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Abstract

We prove that the martingale convergence theorem for generalized con-
ditional expectations in von Neumann algebras holds in the weak topology
without restrictions. The situation is therefore different from the strong
topology case, where there are restrictive conditions which distinguish be-
tween increasing and decreasing sequences of von Neumann algebras. More-
over known counterexamples show that in the decreasing case the strong
martingale convergence theorem might not hold.

1 Introduction

Motivated by the Doob–Moy [19] operator characterization of classical con-
ditional expectations and from some results of Segal for finite W ∗–algebras
[24], Umegaki [27], [28] initiated a systematic study of the notion of con-
ditional expectation in C∗– and W ∗–algebras. In particular he proved the
first martingale convergence theorems in this framework [29]. Several types
of martingale convergence theorems have subsequently been proved by Cu-
culescu [6], (see also [1] where an asymptotic abelianess condition is used),
Tsukada [26] completed the analysis of the strong martingale convergence,
Lance [15], Dang–Ngoc [7] and Goldstein [11] investigated the almost sure
convergence case, and Petz [20], [21] unified the technique of proof of mar-
tingale and ergodic almost sure convergence theorems.

All the above results were obtained for conditional expectations in Umegaki’s
sense, i.e. norm one projections. However, for the construction of quantum
Markov chains, the identification of norm one projections with conditional
expectations is too restrictive and a more general notion, called here general-
ized conditional expectation is needed (cf. [23] for details on this topic). This
more general notion was introduced in [2] and soon after, the first martingale
convergence theorems, corresponding to this notion of conditional expecta-
tion, were proved by Petz [21], Hiai and Tsukada [12], Cecchini and Petz
[20]. In particular, [12] contains necessary and sufficient conditions for the
strong martingale convergence of conditional expectations in the sense of [2]
corresponding to increasing or decreasing nets of von Neumann algebras.

These results however left open a natural problem: in classical proba-
bility theory the convergence of martingales corresponding to increasing or
decreasing nets of W ∗–algebras is a universal phenomenon, i.e. independent
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of specific properties of the nets of algebras considered; on the other hand,
the convergence results of Hiai and Tsukada [12] involves restrictive condi-
tions on the nets of algebras involved. Moreover these conditions are different
in the decreasing and increasing case.

A martingale convergence theorem for generalized conditional expecta-
tions is, in its essence, a theorem on the convergence of the modular struc-
tures associated to a decreasing (resp. increasing) sequence of von Neumann
algebras, to the corresponding modular structure associated to the intersec-
tion (closure of the union) of the given sequence.

In the increasing case, approximation theorems of this kind were first
obtained by Hugenholtz and Wieringa [14] and by Araki [3] and generalized
in [16], [9] where a general continuity property of the polar decomposition for
graph increasing sequences of linear operators was proved. The decreasing
case is relevant for problems arising in operator algebras [17], [18] where
the canonical endomorphism in the sense of [18] (which is the generalized
conditional expectation of [2] in the case of a common cyclic and separating
vector) plays a relevant role. In the present paper we show how to modify the
basic ideas, developed in [16], [9] for the increasing case, so to adapt them
to the decreasing case,

This adaptation goes through some nontrivial steps, the main difference
with the martingale convergence theorem contained in [18], being that the
usual convergence in the resolvent sense has to be replaced, in our case, by
the convergence of continuous functions of the operators vanishing at infinity.
The origins of this difference are explained in Remark (2.7) below.

As a corollary of this result we prove the universality of the martingale
convergence theorems in the weak operator topology, both in the increasing
and the decreasing case. Our result is optimal, in the sense that in the
decreasing case there are known counterexamples to the strong martingale
convergence (cf. Cecchini [5], Hiai and Tsukada [12]).

