very near each other.

In any case, assuming both the above conditions, we would find for the correlations

〈S(1)
a S

(2)
b 〉 =

∫ ∫
pS(σ1, σ2)dσ1dσ2EΓc(S

(1)
a S

(2)
b )(σ1, σ2)

=
1

P (Γc)

∫ ∫
pS(σ1, σ2)dσ1dσ2E1,a(S

(1)
a χΓc)(σ1)E2,b(S

(2)
b χΓc)(σ2) (28)

Now if, as it is done in many imprecise probabilistic models of the EPR experiment, one
neglects the conditioning factor 1/P (Γc), one would be lead to consider, instead of the
correct integral (??), the integral∫ ∫

pS(σ1, σ2)dσ1dσ2E1,a(Ŝ
(1)
a )(σ1)E2,b(Ŝ

(2)
b )(σ2) (29)
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(Ŝ
(j)
x = S

(j)
x χΓc). To this integral one can easily apply the considerations of Section (7) below

and deduce the Bell inequality

|〈S(1)
a S

(2)
b 〉0 − 〈S

(1)
c S

(2)
b 〉0| − 〈S

(1)
a S(2)

c 〉0 ≤ 1 (30)

where 〈·〉0 means that the correlations are computed with the incorrect integral (??). How-
ever, if the correlations are computed with the correct integral (??) one has to multiply both
sides of (??) by 1/P (Γc) which leads to

|〈S(1)
a S

(2)
b 〉 − 〈S

(1)
c S

(2)
b 〉| − 〈S

(1)
a S

(2)
b 〉 ≤

1

P (Γc)
(31)

Now, in the notation (??), if we specify our system by the requirements that pS(σ1, σ2)dσ1dσ2

is given by (??) and:
P (Γc) = (2π)−1

E1,a(S
(1)
a χΓc)(σ1) =

∫ 2π

0

| cos(σ1 − a)|
4

S(1)
a (σ1, λ1)p̃1,a(σ1, λ1)dλ1

E2,b(S
(2)
b χΓc)(σ2) =

∫ 2π

0
S

(2)
b (σ2, λ2)p̃2,b(σ2, λ2)dλ2

then we find the expression (??).
The choice we made in our experiment is very special. Formula (??) suggests that, by

appropriately constructing deterministic dynamical systems, one can make the probability
P (Γc) arbitrarily small, hence the bound in (??) arbitrarily high.

5 Conditioning on coincidences: direct simulation

In the present section we describe a technique to simulate directly the conditional probabili-
ties introduced in section (??). In this way the multiplication and division by 2π comes out
from the statistical countings themselves and the singlet condition is verified at each step of
the simulation.

In the idealized dynamical system considered in our experiment we consider only two
time instants 0 (initial) and 1 (final) so, in our case, a “trajectory” consists of a single jump.
We do not describe the space–time details of the trajectory because we are only interested
in distinguishing 2 cases:

– at time 1 the particle is in the apparatus (and in this case it is detected with certainty)

– at time 1 the particle is not in the apparatus (and in this case it makes no sense to speak
of detection)

Thus our “configuration space” for the single particle will be made of 3 points: s (source),
1 (inside apparatus), 0 (outside apparatus). Since at time 0 the “position” of both particles
is always s, because of the chameleon effect, the position qj,1 of particle j = (1, 2) at time 1
will depend on the polarization aj , on the initial state σ and on the state λj of the apparatus
Mj(j = 1, 2):

qj,1 = qj,1(aj , σ, λj) ; j = 1, 2,

The local, deterministic dynamical law of this dependence is the one described in Section
(5.4).
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There is no conceptual difficulty to include in our model the consideration of the space–
time trajectory of the particle. This surely would improve the present model, however the
main conclusion of our experiment, i.e. the reproducibility of the EPR correlations by a
classical, deterministic, local dynamical system, will not change.

