
QUANTUM STOP TIMES

L. Accardi
Dipartimento di Matematica

Universita‘ di Roma II, Roma, Italy

Kalyan Sinha
Indian statistical institute

Sansanwal Marg, New Delhi, India

1



Contents

1 INTRODUCTION 3

2 The S–past algebra 7

2



Abstract
The notion of stop-time can be naturally translated in a quantum prob-

abilistic framework and this problem has been studied by several authors
[1], [2], [3], [4], [5]. Recently Parthasarathy and Sinha [4] have established
a factorization property of the L2-space over the Wiener space (regarded as
the Fock space over L2(R+) ) based on the notion of quantum stop time
which is a quantum probabilistic analogue of the strong Markov property. In
this note we prove a stronger result which has no classical analogue namely
that the algebra generated by the stopped Weyl operators in the sense of [4]
(i.e.the past algebra with respect to a stop time S), is the algebra of all the
bounded operators on L2 of the Wiener space.

1 INTRODUCTION

Let us recall some notations from [4]. Let H = L2(R+) denote the Fock
space over L2(R+) ; Φ be the vacuum vector in H . For each t ≥ 0 one has

H ∼= Γ(L2(0, t))⊗ Γ(L2(t,∞)) (1)

and we use the notations:

H[t = Φt] ⊗ Γ(L2(t,∞)) ; Ht] = Γ(L2(0, t))⊗ Φ[t (2)

We denote
B = B(H) (3)

the algebra of all bounded operators on H and

Bt] = B(Ht])⊗ 1[t ; H[t = 1t] ⊗ B(H[t) (4)

denote the past and future filtrations. One has

B ∼= Bt] ⊗ B[t (5)

we shall also use the notation

B ∼= B∞] (6)

We denote χ[0,t] the characteristic function of the interval [0, t] and, for each
f ∈ L2(R+)

ft] = χ[0,t]f ; f[t = χ[t,∞]f (7)
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The shift on L2(R+) will be denoted θs. By definition:

θsf(t) = f(t− s) ; f(u) = 0 if u < 0

so that
θsθ

+
s = multiplication by χ[0,s]

The Weyl operators on L2(R+) are denoted W(f) (f ∈ L2(R+)). They are

unitary operators on H satisfying the canonical commutation relations:

W (f)W (g) = eiIm<f,g>W (f + g) (8)

let Et] : B −→ Bt] denote the Fock conditional expectation characterized by
the propery:

Et](at] ⊗ a[t) = at] < Φ, a[tΦ > (9)

for every at] ∈ Bt] , a[t ∈ B[t. Denoting Pt] : H −→ Ht] the orthogonal
projection one has:

Et](a) = Pt] · a · Pt] ⊗ 1[t (10)

Definition 1 A stop time is a spectral measure on S from the Borel
subsets of R+ with values in the projections of B such that for each t ≥ 0:

S[0,t] ∈ Bt] (11)

Equivalently a stop time can be defined by an increasing right continuous
family S(o, t) of projections satisfying (11).

Example (1.) The classical stop time. Let (Ω,F , P ) be a probability
space , Ft] a past filtration and τ : Ω −→ R̄+ = R̄+∪{∞} a random variable.
Then the family

S[0,t] = χ[0,t](τ) (12)

is a stop time in the sense of definition (1) above and clearly the family (13)
uniquely determines the random variable τ . Example (2.) Let (Ω,F , P )

denote the Wiener space , Ft] the corresponding past filtration and wt a Rn

-valued Brownian motion. Fix A ⊆ Rn and define

SA(o, t) = χ⋂
s≤t[wt∈A] (13)
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SA(+∞) = 1− lim
t→∞

SA(o, t) (14)

Then the family SA(o, t) is a stop time in the sense of definition (1). Moreover
it has the property:

SA(o, t) = SA(o, s)⊗ SA(s, t) ; o < s < t (15)

Example (3.) Let e(.) be a spectral measure in L2(R+) with the property

that for each interval I ⊆ R+ one has

e(I) ≤ χI (16)

Then
S( . ) = Γ(e( . )) (17)

is a stop time. In the following we will assume that

S(+∞) = 0 (18)

We will also use the notation:

S[t = S(t,∞) (19)

Lemma 1 For each f ∈ L2(R+) the integral∫ ∞
0

S(ds)W (fs]) = S ◦W (f) (20)

is well defined on the exponential vectors and defines a unique unitary oper-
ator on H.

Proof. The Riemann sums corresponding to the integral (20) are well defined
operators. Applying them to an exponential vector ψ(g), we can use Lemma
?? of [4] to prove the existence of the limit and the isometry property.
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Definition 2 The (left) S–past algebra is the von Neumann algebra AS] gen-
erated by the operators ∫ b

a

S(ds)W (fs]) = S ◦W (f) (21)

for all 0 ≤ a < b ≤ ∞ and f ∈ L2(R+). Note that, since∫ b

a

S(ds)W (fs]) = S(a, b) ·
∫ ∞
0

S(ds)W (fs])

the operators (21) are contractions. The operators (21) are called the left

S–stopped Weyl operators or simply, since in this note we shall consider this
type of operators for a fixed S, the stopped Weyl operators.

