QUANTUM STOP TIMES

L. Accardi

Dipartimento di Matematica Universita' di Roma II, Roma, Italy

Kalyan Sinha

Indian statistical institute Sansanwal Marg, New Delhi, India

Contents

1	INTRODUCTION	3

2 The S-past algebra 7

Abstract

The notion of stop-time can be naturally translated in a quantum probabilistic framework and this problem has been studied by several authors [1], [2], [3], [4], [5]. Recently Parthasarathy and Sinha [4] have established a factorization property of the L^2 -space over the Wiener space (regarded as the Fock space over $L^2(\mathbf{R}_+)$) based on the notion of quantum stop time which is a quantum probabilistic analogue of the strong Markov property. In this note we prove a stronger result which has no classical analogue namely that the algebra generated by the stopped Weyl operators in the sense of [4] (i.e.the past algebra with respect to a stop time S), is the algebra of all the bounded operators on L^2 of the Wiener space.

1 INTRODUCTION

Let us recall some notations from [4]. Let $\mathcal{H} = L^2(\mathbf{R}_+)$ denote the Fock space over $L^2(\mathbf{R}_+)$; Φ be the vacuum vector in \mathcal{H} . For each $t \geq 0$ one has

$$\mathcal{H} \cong \Gamma(L^2(0,t)) \otimes \Gamma(L^2(t,\infty)) \tag{1}$$

and we use the notations:

$$\mathcal{H}_{[t]} = \Phi_{t]} \otimes \Gamma(L^2(t,\infty)) \qquad ; \qquad \mathcal{H}_{t]} = \Gamma(L^2(0,t)) \otimes \Phi_{[t]}$$
(2)

We denote

$$\mathcal{B} = \mathcal{B}(\mathcal{H}) \tag{3}$$

the algebra of all bounded operators on \mathcal{H} and

$$\mathcal{B}_{t]} = \mathcal{B}(\mathcal{H}_{t]}) \otimes \mathbb{1}_{[t} \qquad ; \qquad \mathcal{H}_{[t} = \mathbb{1}_{t]} \otimes \mathcal{B}(\mathcal{H}_{[t]})$$
(4)

denote the past and future filtrations. One has

$$\mathcal{B} \cong \mathcal{B}_{t]} \otimes \mathcal{B}_{[t]} \tag{5}$$

we shall also use the notation

$$\mathcal{B} \cong \mathcal{B}_{\infty]} \tag{6}$$

We denote $\chi_{[0,t]}$ the characteristic function of the interval [0,t] and, for each $f \in L^2(\mathbf{R}_+)$

$$f_{t]} = \chi_{[0,t]} f$$
; $f_{[t]} = \chi_{[t,\infty]} f$ (7)

The shift on $L^2(\mathbf{R}_+)$ will be denoted θ_s . By definition:

$$\theta_s f(t) = f(t-s) \quad ; \quad f(u) = 0 \text{ if } u < 0$$

so that

$$\theta_s \theta_s^+ =$$
multiplication by $\chi_{[0,s]}$

The Weyl operators on $L^2(\mathbf{R}_+)$ are denoted W(f) $(f \in L^2(\mathbf{R}_+))$. They are

unitary operators on \mathcal{H} satisfying the canonical commutation relations:

$$W(f)W(g) = e^{iIm \langle f,g \rangle} W(f+g)$$
(8)

let $E_{t]} : \mathcal{B} \longrightarrow \mathcal{B}_{t]}$ denote the Fock conditional expectation characterized by the propery:

$$E_{t]}(a_{t]} \otimes a_{[t]}) = a_{t]} < \Phi, a_{[t]} \Phi >$$

$$\tag{9}$$

for every $a_{t]} \in \mathcal{B}_{t]}$, $a_{[t} \in \mathcal{B}_{[t]}$. Denoting $P_{t]} : \mathcal{H} \longrightarrow \mathcal{H}_{t]}$ the orthogonal projection one has:

$$E_{t]}(a) = P_{t]} \cdot a \cdot P_{t]} \otimes 1_{[t]}$$

$$\tag{10}$$

Definition 1 A stop time is a spectral measure on S from the Borel subsets of \mathbf{R}_+ with values in the projections of \mathcal{B} such that for each $t \geq 0$:

$$S_{[0,t]} \in \mathcal{B}_{t]} \tag{11}$$

Equivalently a stop time can be defined by an increasing right continuous family S(o, t) of projections satisfying (11).