5.1 Description of the experiment

1. Let N ≤ Ntot be natural integers and let

{σj : j = 1, . . . , N} (32)

be the sequence of numbers

{σj := (2π/N)× j : j = 1, . . . , N} (33)

We have checked in several experiments that any pseudo–random sequence in [0, 2π]
with good equidistribution properties will lead to the same result. This fact is reflected
in the option D (deterministic) or R (random) that has been inserted in the program
of the experiment. Let N(σj) (j = 1, . . . , N) denote a sequence of natural integers such
that

N∑
j=1

N(σj) = Ntot

2. For each j from 1 to N , repeat the following 3 operations (a), (b), (c), N(σj) times

(a) The central computer sends σj to the computers 1 and 2.

(b) Computer 1 computes the position of particle 1 as described in section 5.4 below

and sends back S
(1)
a (σj) (= 1 or −1) if the particle is inside the apparatus. It sends

back ∅ (empty) if the particle is outside the apparatus. Similarly Computer 2 does

the same thing. The dynamics is such that S
(1)
a (σj) is sent back with probability

p1,a(σj) and S
(2)
b (σj) is sent back with probability p2,b(σj) where p1,a, p2,b are suffi-

ciently regular probability densities (say piecewise smooth with a finite number of
discontinuities in [0, 2π] (See sec.??)). This corresponds in the real experiments, to
labeling the local detection time of the photon. When both computers send back
a value ±1, then we say that a coincidence occurs.

(c) Only in case of a coincidence, i.e. when the central computer receives the value
±1 from both computers, the central computer computes the “correlation product”

S
(1)
a (σj)S

(2)
b (σj).

3. The central computer computes the correlation as

Sum of all correlation products

The total number of coincidences
. (34)

5.2 Computation of the correlations

Introducing

p(σj) =
N(σj)

Ntot
(35)
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the expected number of coincidences Ncoincidences and the sum of all correlation products
Scorrelations become respectively

Ncoincidences =

N∑
j=1

N(σj)p1,a(σj)p2,b(σj) = Ntot

N∑
j=1

p(σj)p1,a(σj)p2,b(σj) (36)

Scorrelations =
N∑
j=1

N(σj)p1,a(σj)p2,b(σj)S
(a)
1 (σj)S

(b)
2 (σj)

= Ntot

N∑
j=1

p(σj)p1,a(σj)p2,b(σj)S
(a)
1 (σj)S

(b)
2 (σj) (37)

Thus the correlation defined by (??) is

Scorrelations
Ncoincidences

=

∑N
j=1 p(σj)p1,a(σj)p2,b(σj)S

(a)
1 (σj)S

(b)
2 (σj)∑N

j=1 p(σj)p1,a(σj)p2,b(σj)
(38)

and therefore

Scorrelations
Ncoincidences

→
∫ 2π

0 dσ p(σ)p1,a(σ)p2,b(σ)S
(a)
1 (σ)S

(b)
2 (σ)∫ 2π

0 dσ p(σ)p1,a(σ)p2,b(σ)
(39)

where p(σ) is a probability density with properties analogue to p1,a and p2,b.

5.3 Realization of the EPR correlation

With the choices:

p(σ) =
1

2π
, p1,a(σ) =

1

4
| cos(σ − a)| , p2,b(σ) = 1 (40)

S
(a)
1 (σ) = sgn(cos(σ − a)), S

(b)
2 (σ) = −sgn(cos(σ − b)) (41)

we obtain

numerator of (??) = − 1

2π
cos(a− b) (42)

denominator of (??) =
1

2π
(43)

Therefore for large N the correlation (??) is well approximated by

− cos(a− b) (44)

which is exactly the EPR correlation. We underline that, as shown by (??), even if the
mechanism of coincidences depends on the setting of the apparatus, the expected number of
coincidences is independent of it, in agreement with the experimental result quoted in the
introduction.
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5.4 Computation of the position

With the choices of section (??), p2,b(σ) is trivial (= 1) and this means that computer 2 always

sends back S
(b)
2 (σ) to the central computer. On the other hand, computer 1 associates the

label 1 to S
(a)
1 (σ) in the following way,

1. For each input σj , generate a new random variable λ1 with a probability distribution
P01(λ1) = χ[0,1].

2. When λ1 is such that 0 ≤ λ1 ≤ p1,a(σ) computer 1 concludes that the particle is inside

sends the value S
(a)
1 (σj), otherwise it sends ∅.

