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A translation-invariant state (a quantum Markov chain) is associated with a nearest-neighbor in-

teraction on a one-dimensional lattice by a new technique which provides closed forms for all the
correlation functions. When applied to an Ising-type perturbation of a chain of harmonic oscilla-
tors, the dynamics can be computed explicitly. The resulting translation-invariant distribution is
substantially different from the Planck distribution when the temperature and the coupling constant
are large. For the evolution of the field operators on a given mode, we obtain a natural nonlinear
generalization of the theorem which states that the free evolution of the field operators is obtained

by second quantization of the classical free evolution.

I. INTRODUCTION

In the present paper we use techniques of quantum
Markov chains to associate a translation-invariant state
with a large class of nearest-neighbor interactions on a
one-dimensional lattice in such a way that the correlation
functions to any order can be computed in closed form.
In view of the general applicability of the method, we re-
call, in Sec. II, some basic facts of the theory of quantum
Markov chains (cf. Ref. 1 for a review). At the end of
Sec. II this technique is compared with the usual one,
based on a cutoff and limiting-taking procedure. In Sec.
III we apply the above technique to an Ising-type pertur-
bation of a chain of harmonic oscillators —an example in
which all the computations can be made explicitly. Other
examples will be discussed in subsequent papers. The
remaining sections are devoted to the computation of the
main physical parameters associated with this interaction
(mean and variance of the number operator and of the
linear functions of the field and time as well as mode
correlations and spectra) and to the comparison of the re-
sults with those obtained when A, (i.e., the interaction) is
equal to zero in which case our formal (i.e., nonrenormal-
ized) Hamiltonian reduces to the usual Hamiltonian of the
free Cxibbs state. This comparison is particularly instruc-
tive in the case of the invariant distribution of the number
of photons in a given mode as a function of A, which is
not exponential like the Planck distribution (to which it
reduces when the interaction parameter k is set equal to
0). Some numerical computations (cf. Table I below) of
this distribution show that the discrepancy of the proba-
bility of the number states from the values of the Planck
distribution at the same temperature can be quite remark-
able, i.e., of the order of 20%. Hence it should be possible
to distinguish experimentally between the states with A,&0
and the free Gibbs state. Another interesting fact is that
while the invariant equilibrium distribution is not of the
Planck type, the conditional distribution of NJ given N~.

is Planck type, but at a lower temperature than the one of
the corresponding free state. This new temperature de-
pends on both the interaction parameter A, and the number

of photons in the conditioning mode. We call this effect
the "cooling effect of the interaction" (cf. Sec. IV).

II. THE STATE ASSOCIATED
WITH A NEAREST-NEIGHBOR INTERACTION

~jm, n] ~m ~m+13 ~n (2.1)

If an observable depends only on the modes in the interval
[m, n] then we say that it is localized on [m, n] (e.g.,
q(~ „)=[1/(n —m+1)]g". qj is the average electric
field over the modes in [m, n]). Sometimes, by analogy
with the multidimensional case, we refer to the interval

[m, n] as the "volume. "
An infinite-volume state, i.e., a state of the electromag-

netic (em) field, is defined by a sequence 8'(o „1 of density
operators localized on finite intervals and such that the
limit

Consider a one-dimensional one-sided lattice whose
points are identified with the natural integers
N=0, 1,2, . . . [when an invariant density operator exists,
the construction can be extended to the case of a twosided
lattice —cf. the remarks following formula (2.14) below].
To each point j of the lattice we associate the Hilbert
space A J of the jth mode of the field.

On each of the spaces A J we have a representation of
the boson commutation relations with creation and an-
nihilation operators denoted a~, a~, respectively. We as-
sume that the representation a,a~ is irreducible so that all
the spaces A

~
are isomorphic to a single Hilbert space

Ho. In the following, for any Hilbert space PC we will
denote 9P (M) the algebra of all bounded operators on M.

Objects related to the space A
~

will be labeled with the
subscript index j: i.e., Trj denotes the trace of operators
on A J', AJ is a generic observable of the jth mode of the
field, e.g., NJ

——az"a is the number of photons in the
jth mode, qj =(1/V 2)(a~+aj ) the electric field of the jth
mode, pj (i/v 2)——(a~ —aj ) the magnetic field of the jth
mode, etc.; ~ nj ) is the nJ th state of the operator NJ. If
m &n, the Hilbert space associated with the modes from
m to n will be denoted ~t~ „~. Thus
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lim Tr[0 „](W[0 „]X)=y(X)
n~ao

(2.2)

exists for any observable X localized on any finite inter-
val. By density arguments this limit will then exist for
any observable.

