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Abstract

The notion of stop-time can be naturally translated in a quantum prob-
abilistic framework and this problem has been studied by several authors
[1], [2], [3], [4], [5]. Recently Parthasarathy and Sinha [4] have established
a factorization property of the L?-space over the Wiener space (regarded as
the Fock space over L*(R.) ) based on the notion of quantum stop time
which is a quantum probabilistic analogue of the strong Markov property. In
this note we prove a stronger result which has no classical analogue namely
that the algebra generated by the stopped Weyl operators in the sense of [4]
(i.e.the past algebra with respect to a stop time S), is the algebra of all the
bounded operators on L? of the Wiener space.

1 INTRODUCTION

Let us recall some notations from [4]. Let H = L?*(R,) denote the Fock
space over L*(R;) ; ® be the vacuum vector in H . For each ¢ > 0 one has

H = D(LA(0,1)) @ D(LA(t, 50)) 1)
and we use the notations:
H[t = (I)t] ® F(Lz(t, OO)) ) Ht] = F(L2<07 t)) ® (I)[t (2>

We denote
B=B(H) (3)

the algebra of all bounded operators on H and
By=B(Hyg) @1y 3  Hp=1y®B(Hp) (4)
denote the past and future filtrations. One has
B=By® By, (5)
we shall also use the notation
B = By (6)

We denote x[o the characteristic function of the interval [0,¢] and, for each
feL*Ry)
fo=xoafl 5 Ji=Xpef (7)



The shift on L*(R,) will be denoted 6,. By definition:

0f(0) = f(t—s) +  f)=0ifu<0
so that

0,07 = multiplication by X[0,5]
The Weyl operators on L*(R.;) are denoted W(f) (f € L*(R,)). They are

unitary operators on H satisfying the canonical commutation relations:
W(HW(g) = ™I W(f +g) 8)

let £y : B — By denote the Fock conditional expectation characterized by
the propery:

Et](aﬂ & a[t) =y < D, a[t(I) > (9)
for every a; € By , ap € Bi. Denoting Py @ ‘H — H, the orthogonal
projection one has:

Eﬂ(a) = Pt] Q- Pt] & 1[1; (10)

Definition 1 A stop time is a spectral measure on S from the Borel
subsets of Ry with values in the projections of B such that for each t > 0:

S[Q,t] S Bt} (11)

Equivalently a stop time can be defined by an increasing right continuous
family S(o, t) of projections satisfying (11).

Example (1.) The classical stop time. Let (€2, F, P) be a probability
space , Fy a past filtration and 7 : 2 — R, = R;U{oo} a random variable.
Then the family

S = X[0,4(T) (12)

is a stop time in the sense of definition (1) above and clearly the family (13)
uniquely determines the random variable 7. Example (2.) Let (Q,F, P)

denote the Wiener space , Fy the corresponding past filtration and w, a R"
-valued Brownian motion. Fix A C R™ and define

Sa(o,t) = XN, lwea (13)
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Sa(+o0)=1-— tlim Salo,t) (14)

Then the family S4(o,t) is a stop time in the sense of definition (1). Moreover
it has the property:

Sa(o,t) = Sa(o,5) ® Sa(s,t) ; o<s<t (15)

Example (3.) Let e(.) be a spectral measure in L*(R.;) with the property
that for each interval I C R, one has

e(I) < xi (16)

Then
S(.)=T(e(.)) (17)

is a stop time. In the following we will assume that
S(400) =0 (18)
We will also use the notation:

S = S(t,00) (19)

Lemma 1 For each f € L*(R,) the integral

/0 " S(ds)W(f) = S 0 W(f) (20)

is well defined on the exponential vectors and defines a unique unitary oper-
ator on H.

Proof. The Riemann sums corresponding to the integral (20) are well defined
operators. Applying them to an exponential vector 1(g), we can use Lemma
?? of [4] to prove the existence of the limit and the isometry property.