6 Difference between coincidences and efficiency of

the detectors

As already emphasized in the introduction of the present paper, the difference between
conditioning on coincidences and efficiency detectors is a principle one. Moreover, in many
experimental situations, the total number of pairs emitted by the source is in principle
unboservable. For example in all EPR type experiments with photons, the source of entangled
pairs has a finite size hence the probability that one or both photons of some pair is reabsorbed
by the source itself is nonzero. In all these cases the statistical counting is conditioned on
the simultaneously detected pairs. Thus, whenever we want to estimate statistically equal
time correlations of the form

〈S(1)
a (t)S

(2)
b (t)〉

we must be aware that in general they will be correlations conditioned on coincidences.
In the loophole argument, the following fact has been noted: Einstein’s local realism can

be consistent with the experimental data when the excessive correlations might be possessed
only by a fraction of the coincident pairs actually detected. In other words, an high efficiency
of the detectors is required to exclude the loophole.

Conditioning on coincidences has nothing to do with these arguments on the efficiency
of the detectors because, as clearly explained in these arguments, the efficiency is calibrated
with the ratio of the number of particles detected by the detector with polarizer and without
polarizer, while the core of the conditioning argument is that the number of detected particles
without polarizer may not be the total number of particles emitted by the source. This
number is usually unobservable in a real experiment even if one postulates 100% efficiency
in the detection. In the real experiments (e.g. [?, ?, ?]), before taking the coincidences we
cannot speak of the total number of particles satisfying the singlet condition.

Thus conditioning on coincidences has nothing to do with the loophole argument. In this
section we discuss the mathematical difference between the two points of view and we show
how this can be experimentally verified. At the end of this section we also explain the role
of the dynamics (chameleon effect) in establishing the coincidences.

In order to motivate and describe more precisely the difference between this type of
correlations and the unconditional ones, suppose we have two particles (1, 2) with the same
state space S and let

(σ1,t) ; (σ2,t) ; (σt) = (σ1,t, σ2,t) ; t ∈ R (45)

be the stochastic processes describing the time evolution of these particles in the state space
(deterministic processes are a particular case).
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Suppose that the process (??) is stationary and ergodic and that we want to measure

experimentally the equal time correlations of two functions S
(1)
a , S

(2)
b of these particles.

If we do N independent measurements in our laboratory at times t1, . . . , tN finding the
results σ1, . . . , σN respectively, can we conclude that

1

N

N∑
j=1

S(1)
a (σj)S

(2)
b (σj) ∼ E(S(1)

a (t)S
(2)
b (t)) = 〈S(1)

a (t)S
(2)
b (t)〉 (46)

as a naive application of the ergodic theorem would suggest? The answer is clearly: no.
In fact the states σ1,t, σ2,t will in general depend on many parameters such as position,
momentum, spin, polarization,...