We want to associate a state of the em field to a given
nearest-neighbor interaction. By definition a nearest-
neighbor interaction is a family of self-adjoint operators
H(n, n+1) localized on the interval [n, n+1]. The free
Hamiltonian of the nth mode will be denoted H„and we
write

—H„+&/2 —H(, n, n+1)/2 ~n/2~ —1/2
K~ =e e n

where S„ is the operator defined by

(
n H{n,n+—1)/2n= m+1 e

(2.3)

Z&(n) =Tr(e ")

for the partition function. In the transition-invariant case
we simply write Zp. The theory of quantum Markov
chains is a technique to associate with a large class of
nearest-neighbor interactions H (n, n + 1), an infinite-
volume state according to the following prescriptions:
one first defines the renormalized conditional density am-
plitude

K„ is localized on [n,n +1],
Tr'„+1(Kn*Kn ) = 1,

(2.5)

(2.6)

~j0 n] +n+n —1 +0~0+0+1 J n (2.7)

Using (2.5) and (2.6) it is easy to verify that each W[0 „] is
a density operator. Notice that 8'ro „~ is localized on
[0,n + 1]. Furthermore, condition (2.6) above assures
that, for each observable A[p m] localized on [O,m] (m an
arbitrary natural integer) the limit

where the right-hand side denotes the identity operator on
the space A „. In the construction that follows only these
two properties of the operators K„will be used [and not
the explicit form (2.3)]. In the theory of quantum Mar-
kov chains an operator enjoying the two properties (2.5)
and (2.6) is called a conditional density amplitude: as the
von Neumann density matrix is the quantum analogue of
the usual probability density, the conditional density am-
plitude is the quantum analogue of the transition (or con-
ditional) probability density (or better, of its square root,
in the same way as a wave function is a square root of a
probability density).

Now choose an arbitrary density operator mo localized
on the zero mode and define, for each n, the operator

n+{e H{n, n ~1)I—2 Hn
) (2.4) 'p(A[0, ])m]lm Tl[p, n](W[p, n]A[Q, m])

n —+co
(2.8)

and Tr„'+1 denotes the partial trace over the space
~„+1 [i.e., if A 1, . . . , A„+1 are operators localized
on the modes 1, . . . , n + 1, respectively, then
Tr„'+1(A1. . .A„A„+1)=A 1. . .A„Tr„+1(A„+1)]. [Our
method is applicable when the partial trace (2.4) produces
a well-defined invertible operator. ]

The two key properties of the operators K„defined by
(2.3) are

exists and is equal to

Tr[o,m+1]( W[o, m]A[o, m]) ~ (2.9)

In fact, since K„ is localized on [n, n+1] and A[0 ] in

[O, m], A[0 ] and K„commute for m &n so one finds

Tr[p „+1](W[0„]A[Q ])
=Tr[o,.+1](K„. KowoKo K„*A[0, ])

r[o, n+1](Kn —1 KowpK0 Kn —1A[p, m]Kn Kn )

=Tl[p +1][Kn 1
' KpwpKp Kn 1A[p ]

Tl' +1(K*K )]=Tl[p ](K 1
' KpwpKQ ' ' ' K 1A[p ] ) . (2.10)

Hence, by iterating the procedure we arrive at (2.9) where
we must stop since it is no longer true that K
=~ )O, m)&m.

In many interesting examples the Hamiltonian is
translation invariant, i.e., H„and H(n, n+1) are obtained
by translating by n steps Hp and H(0, 1), respectively. In
these cases one would like the state y, defined by (2.8), to
be translation invariant; that is, denoting by o. the opera-
tor which shifts the observables one step to the right [e.g.,

(X~o) =I{IJ+1],we want the y-expected value of any ob-
servable A to be equa1 to the y-expected value of the
shifted observable cr(A). A simple calculation shows that
y is translation invariant if and only if the mode zero dis-

tribution wo satisfies

Tro(KQ woKo ) ={7(wo ) . (2.1 1)

For a general translation-invariant interaction H (0, 1), it
might not be easy to solve equation (2.11). However, if, as
happens in several interesting examples, the interaction
H(0, 1) is symmetric in the two modes, i.e., it is invariant
under the flip automorphism 5, which exchanges the ob-
servables of the two modes [5(A B) =BA; A,B observ-
ables], then one can actually construct a solution of (2.11)
(which in many cases turns out to be the unique solution).
In fact, considering the operator Sp, defined by Eq. (2.4)
with n =0, and using the definition (2.3) of K„,we obtain
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Try(KOSOICO )