We also explain the reason for the apparent asymmetry between the in-
creasing and the decreasing for the case (cf. the remark at the end of Section
(2.)). For notational of simplicity we shall formulate our results for sequences
of von Neumann algebras, however our arguments work without changes in
the case of nets.
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2 Notations

Let H be a Hilbert space and A : D(A) ⊂ H → H a linear operator where
D(A), the domain of A, is a not necessarily dense linear subspace of H. If
A, B are linear operators on H, we write A ⊂ B if

D(A) ⊂ D(B) and Aξ = Bξ , ∀ξ ∈ D(A) (1)

namely the graph of A is contained in the graph of B. A sequence (Aj) of
linear operators is called decreasing (resp. increasing) if for each j

Aj+1 ⊂ Aj ; (resp Aj+1 ⊃ Aj) (2)

If (Aj) is a decreasing sequence of closed operators, the intersection of
their graphs is still the graph of a closed linear an operator denoted A∞ :
D(A∞) ⊂ H → H and we shall also use the notation A∞ =

⋂
j Aj; if (Aj)

is an increasing sequence of linear operator, the union of the graphs of Aj is
the graph of a linear operator A0

∞ = ∪jAj; if A0
∞ is closable, we denote by

A∞ its closure.
If A is a closed linear operator, one can define its polar decomposition

A = V H (3)

by regarding A as a linear operator from D(A), the closure of D(A), to H;
H is a selfadjoint operator on D(A) and V a partial isometry from D(A) to
H.

In the following we shall often identify V and H with V PA and HPA,
where PA : H → D(A) is the orthogonal projection. So both V and H will
be considered as acting on H.

3 Continuity of the polar decomposition: de-

creasing sequences

Theorem 1 Let H be a Hilbert space and (Aj) a decreasing sequence of
closed linear (or antilinear) operators on H with intersection

A∞ :=
⋂

An (4)
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Denote, for n ∈ N∪{∞}, by Hn the closure of D(An) in H, by Pn : H → Hn

the orthogonal projection and by An = VnHn the polar decomposition of An.
Then for every continuous function f : R → R vanishing at infinity

( lim
t→+∞

f(t) = 0)

s− lim
n→∞

f(Hn)Pn = f(H∞)P∞ (5)

w − lim
n→∞

VnPn = V∞P∞ (6)

The same result is valid if the sequence (An) is increasing, provided
⋃
An is

closable and A∞ denotes its closure as above [9].

Remark (2.2) Notice that the limit

s− lim
n→∞

Pn = P (7)

always exists and
P ≥ P∞ (8)

but in general P 6= P∞. A corollary of this fact is that, if f does not vanish
at infinity, then (5) is not true in general (otherwise, taking f(t) = 1 (t ∈ R)
one would have Pn ↓ P∞).

Remark (2.3) If f : R → R is continuous and lim
t→+∞

f(t) = λ, then (5)

implies that

s− lim
n→∞

f(Hn)Pn = f(H∞)P∞ − λ(P − P∞) (9)

in particular, because of (5), for any such f :

s− lim
n→∞

f(Hn)P∞ = f(H∞)P∞ (10)

and therefore (10) will hold for any continuous bounded function f by an
elementary 3ε arguments, see [30, proof of theorems VIII.20]. The same is
true if the continuity of f holds only on a open set of spectral measure 1 for
all the operators Hn, H∞ (in this form it will be used to establish the relation
(37)). Moreover

s− lim
n→∞

VnP∞ = V∞P∞ (11)

because the weak topology coincides with the strong topology on the set of
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isometries. Remark (2.4) Theorem 4 could obviousely be stated for opera-

tors between different Hilbert spaces H and K; by replacing H with ker(A1)
⊥

(the orthogonal complement of the null space of A1) we may thus assume that
all the Aj are nonsingular (in the decreasing case).