σ1,t = σ1,t(q1,t, p1,t, . . .)

and, by our assumption, the effective measurements are done in the bounded space regions A1

and B2. This means that we are not counting all the emitted particles but only those which
happened to be in the same time in the regions A1 andB2 (recall that we are postulating 100%
efficient detectors). This is precisely what characterizes conditional probability. Therefore
the correct conclusion is not (??) but

1

N

N∑
j=1

S(1)
a (σj)S

(2)
b (σj) ∼ E

(
S(1)
a (σt)S

(2)
b (σt) | q1(t) ∈ A1 ; q2(t) ∈ B2

)
(47)

Thus, if we say that a coincidence occurs if, for some t one has both q1(t) ∈ A1 and q2(t) ∈ B2

and we denote
Γc(σt) := [q1(t) ∈ A1 and q2(t) ∈ B2] (48)

the corresponding event (notice that both q1(t) and q2(t) are functions of σt), then we can
rewrite (??) in the form

1

N

N∑
j=1

S(1)
a (σj)S

(2)
b (σj) ∼ E(S(1)

a (σ1,t)S
(2)
b (σ2,t)|Γc(σt)) = (49)

=
E(S

(1)
a (σt)S

(2)
b (σt)χΓc(σ(t)))

P (Γc(σ(t)))

Because of the stationarity of the process, the right hand side of (??) can be written

E(S
(1)
a S

(2)
b χΓc)

P (Γc)
(50)

The conclusion (??) would be justified only if one could prove that the number N , ap-
pearing in it, is the total number of emitted pairs which, in many sitautions, is unboservable
in principle.

As shown by the considerations above, the class of stochastic processes such that there
exist two regions A1 and B2 for which this is the case, is very special (although surely
nonempty).

In conclusion, let us consider a simple example, concerning a single polarizer which may
help clarifying the conceptual and experimental difference between the efficiency and the
coincidence problems.
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Suppose that a detector is 100% efficient. Then, if a source emits 100 photons, all photons
are detected in absence of polarizer. Suppose moreover that, when the polarizer is inserted,
only 90 photons and not 100 are detected. Therefore, if as done in [?], the efficiency is
calibrated with the ratio of the number of particles detected by the detector with polarizer
and without polarizer, we should conclude that our polarizer is 90% efficient.

However, if the loss of these 10 photons is due to the chameleon effect, then by repeating
many times the experiment (and postulating a situation of stationarity of the source) one
should always detect 90 photons.

On the contrary, if the loss of photons is due to accidental causes, then the number of
detected photons should fluctuate and an analysis of these fluctuations should, in principle,
allow to distinguish between an 100% efficient detector in presence of the chameleon effect
and an 100% efficient detector in presence of a 90% efficient polarizer.

In real physical situations the two effects are most likely combined and their distinction,
although clear in principle, might be a very hard challenge both for theoreticians and ex-
perimentalists. However we are convinced that a satisfactory theory of measurement should
take into account both these effects.

7 Why contextuality is not enough

The following theorem shows that the contextuality argument alone, advocated by several
authors[?, ?] is not enough to rule out the application of Bell’s inequality. In fact this theorem
implies that there is a large class of contextual hidden variable theories, i.e. in which the
initial distribution depends on the global setting a, b of the far away apparata, which satisfy
the Bell inequality and which therefore cannot reproduce the singlet correlations. This shows
in particular that to achieve such a violation

(i) dynamical considerations (chameleon effect) are necessary
(ii) in the local decomposition of our probability measure (??) the non normalization

condition (??) of the local measures p1,a, p2,b, i.e. the fact that they are not conditional
probabilities in the sense of Remark (1) of Section (2), is a necessary condition for the above
mentioned violation.

Theorem 1 Let A1,A2 (system observables) and AM1 ,AM2 (apparatus observables) be com-
mutative ∗–algebras and, for any such algebra A denote S(A) the set of its states. Suppose
that, for any pair of vectors in the unit sphere S(2) in 3–dimensional space:

(i) the initial state of the system (1, 2,M1,M2) has the form

ψa,b = ψ1,2 ◦ (E1,a ⊗ E2,b) (51)

where ψ1,2 ∈ S(A1 ⊗A2) and

Ej,x : Aj ⊗AMj → Aj ; j = 1, 2; x ∈ S(2) (52)

are conditional expectations.