=Trp(e e ' e e e ) .
—H)/2 ~(P ))/2 —Ho/2 ~(P ))/2 —Hl /2

Then one has also

[H(0, ]),SO]=[HO So]=0 (2.17)

(2.12)

Now, by assumption H (0, 1) is symmetric, hence
5(exp[ ——,H (0, 1)])=exp[ ——,

' H (0, 1)]; moreover, the
trarislation invariance of the free Hamiltonian implies
that 5(Hp)=H1 and 5(H1)=HO. Since clearly Troo5
=oo Tr(, it follows that the right-hand side of (2.12) is
equal to

0 —H(0, 1)/2 1 —H(0, 1)/2 0Trp o~e e ' e e ' e

=oo Tr)(e e ' e e ' e )
—Hp/2 H[p ~)/2 —H~ ~(p ~)/2 —Hp/2

8'Ip ni
——wpPpP

Q s„-'

Pn-i
n n —1

exp —g H —g H(jj +1)
j=p j=p

(2.18)

and because of translation invariance, all these relations
remain true when one substitutes n and n +1 for 0 and 1,
respectively. Moreover, the sequence W[0„] of density
operators associated to the translation-invariant Harnil-
tonian defined by the pair IHO, H(0, 1)I takes the particu-
larly simple form

=o(SO), where 8'0 is given by (2.14) and

where in the last equality we have used the definition (2.4)
of Sp. Thus, if Sp is trace class, we can define

—fH„+H(n, n+1)+H„) ] n&O

(2.19)

wp ——So/Tr(SO) . (2.14)

Otherwise we take simply wp =Sp and we obtain what in
the theory of classical Markov chains is called an infiriite
invariant measure.

Summing up: to every single-mode Hamiltonian Hp
and symmetric nearest-neighbor-interaction Hamiltonian
H(0, 1) whose associated [by E'q. (2.4) with n =0] opera-
tor Sp is invertible, we can associate in a very explicit and
constructive way a translation-invariant state of the em
field on a one-dimensional lattice.

Notice that, in the translation-invariant case, the con-
struction above can be extended to the two-sided one-
dimensional lattice simply defining the expectation of an
observable localized on [ m, n] as—the expectation of the
same observable shifted m steps to the right.

A particularly simple situation is obtained when every-
thing in the above construction commutes, i.e., when in
addition to flip invariance the operators Hp and H(0, 1)
satisfy

(by convention g". 1' ——1 and g". 1' ——0 if n =0). Notice
that, contrarily to the general situation in which 8'~p „~ is
localized on [O,n+ 1], in this commuting situation JR[0 „]
is localized on [0,n]. This happens because, when we per-
form the limit (2.8) under the commutation conditions
(2.15), (2.16), and (2.17), we obtain, in the notations of
(2.19) and (2.18),

and since Pm commutes with PJ for j & m as well as with
wp, this is equal to

Tr[o m+1](PmwoPoP1 Pm 1/I[om))

=Tr[o, ][Tr' +1(P )woPo ' ' P —1~[0, ]]
Tr[0 m](woPO Pm —1~ fo mj ) (2.21)

f'('4[ mO+1] ) Tr[p, m+1](woPOP1 Pm —1Pm~[o, mj )

(2.20)

[Hp, H(0, 1)]=0,

[H(0, 1),H(1,2)]=0 .

(2.15)

(2.16)

and this proves (2.18).
The entropy density S=S(HO, K(0, 1)) of a state de-

fined by the sequence (2.18) of density operators has a
simple expression given by

1S=—lim Tr[o„j($[o, ]jnW[0, ])n~oo 71 + 1

1 n —1= —lim Tr[o, n](8'[o, njjnwo)+ g Tr[o,n]( W[o,n]lnPJ )
n —+(z) Pl + 1 g=p

1= —lim [Tro(wojnwo)+11 Tl[01](wpPO]nPO)]= —Tl[0 1](wpP()111P())
n~oo 7l + 1 (2.22)
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and using the expressions (2.14) for (00 [here we are as-
suming Tro(S0) & oo] and (2.19) for Po we eventually ob-
tain

1S= —lim Tr[0 „](W[0 „]lnW[o, nl )
n n+1

Tro(SolnSo) Tro(SoHo)
+2

Tro(S0) Tr(S0)

+
Tr(S0)

(2.23)