Proof of Theorem 4 We begin by considering the decreasing case. For
n ∈ N ∪ {∞}, let H′n denote the Hilbert space D(An) equipped with the
graph norm ‖ξ‖2An

= ‖ξ‖2 + ‖Anξ‖2 and

Tn : H′n → Hn ⊂ H (12)

the identification operator; clearly ‖Tn‖ ≤ 1.
Notice that H′n+1 is a closed subspace of H′n and that the restriction of

Tn on H′n+1 is Tn+1. We denote T := T1, H′ := H1.
Since T is one-to-one, for any ξ, η ∈ D(An), T−1ξ, T−1η are well defined

and one has:
〈T−1ξ, T−1η〉H′

n
= 〈ξ, η〉+ 〈Anξ, Anη〉

Thus, if ξ, η ∈ D(H2
n) which is a core for H ,

〈T−1ξ, T−1η〉H′
n

= 〈ξ, η〉+ 〈A∗nAnξ, η〉 = (13)

= 〈(1 +H2
n)ξ, η〉 (14)

= 〈(1 +H2
n)1/2ξ, (1 +H2

n)1/2η〉 (15)

Therefore the map

T−1(1 +H2
n)−1/2 : D(H2

n)→ H′ (16)

extends to an isometry Wn : Hn → H′n. We still denote by Wn the partial
isometry WnPn : H → H′.

The sequence of projections WnW
∗
n : H′ → H′ is decreasing to W∞W

∗
∞,

hence the sequence (TWnW
∗
nT
∗) is strongly convergent to TW∞W

∗
∞T

∗.
It follows, using (16) that:

TWnW
∗
nT
∗ = (1 +H2

n)−1/2Pn(1 +H2
n)−1/2Pn = (1 +H2

n)−1Pn (17)

converges strongly to (1 + H2
∞)−1P∞. Therefore, since the sequence (17)

is uniformly bounded in norm, for any polynomial p in one variable with
p(0) = 0,

s− lim
n→∞

p

(
1

1 +H2
n

)
Pn = p

(
1

1 +H2
∞

)
P∞ (18)
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and since, by the Stone–Weierstrass theorem, the corresponding functions
p
(

1
1+t2

)
(t ∈ R+) are norm dense among the continuous functions on R+

vanishing at +∞, (5) holds.
Now we study the convergence of the sequence (Wn). To this end, let

ξ ∈ D((TT ∗)−1), η ∈ H, and notice that, using (2.2) with f(t) = (1+ t2)−1/2,
the quantity

〈T−1ξ, (Wn −W∞)η〉H′ =

= 〈T−1ξ, T−1
[
(1 +H2

n)−1/2Pn − (1 +H2
∞)−1/2P∞

]
η〉H′

= 〈(TT ∗)−1ξ,
[
(1 +H2

n)−1/2Pn − (1 +H2
∞)−1/2P∞

]
η〉

tends to zero as n→∞. Since the range of (TT ∗)−1 is dense (because from
(13) it follows that on a dense set this operator coincides with (1+H2)), and
D((TT ∗)−1) is a core for T−1, it follows that T−1D((TT ∗)−1) is dense in H′
and therefore (Wn) converges weakly to W∞.

Now notice that

w − limAnTWn = A∞TW∞ (19)

as follows from the weak convergence of Wn to W∞ and the identity

AnTWn − A∞TW∞ = A1T (Wn −W∞) (20)

because A1T : H′1 → H is bounded.
But (19) implies that

AnTWn = VnHn(1 +H2
n)−1/2Pn

hence (19) is equivalent to

w − limVnHn(1 +H2
n)−1/2Pn = V∞H∞(1 +H2

∞)−1/2P∞ (21)

Now notice that

(Vn − V∞)Hn(1 +H2
n)−1/2Pn = (22)

= [VnHn(1 +H2
n)−1/2Pn − V∞H∞(1 +H2

∞)−1/2P∞] (23)

+[V∞H∞(1 +H2
∞)−1/2P∞ − V∞Hn(1 +H2

n)−1/2Pn] (24)

The first term in square brackets in (22) tends to zero weakly because of
(21). To the second one, we apply Remark (2.3) with the function

f(t) = t(1 + t2)−1/2 → 1, as t→ +∞ (25)
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and conclude that its strong limit, as n→∞, exists and is equal to

−V∞(P − P∞) (26)

where P is defined in (7). But V∞ = V∞P∞ (cf. the remark after (3)) and
P ≥ P∞, hence the quantity (26) is zero and (22) weakly converges to zero.