(ii) For each j = 1, 2 and x ∈ S(2) it is given a self adjoint element S
(j)
x in Aj with spectrum

in the interval [−1, 1] and a positive normalized map Tj,x : Aj → Aj (Tj,x(1) = 1. Then
the pair correlations

〈S(1)
a S

(2)
b 〉 = ψa,b(T1,a(S

(1)
a )T2,b(S

(2)
b )) = ψ1,2(E1,a(T1,a(S

(1)
a ))E2,b(T2,b(S

(2)
b ))) (53)

cannot be the EPR ones.
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Proof . By contradiction. Consider the 4 random variables in A1 ⊗A2:

E1,a(T1,a(S
(1)
a )), E2,b(T2,b(S

(2)
b )), E1,c(T1,c(S

(1)
c )), E2,c(T2,c(S

(2)
c )) (54)

The positivity and normalization of the dynamics implies that

−1 ≤ Tj,x(S(j)
x ) ≤ +1 ; j = 1, 2; x ∈ S(2) (55)

hence the same inequalities hold for the random variables (??). Moreover, if the correlations
(??) are equal to −a · b then, for any c ∈ S(2),

E1,c(T1,c(S
(1)
c )) = −E2,c(T2,c(S

(2)
c )) ; ψ1,2 − a.e. (56)

(cf. Lemma (14.1) in [?]) and from this the Bell’s inequality follows.

Corollary 1 If the initial state of the system has the form

ψ12 ⊗ ψ1,a ⊗ ψ2,b (57)

with ψ1,2 ∈ S(A1 ⊗A2), ψj,x ∈ S(AMj ), j = 1, 2, ∀x and if the dynamics satisfy (??) then
the pair correlations

〈S(1)
a S

(2)
b 〉 = (ψ12 ⊗ ψ1,a ⊗ ψ2,b)(T1,a ⊗ T2,b)(S

(1)
a ⊗ S

(2)
b ) (58)

cannot be the EPR ones.

Proof . Apply Theorem (??) to the case

Ej,x(aj ⊗ aM1) = ajψj,x(aMj ) ; j = 1, 2 ; aj ∈ Aj ; aMj ∈ AMj

8 Conclusions

The main point of the present experiment is not, as already emphasized in the introduction,
to build a hidden variable theory for the EPR experiment: the main problem with hidden
vaiable theories is not so much their existence as their non uniqueness. This implies that an
experimental discrimination between any two such theories would be impossible due to the
Heisenberg principle.

The main idea of the ”chameleon philosophy” can be summarized in the words of A.
Tartaglia [?]: ”... In conclusion quantum measurements and the story of the violation of
the Bell or similar inequalities tell us that the objects of the quantum world are not like
boxes containing spin, polarization vector etc. like buttons, pins, pearls and the like, but like
programmed machines capable of different behaviours according to the physical conditions
locally triggering them. ...”

We have a great admiration for the extraordinary experiments that have been done and
continue to be done in this field and their value is in by no way belittled by the present
experiment.

Concerning the detection loophole argument we believe that the distinction between
chameleon effect (which has a principle nature) and random errors (which are contingent)
should stimulate a deeper discussion of the very notion of ”efficiency of an apparatus”, leading
to a distinction, in the role played by the interaction system–apparatus in the determination
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of the observed statistics, between the theoretically describable, at least in principle, inter-
action between system and apparatus and the accidental errors such as spurious photons,
imprecisions of clocks, imprecise determination of the initial state, generic malfunctioning,
... . The existing models, based on the efficiency argument, can be refined without much
effort by including a distinction between these two types of inefficiencies.

Finally, as far as quantum cryptography is concerned, we emphasize the possible use of
dynamical systems, such as the one discussed in the present paper, both as a benchmark
for truly quantum algorithms and as a stimulus for potentially fruitful investigations on
hybrid algorithms, i.e. combining classical and quantum features, with a potential impact
on lowering the costs and increasing the performance of the usual quantum cryptographic
algorithms.
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