Example (1.) The classical stop time. Let (Ω, \mathcal{F}, P) be a probability space, $\mathcal{F}_{t]}$ a past filtration and $\tau : \Omega \longrightarrow \overline{\mathbf{R}}_{+} = \overline{\mathbf{R}}_{+} \cup \{\infty\}$ a random variable. Then the family

$$S_{[0,t]} = \chi_{[0,t]}(\tau) \tag{12}$$

is a stop time in the sense of definition (1) above and clearly the family (13) uniquely determines the random variable τ . Example (2.) Let (Ω, \mathcal{F}, P)

denote the Wiener space, $\mathcal{F}_{t]}$ the corresponding past filtration and w_t a \mathbb{R}^n -valued Brownian motion. Fix $A \subseteq \mathbb{R}^n$ and define

$$S_A(o,t) = \chi_{\bigcap_{s \le t} [w_t \in A]} \tag{13}$$

$$S_A(+\infty) = 1 - \lim_{t \to \infty} S_A(o, t) \tag{14}$$

Then the family $S_A(o, t)$ is a stop time in the sense of definition (1). Moreover it has the property:

$$S_A(o,t) = S_A(o,s) \otimes S_A(s,t) \qquad ; \qquad o < s < t \tag{15}$$

Example (3.) Let e(.) be a spectral measure in $L^2(\mathbf{R}_+)$ with the property that for each interval $I \subseteq \mathbf{R}_+$ one has

$$e(I) \le \chi_I \tag{16}$$

Then

$$S(\ .\) = \Gamma(e(\ .\)) \tag{17}$$

is a stop time. In the following we will assume that

$$S(+\infty) = 0 \tag{18}$$

We will also use the notation:

$$S_{[t]} = S(t, \infty) \tag{19}$$

Lemma 1 For each $f \in L^2(\mathbf{R}_+)$ the integral

$$\int_0^\infty S(ds)W(f_{s]}) = S \circ W(f) \tag{20}$$

is well defined on the exponential vectors and defines a unique unitary operator on \mathcal{H} .

Proof. The Riemann sums corresponding to the integral (20) are well defined operators. Applying them to an exponential vector $\psi(g)$, we can use Lemma ?? of [4] to prove the existence of the limit and the isometry property.

Definition 2 The (left) S-past algebra is the von Neumann algebra \mathcal{A}_{S} generated by the operators

$$\int_{a}^{b} S(ds)W(f_{s}) = S \circ W(f)$$
(21)

for all $0 \leq a < b \leq \infty$ and $f \in L^2(\mathbf{R}_+)$. Note that, since

$$\int_{a}^{b} S(ds)W(f_{s]}) = S(a,b) \cdot \int_{0}^{\infty} S(ds)W(f_{s]})$$

the operators (21) are contractions. The operators (21) are called the left

S-stopped Weyl operators or simply, since in this note we shall consider this type of operators for a fixed S, the stopped Weyl operators.

Lemma 2 For each $f \in L^2(\mathbf{R}_+)$ the integral

$$\int_0^\infty S(ds)W(\theta_s f) \tag{22}$$

is well defined on the exponential vectors and defines a unique unitary operator on \mathcal{H} . In analogy with the terminology adopted by Parthasarathy and

Sinha, the operators (22) will be called the shifted Weyl operators.

Definition 3 The S-future algebra is the von Neumann algebra $\mathcal{A}_{[S]}$ generated by the operators (22) for $f \in L^2(\mathbf{R}_+)$.

We shall denote S" the von Neumann algebra generated by the spectral projections S(a,b) with $a, b \in \mathbf{R}_+$ and S' its commutant.

Acknowledgments

L.A. acknowledges support from Grant AFOSR 870249 and ONR N00014-86-K-0538 through the Center for Mathematical System Theory, University of Florida where this paper was completed.

2 The S-past algebra

Theorem 1 If for all $0 < b < \infty$

$$S_{|b} \neq 0 \tag{23}$$

then

$$\mathcal{A}_{S]} = \mathcal{B}(\mathcal{H}) \tag{24}$$

Proof. First notice that the von Neumann algebra generated by the set

$$\{S(a,b) \cdot W(f_{b}) \mid 0 \le a \le b \le \infty \ f \in L^2(\mathbf{R}_+)\}$$

$$(25)$$

is contained in \mathcal{A}_{S} and that

$$S'' \subseteq \mathcal{A}_{S]} \tag{26}$$

In fact choosing $f = f_{a]}$ in (21) we obtain

$$\int_{a}^{b} S(ds)W(f_{s}) = S(a,b) \cdot W(f_{a})$$
(27)

which proves that $\mathcal{A}_{S]}$ contains all the operators (25). (26) follows from this inclusion by putting f = 0 identically in (27).

Let now X be an orthogonal projection in $\mathcal{A}'_{S]}$. We shall prove that X = 0, 1 and this will imply our thesis.

By (27) with $b=\infty$ one has that for any $0\leq a\leq\infty$, $\,f\in L^2({\bf R}_+)$

$$\left(S(a,\infty)\cdot W(-f_{a})\right)^{*} = W(f_{a})\cdot S(a,\infty) \in \mathcal{A}_{[S]}$$
(28)

hence for all $0 \leq a \leq \infty$ and $f \in L^2(\mathbf{R}_+)$ one has

$$X \cdot W(f_{a]}) \cdot S(a, \infty) = W(f_{a]}) \cdot S(a, \infty) \cdot X$$
⁽²⁹⁾

Taking $E_{a]}$ -expectations of both sides of (29) we obtain

$$E_{a]}(X) \cdot W(f_{a]}) \cdot S(a, \infty) = W(f_{a]}) \cdot S(a, \infty) \cdot E_{a]}(X)$$
(30)