Now we show that

Bn := Vn − V∞ = VnPn − V∞P∞ (27)

converges weakly to zero by showing that any of its weak limit points is zero.
The sequence (27) has weak limit points since it is bounded, let B be one of
these and let (Bnk

) be a subnet weakly converging to B. Because of (25) it
follows by Remark (2.3) as before that Hn(1 +H2

n)−1/2Pn strongly converges
to H∞(1 +H2

∞)−1/2P + (P − P∞), hence

w− lim
k→∞

Bnk
Hnk

(1+H2
nk

)−1/2Pnk
= B[H∞(1+H2

∞)−1/2P∞+(P−P∞)] (28)

But from the discussion after (22) we know that the limit of the left hand
side of (28) is zero.

Since by Remark (2.4) we may suppose that each Hn is nonsingular, it
follows that the range of H∞(1 + H2

∞)−1/2P∞ is dense in P∞H. Hence the
vanishing of the left hand side of (28) is equivalent to BP = 0. But, since
Pn ≥ P

Vn(1− P ) = VnPn(1− P ) = Vn(Pn − P )

which tends to zero strongly for n→∞. Therefore V∞(1− P ) = V∞P∞(1−
P ) = 0.

Thus w− lim(Vn−V∞)(1−P ) = 0 and therefore also B(1−P ) = 0. Thus
B = 0 and, since B is an arbitrary weak limit point of Vn−V∞, (6) follows.

We conclude this proof by mentioning that the increasing case, already
dealt in [10], can be treated by the same argument as above, with the sim-
plification that P = P∞ automatically. The above discussion remains valid
with the change of notations:

T := T∞ ; H′ := H∞

(the sequence of projection (WnW
∗
n) is here increasing, but still converges

strongly to W∞W
∗
∞). See also [16], [10]. Corollary (2.6) The limit in (6)
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holds in the strong topology if and only if P = P∞, i.e. if and only if Pn

converges strongly to P∞. Proof. Both statements follow from (11) and the

identity
VnPn = VnP∞ + Vn(Pn − P∞) (29)

In fact, if (VnPn) converges strongly to V∞P∞, then by (16), Vn(Pn − P∞)
tends to 0 strongly and therefore also (Pn − P∞).

Conversely, if (Pn) converges strongly to P∞, then again by (11) and (29),
it follows that (VnPn) converges strongly to V∞P∞. Remark (2.7) In the

increasing case Pn ↑ P∞ automatically therefore, in contrast to the decreasing
case, Hn converges to H∞ in the strong resolvent sence. This explains the
apparent discrepancy between the increasing and decreasing case which was
met in the previous literature on this problem [7], [12], [13], [22].

4 Convergence of modular structures

In this section (An) shall denote a sequence of von Neumann algebras acting
on a Hilbert space H with a separating vector Φ. For each n ∈N we denote

Hn = [AnΦ] (30)

the closed cyclic space of An with respect to Φ, and Sn the Tomita involution
on Hn, i.e. the closure of

anΦ 7→ a∗nΦ ; an ∈ An

The polar decomposition of Sn is denoted

Sn = Jn∆1/2
n

with the convention (1.4), if Pn : H → Hn denotes the orthogonal projection,
one has

Jn = JnPn ; ∆n = ∆nPn (31)

Proposition 1 Let (An) be a decreasing sequence of von Neumann algebras
and let

A∞ =
⋂
n

An (32)
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with S, J,∆ the corresponding Tomita operators and Q the projection on the
space [A∞Φ]. Then (with the notations (3)):

S =
⋂
n

Sn (33)

Proof. Let S∞ :=
⋂

n Sn and let S∞ = J∞∆∞ denote its polar decom-
position. The first step of the proof shows that S an S∞ act on the same
Hilbert space (i.e. [A∞Φ]), see also [17].

