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Abstract
We consider the problem of controlling the size of an elementary quantum
stochastic flow generated by a unitary stochastic evolution driven by first
order white noise.

The quantum stochastic analogue of the problem of minimizing a qua-
dratic performance criterion associated with a classical stochastic differential
equation was solved with the use of the representation free quantum sto-
chastic calculus of [1] in [6]. Simpler versions, corresponding to quantum
stochastic differential equations (qsde) driven by first order white noise, can
be found in [4, 5] where a simple quantum analogue of the Bucy-Kalman
filter was obtained (see [2] for a general version). In a simple form, related to
what follows, the result reads as follows: Let U = {Ut / t ≥ 0} be an adapted
process satisfying the qsde (see [1, 7] for proofs of existence and uniqueness
theorems and definitions of related concepts)

dUt = (FtUt + ut) dt+ Ψt Ut dAt + Φt Ut dA
†
t , (1)

U0 = I, t ∈ [0, T ]

where T > 0 is a fixed finite horizon, dA†t and dAt are the differentials of
the creation and annihilation processes of [7], and the coefficient processes
are adapted, bounded, strongly continuous and square integrable processes
living on the exponential vectors domain E = span {h = h0 ⊗ ψ(f)} of the
tensor product H0 ⊗ Γ of a system (separable Hilbert) space H0 and the
Boson (noise) Fock space Γ on L2([0, T ],C). Treating u = {ut / t ≥ 0} as a
control process, we can show that the quadratic performance functional

Jh,T (u) =

∫ T

0

[< Uth,X
∗X Uth > + < uth, uth >] dt

+ < UTh,M UTh > (2)

where X, M are bounded operator on H0, identified with their ampliations
X⊗I, M⊗I toH0⊗Γ, withM ≥ 0, is minimized by the feedback control ut =
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−PtUt, where the bounded, positive, self-adjoint process {Pt / t ∈ [0, T ]},
with PT = M , is the solution of the quantum stochastic Riccati equation

dPt + (PtFt + F ∗t Pt + Φ∗tPtΦt − P 2
t +X∗X) dt+ (3)

(PtΨt + Φ∗tPt) dAt + (PtΦt + Ψ∗tPt) dA
†
t = 0

and the minimum value is < h, P0h >.
Turning to quantum flows, if Ut is for each t a unitary operator, in which

case (1) takes the form

dUt = −((iH +
1

2
L∗L) dt+ L∗dAt − LdA†t)Ut, (4)

U0 = I, t ∈ [0, T ]

with adjoint

dU∗t = −U∗t ((−iH +
1

2
L∗L) dt− L∗dAt + LdA†t), (5)

U∗0 = I, t ∈ [0, T ]

where H, L are bounded operators on H0 with H self-adjoint, then the fa-
mily {jt(X)/ t ∈ [0, T ]} of bounded linear operators on H0 ⊗ Γ defined by
jt(X) = U∗t X Ut (see [3] for a general theory) is called an elementary quan-
tum flow (EQF). Using quantum Itô’s formula for first order white noise,
namely dAt dA

†
t = dt and all other products of differentials are equal to zero,

we can show that {jt(X)/ t ∈ [0, T ]} satisfies the qsde

djt(X) = jt(i[H,X]− (6)
1

2
(L∗LX +XL∗L− 2L∗XL)) dt

+ jt([L
∗, X]) dAt + jt([X,L]) dA†t

j0(X) = X, t ∈ [0, T ]

In the case when X is self-adjoint and Ut = e−itH , {jt(X)/ t ∈ [0, T ]} de-
scribes the time evolution of the quantum mechanical observable X and (6)
is the Heisenberg equation for observables. In the general case, (6) is inter-
preted as the Heisenberg picture of the Schrödinger equation in the presence
of noise or as a quantum probabilistic analogue of the Langevin equation.
Moreover a *-unital homomorphism solution of (0.6) can always be written
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as an EQF. Looking at (4) as (1) with ut = −1
2
L∗LUt and taking M = 1

2
L∗L,

(2) becomes

Jh,T (L) =

∫ T

0

[ ‖jt(X)h‖2 +
1

4
‖jt(L∗L)h‖2 ] dt+ (7)

1

2
‖jT (L)h‖2

Thinking of L as a control, we interpret the first term of (7) as a measure
of the size of the flow over [0, T ], the second as a measure of the control effort
over [0, T ] and the third as a “penalty” for allowing the evolution to go on for
a long time. In order for L to be optimal it must satisfy 1

2
L∗L = Pt where Pt

is the solution of (3) for Ft = −iH, Φt = L and Ψt = −L∗. For these choices
(3) reduces, by the time independence of Pt and the linear independence of
dt, dAt and dA†t , to the equations

[L,L∗] = 0 (i.e L is normal) (8)

and
i

2
[H,P∞] +

1

4
P 2
∞ +X∗X = 0 (9)

where P∞ = 1
2
L∗L. We recognize (9) as a special case of the algebraic

Riccati equation (ARE) (see [8]). It is known that if there exists a boun-
ded linear operator K on H0 such that i

2
H + KX∗ is the generator of an

asymptotically stable semigroup (i.e if the pair ( i
2
H, X∗) is stabilizable)

then (9) has a positive self-adjoint solution P∞. We may summarize as
follows: Let h ∈ E, 0 < T < +∞, and let H, L, X be bounded linear opera-
tors on H0 such that H is self-adjoint and the pair ( i

2
H, X∗) is stabilizable.

The quadratic performance criterion Jh,T (L) of (7) associated with the EQF
{jt(X) = U∗t X Ut / t ≥ 0}, where U = {Ut / t ≥ 0} is the solution of (4), is
minimized by

L =
√

2P 1/2
∞ W (polar decomposition of L) (10)

where P∞ is a positive self-adjoint solution of the ARE (9) and W is any
bounded unitary linear operator on H0 commuting with P∞. Moreover minL Jh,T (L) =<
h, P∞h > independent of T .
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