Therefore for each $b_{a]} \in \mathcal{B}_{a]}$

$$E_{a]}(X) \cdot b_{a]} \cdot S(a, \infty) = b_{a]} \cdot S(a, \infty) \cdot E_{a]}(X)$$

Now we distinguish two possibilities:

i) There exists a sequence (a_n) in \mathbf{R}_+ such that $a_n \uparrow \infty$ and

$$S_{[a_n} \cdot E_{a_n}(X) \neq 0 \qquad \forall n$$

ii) There exists $\bar{a} > 0$ such that, for each $a > \bar{a}$

$$S_{[}a \cdot E_{a]}(X) = 0$$

In case i), for each integer n there exists a vector ξ_n in \mathcal{H}_{a_n} such that $\eta_n :=$

 $S_{[a_n} \cdot E_{a_n]}(X)\xi_n \neq 0$. In fact otherwise for each pair of vectors ξ , $\eta \in \mathcal{H}_{a_n]}$ one would have:

$$\langle \xi, S_{[a_n} \cdot E_{a_n]}(X)\eta \rangle = 0$$

which implies $S_{[a_n} \cdot E_{a_n]}(X) = 0$, since $S_{[a_n} \cdot E_{a_n]}(X) \in \mathcal{B}_{a_n]}$. If $\xi_n \in \mathcal{H}_{a_n]}$ is a vector as described above then for every $b_{a_n]} \in \mathcal{B}_{a_n}$ one has

$$E_{a_n}(X) \cdot b_{a_n} \cdot S_{[a_n} \xi_n = b_{a_n} \cdot S_{[a_n} \cdot E_{a_n}(X) \xi_n = \eta_r$$

and since both η_n and $S_{[a_n}\xi_n$ are $\neq 0$ (in fact $S_{[a_n}$ commutes with $E_{a_n]}(X)$) and $b_{a_n]} \in \mathcal{B}_{a_n]}$ is arbitrary, it follows that

$$E_{a_n}(X) \cdot \mathcal{H} \supseteq E_{a_n}(X) \cdot \mathcal{H}_{a_n} \supseteq \mathcal{H}_{a_n}$$

in particular

$$P_{a_n]} \cdot X \cdot \mathcal{H} \supseteq P_{a_n]} \cdot X \cdot \mathcal{H}_{a_n]} = E_{a_n]}(X)\mathcal{H}_{a_n]} \supseteq \mathcal{H}_{a_n]}$$

and therefore, for each n

$$X \cdot \mathcal{H} = P_{a_n]} \cdot X \cdot \mathcal{H} \oplus P_{a_n]}^{\perp} \cdot X \cdot \mathcal{H} \supseteq P_{a_n]} \cdot X \cdot \mathcal{H}_{a_n]} \supseteq \mathcal{H}_{a_n]}$$

Letting $n \to \infty$ we obtain that the range of X is \mathcal{H} , i.e. X is the identity. In case ii) let a be any number such that $a > \bar{a}$. Then from (29) one has:

$$X \cdot W(f_{a]}) \cdot S(a, \infty) = W(f_{a]}) \cdot S(a, \infty) \cdot X$$

which, taking E_{a} - expectations of both sides, implies

$$E_{a]}(X) \cdot W(f_{a]}) \cdot S(a, \infty) = W(f_{a]}) \cdot S(a, \infty) \cdot E_{a]}(X) = 0$$
(31)

since $a > \bar{a}$. Now, since $S_{[a]}$ is localized on $\mathcal{H}_{a]}$ it follows that $S_{[a]} \neq 0$ if and only if $S_{[a]}$ restricted to $\mathcal{H}_{a]}$ is $\neq 0$. Therefore the space generated by the vectors $W(f_{a}) \cdot S(a, \infty) \cdot \mathcal{H}_{a}$ with $f \in L^{2}(\mathbf{R}_{+})$ is dense in \mathcal{H}_{a} and therefore (31) implies that for each pair of vectors ξ , $\eta \in \mathcal{H}_{a}$ one has

$$\langle \xi, E_{a]}(X)\eta \rangle = \langle \xi P_{a]} \cdot X \cdot P_{a]}\eta \rangle = 0$$

or equivalently

$$P_{a]} \cdot X \cdot P_{a]} = 0$$

and since in our assumptions $S_{[a]}$ is $\neq 0$ for every a > 0 it follows that

$$X = \lim_{a \to \infty} P_{a]} \cdot X \cdot P_{a]} = 0$$

and this ends the proof.

References

- Applebaum D. The strong Markov property for Fermion Brownian motion. J. Func. Anal. 65(1986)273-391
- [2] Barnett C., Lyons T. Stopping noncommuting processes. Math. Proc. Camb. Phil. Soc. 99(1986)151-161
- [3] Hudson R.L. The strong Markov property for canonical Wiener processes. J. Func. Anal. 34(1979)266
- [4] Parthasarathy K.R., Sinha K. Stop times in Fock space stochastic calculus. to appear in Probability Theory and related fields.
- [5] Sauvageot J.L., First exit time: a theory of stopping times in quantum processes. in Quantum Probability III Springer LNM N.1303,285-299