Let P∞ be the orthogonal projection on the closure of the domain of
S∞ and x ∈ A′1. Then x ∈ A′n and xPn ∈ A′n for each n ∈N. Therefore
JnxJn ∈ AnPn so there exists yn ∈ An satisfying

ynPn = JnxJnPn ; ‖yn‖ = ‖x‖ (34)

If the subnet (ynk
) converges weakly to y, then

ynk
Φ = Jnk

xΦ (35)

and, because of Theorem 4, the right hand side of (35) converges weakly to
J∞xΦ. Thus

yΦ = J∞xΦ = P∞J∞xΦ

On the other hand y ∈ A∞ so QyΦ = yΦ, therefore, since x ∈ A′1 is arbitrary:

QP∞J∞ = P∞J∞

so that Q ≥ P∞. Since S ⊂ S∞, we have Q ≤ P∞ and therefore

Q = P∞ (36)

Remark (2.3) and (3.7) imply

s− lim
n→∞

∆it
n Q = ∆it

∞Q ; t ∈ R (37)

Moreover, for each x ∈ A+
∞ and for each n ∈N

∆it
n x∆−it

n Q = σ
(n)
t (x)Q ∈ AnQ

in particular ∆it
n xΦ ∈ A+

n Φ and therefore there exists yn ∈ A+
n satisfying

∆it
n xΦ = ynΦ ; ‖yn‖ = ‖x‖ (38)
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Taking a weakly convergent subnet of yn in (38) we conclude that

∆it
∞xΦ ∈ A+

∞Φ ; t ∈ R (39)

Since A∞ is spanned by its positive elements, there exists a positive linear
map σ∞t of A∞ in A∞ determined by

σ∞t (x)Φ = ∆it
∞xΦ ; x ∈ A∞ (40)

Since σ∞−t is the inverse of σ∞t , the maps σ∞t form a one-parameter group of
isometries (by positivity) of A∞, hence a one-parameter group of automor-
phisms of A∞ [31]. As is well-known the canonicity of the modular operator
(cf. [4], proof of theorem (3.2.18) then implies that ∆it

∞ and ∆is commute

for all t, s ∈ R, hence ∆
1/2
∞ and ∆1/2 have a common core and therefore also

S and S∞ have a common core. But then S∞ = S because S ⊂ S∞ and both
are closed operators.

Corollary (3.2) With the above notations JnPn → JP weakly and f(∆n)Pn →
f(∆)P strongly for every continuous f : R+ → R vanishing at +∞. Proof.

Immediate by Theorem 4 and Proposition 1.

5 Martingale convergence

Let now B ⊆ A be an inclusion of von Neumann algebras and ϕ a faithful
normal state of A; by considering the GNS representation we may assume
that ϕ is determined by a cyclic and separating vector Φ for A: ϕ(x) =
(xΦ,Φ), x ∈ A. Let E ∈ B′ be the orthogonal projection onto the closure
BΦ of BΦ and JA and JB the corresponding modular involutions (where JB
acts on BΦ). The generalized expectation ε : A → B associated with ϕ is
the completely positive map ε of A into B given by

ε(x)E = JBEJAxJAEJB

note in fact that

JBEJAAJAEJB = JBEA′EJB ⊂ JBEB′EJB = BE
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by a double use of Tomita’s theorem. Notice that if B is globally invariant
under the modular group of A associated with ϕ, then ε is the usual Takesaki
conditional expectation [25] while if Φ is cyclic for A then ε is the canonical
endomorphism of A into B [18], [19].

Theorem 2 In the notations and assumptions of Proposition 1, let ε∞ :
A1 → A∞ denote the generalized conditional expectation associated with ϕ.
Then (εn) converges pointwise weakly to ε∞.

Proof. Let x ∈ A1. Since (εn(x)) is bounded, it will be sufficient to prove
weak convergence on the dense subspace A′1Φ. But, for each n ∈N∪{∞}

εn(x)Φ = JnPnJ1xΦ

We can apply Corollary (3.2) to the sequence (JnPn) and conclude that

w − lim εn(x)Φ = ε∞(x)Φ

The statement easily follows from the cyclicity of Φ for A′1.
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