Definition 2 The (left) S—past algebra is the von Neumann algebra Ag) gen-
erated by the operators

[ stsiwzy = sowi) @

for all0 <a<b<oo and f € L*(R,). Note that, since

b o)
/ %%WWﬂ0=SwJ%[:SM$WUm

the operators (21) are contractions. The operators (21) are called the left

S-stopped Weyl operators or simply, since in this note we shall consider this
type of operators for a fized S, the stopped Weyl operators.

Lemma 2 For each f € L*(R) the integral

Amswgwwgv (22)

15 well defined on the exponential vectors and defines a unique unitary oper-
ator on H. In analogy with the terminology adopted by Parthasarathy and

Sinha, the operators (22) will be called the shifted Weyl operators.

Definition 3 The S-future algebra is the von Neumann algebra Ajg gener-
ated by the operators (22) for f € L*(R.).

We shall denote S” the von Neumann algebra generated by the spectral
projections S(a,b) with a,b € R, and S’ its commutant.
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2 The S—past algebra
Theorem 1 If for all 0 < b < 00
Sp#0 (23)

then
As) = B(H) (24)

Proof. First notice that the von Neumann algebra generated by the set
[S(a,b)- W(fy) 0<a<b<oofel(Ra)} (25)

is contained in Ag and that
S" C AS] (26>

In fact choosing f = f, in (21) we obtain

| st = sty wis) (21)

which proves that Ag) contains all the operators (25). (26) follows from this
inclusion by putting f = 0 identically in (27).

Let now X be an orthogonal projection in A’S}. We shall prove that X =0, 1
and this will imply our thesis.

By (27) with b = oo one has that for any 0 < a < oo, f € L*R,)

(S(a,00) - W(—fa))" = W(fa) - S(a,0) € Ass (28)
hence for all 0 < a < oo and f € L*(R,) one has
X -W(fa) - S(a,00) = W(fa) - S(a,00) - X (29)
Taking Eq-expectations of both sides of (29) we obtain
Eq(X) - W(fa) - S(a,00) = W(fa)) - S(a,00) - Eq(X) (30)
Therefore for each b, € By
Eq)(X) - ba) - S(a; 00) = by) - S(a, 00) - Eg(X)

Now we distinguish two possibilities:
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i) There exists a sequence (a,) in Ry such that a,, T co and
Stan - Lo )(X) #0  Vn
ii) There exists a > 0 such that, for each a > a
Sia-Eq(X) =0
In case i), for each integer n there exists a vector &, in H,,] such that 7, :=

Stan = Fan)(X)&n # 0. In fact otherwise for each pair of vectors & , n € H,,
one would have:
< §7 S[an : Ean](X)n >= 0

which implies Sfa, - £,,](X) = 0, since S, - Fq,(X) € By, If & € He,p is
a vector as described above then for every b, € B,,) one has

Ean} (X> ) ban} ) S[angn = ban] ) S[an : Ean](X)gn =T

and since both 7, and S, &, are # 0 ( in fact Sj,, commutes with F, ;(X)
) and b,,] € B,,) is arbitrary, it follows that

Ean}(X) : H 2 Ean] (X) : Han] 2 Han]
in particular

Poj- X -H2OP, - X Hap = Ea)(X)Ha,) 2 Han

n]
and therefore, for each n

X H=P, X - H&Py)- X - HDP,j X Ha 2 Ha,

Letting n — oo we obtain that the range of X is H , i.e. X is the identity.
In case ii) let a be any number such that a > a@. Then from (29) one has:

X -W(fq)-S(a,00) = W(fq) - S(a,00) - X
which, taking F,- expectations of both sides, implies
Ea](X) : W(fa}) : S(CL,OO) = W(fa}) ’ S(a> OO) ’ Ea}(X) =0 (31>

since a > a. Now, since S|, is localized on H,) it follows that S|, # 0 if and
only if S|, restricted to H, is # 0. Therefore the space generated by the
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vectors W(fy) - S(a,00) - Hq with f € L*(Ry) is dense in H,) and therefore
(31) implies that for each pair of vectors £ , 1 € H, one has

< f,Ea](X)n >=< fPa] - X - Pam >= 0

or equivalently
Py-X-Py=0

and since in our assumptions S|, is # 0 for every a > 0 it follows that

X =1lim Py-X-Py=0

a—00

and this ends the proof.
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