Lemma 2 For each f ∈ L2(R+) the integral∫ ∞
0

S(ds)W (θsf) (22)

is well defined on the exponential vectors and defines a unique unitary oper-
ator on H. In analogy with the terminology adopted by Parthasarathy and

Sinha, the operators (22) will be called the shifted Weyl operators.

Definition 3 The S–future algebra is the von Neumann algebra A[S gener-
ated by the operators (22) for f ∈ L2(R+).

We shall denote S” the von Neumann algebra generated by the spectral
projections S(a,b) with a, b ∈ R+ and S’ its commutant.
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2 The S–past algebra

Theorem 1 If for all 0 < b <∞

S[b 6= 0 (23)

then
AS] = B(H) (24)

Proof. First notice that the von Neumann algebra generated by the set

{S(a, b) ·W (fb]) 0 ≤ a ≤ b ≤ ∞ f ∈ L2(R+)} (25)

is contained in AS] and that
S ′′ ⊆ AS] (26)

In fact choosing f = fa] in (21) we obtain∫ b

a

S(ds)W (fs]) = S(a, b) ·W (fa]) (27)

which proves that AS] contains all the operators (25). (26) follows from this
inclusion by putting f = 0 identically in (27).
Let now X be an orthogonal projection in A′S]. We shall prove that X = 0 , 1
and this will imply our thesis.
By (27) with b =∞ one has that for any 0 ≤ a ≤ ∞ , f ∈ L2(R+)

(S(a,∞) ·W (−fa]))∗ = W (fa]) · S(a,∞) ∈ A[S (28)

hence for all 0 ≤ a ≤ ∞ and f ∈ L2(R+) one has

X ·W (fa]) · S(a,∞) = W (fa]) · S(a,∞) ·X (29)

Taking Ea]-expectations of both sides of (29) we obtain

Ea](X) ·W (fa]) · S(a,∞) = W (fa]) · S(a,∞) · Ea](X) (30)

Therefore for each ba] ∈ Ba]

Ea](X) · ba] · S(a,∞) = ba] · S(a,∞) · Ea](X)

Now we distinguish two possibilities:
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i) There exists a sequence (an) in R+ such that an ↑ ∞ and

S[an · Ean](X) 6= 0 ∀n

ii) There exists ā > 0 such that, for each a > ā

S[a · Ea](X) = 0

In case i), for each integer n there exists a vector ξn in Han] such that ηn :=

S[an · Ean](X)ξn 6= 0. In fact otherwise for each pair of vectors ξ , η ∈ Han]

one would have:
< ξ, S[an · Ean](X)η >= 0

which implies S[an · Ean](X) = 0, since S[an · Ean](X) ∈ Ban]. If ξn ∈ Han] is
a vector as described above then for every ban] ∈ Ban] one has

Ean](X) · ban] · S[anξn = ban] · S[an · Ean](X)ξn = ηn

and since both ηn and S[anξn are 6= 0 ( in fact S[an commutes with Ean](X)
) and ban] ∈ Ban] is arbitrary, it follows that

Ean](X) · H ⊇ Ean](X) · Han] ⊇ Han]

in particular

Pan] ·X · H ⊇ Pan] ·X · Han] = Ean](X)Han] ⊇ Han]

and therefore, for each n

X · H = Pan] ·X · H ⊕ P⊥an] ·X · H ⊇ Pan] ·X · Han] ⊇ Han]

Letting n → ∞ we obtain that the range of X is H , i.e. X is the identity.
In case ii) let a be any number such that a > ā. Then from (29) one has:

X ·W (fa]) · S(a,∞) = W (fa]) · S(a,∞) ·X

which, taking Ea]- expectations of both sides, implies

Ea](X) ·W (fa]) · S(a,∞) = W (fa]) · S(a,∞) · Ea](X) = 0 (31)

since a > ā. Now, since S[a is localized on Ha] it follows that S[a 6= 0 if and
only if S[a restricted to Ha] is 6= 0. Therefore the space generated by the
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vectors W (fa]) · S(a,∞) · Ha] with f ∈ L2(R+) is dense in Ha] and therefore
(31) implies that for each pair of vectors ξ , η ∈ Ha] one has

< ξ,Ea](X)η >=< ξPa] ·X · Pa]η >= 0

or equivalently
Pa] ·X · Pa] = 0

and since in our assumptions S[a is 6= 0 for every a > 0 it follows that

X = lim
a→∞

Pa] ·X · Pa] = 0

and this ends the proof.
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