From this it follows immediately that, if in our construc-
tion we rescale the Hamiltonians by H„~PH„,
H(n, n+1)~PH(n, n+1), then the resulting state satis-
fies the Kubo-Martin-Schwinger condition at inverse tern-
perature p. In particular, if /Ik is an observable localized
on the site k of the lattice, then if k & 1

+t(~k ) Pk —IPkPk~kPk Pk —I

while if k =0
(2.25)

Also the Heisenberg dynamics of such a state is easily
calculated. For any observable 2[0 m] localized on [O, m]
one has

lim 8 )()'„')A)o )8")o„)n~oo

too Po Pm ~ [0 m]Pm PO~O ~t(~ [om] )

(2.24)

for any local observable A. Once the solution of Eq.
(2.27) is available it is not difficult to obtain a
translation-invariant state. However, when the state space
A o is infinite dimensional, one knows very little about the
existence of solutions of (2.27) with the required proper-
ties, and even less about their explicit form. The renor-
malization (2.3) plus the symmetry trick (2.12) and (2.13)
allow us to bypass this problem and to obtain in an easy
way an invariant state.

III. THE N&XJ. +i INTERACTION

We consider a one-dimensional one-sided infinite chain
of harmonic oscillators in which the force exerted on the
jth oscillator is not only proportional to its displacement
but also to the energy of its nearest neighbors. Denoting
by H~ = —,

'
(qJ +p& ) the Hamiltonian of the jth oscillator,

the equations of motion for such an oscillator are then

qJ =pJ [AH~ l + (1—A) +AHJ+ l],
pJ —— qJ[A,HJ—l+(1—A, )+A,H/+, ]

for j & 1 and, since the zero mode has only one neighbor,

qo
——po[(1 —A.i2)+ AH(],

po= —qo[(1 —A, j2)+AH(] .

In the above equations, and in this paper, A, denotes a cou-
pling constant. The formal Hamiitonian of such a system
1s

ttt(A0) =woPoA0P0 '
(00 (2.26)

—P/2[H0+kH(0, ()] —P/2[H0+H(0, ()]
128 (7 oe =t 0

(2.27)

Furthermore one should prove that the number t is a sim-
ple eigenvalue for the operator on the left hand side of
(2.27) and that it is the only one whose modulus is t. This
fact would assure the existence of the limit

lim
M~ co

M
Tr exp —Pg [W~ +H(0, 1)] A

j=1
n

Tr exp —Pg [HJ+H(0, 1)]
j=0

In the following sections we discuss in detail the
infinite-volume state associated with the procedure
described above for a particular nearest-neighbor interac-
tion satisfying the commutativity conditions (2.15) and
(2.16). Notice that for interactions of this type one can
easily define a (nonrenormalized) dynamics on the local
observables as the limit

M
lim exp it g[HJ+H(j —j +1)] /I .

M —+00 j=0

But, in order to associate a state with this dynamics, one
should prove that there exist a positive operator Bo and a
strictly positive number t such that [in the notations in-
troduced before formula (2.11)]

H„„,=(1—A, /2)H0+(1 —A, ) g H, +A, g H, H, +, . . .

j=1 j=O

This system is completely integrable as a classical system:
in it the Hj can be taken as action variables and the
phases correspond to the complex representation

ip.
gj +IPj =zj =Hje

Now let us (boson) quantize this system. In terms of
creation and annihilation operators, the formal Hamil-
tonian becomes

H„„,„,= g X +A, g X~X~+l,
j=0 j=0

where %j is the number operator relative to the jth mode.
This interaction appears for Fermi oscillators, and in a
Hamiltonian including also other interacting terms, in
some papers by Fedyanin, Makhankov, and Yakushevich
devoted to the analysis of possible soliton behavior in the
exciton-phonon interaction in the long-wavelength ap-
proximation. Also, at the quantum level one could easily
obtain a limiting dynamics from the finite-volume ap-
proximations of the Hamiltonian. However, the existence
of a limiting translation-invariant state requires the solu-
tion of an operator eigenvalue problem which, even if
feasible in this case, would be in general quite impractic-
able.

Now we apply to the interaction described above the
method of Sec. II. In the notations of the preceding sec-
tion, we now choose the free Hamiltonian to be the num-
ber operator (in appropriate units),
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HJ ——NJ, (3.1)

and the interaction Hamiltonian to be the one of the non-
linear chain of harmonic oscillators discussed in the Intro-
duction, i.e., of the form

tions we introduce, for any positive real number p, denot-
ing the inverse temperature, the unnormalized conditional
amplitude

H(j,j +1)=CONJ Nq+, (3.2) exp (N1+ANSN+118)N)
2

so that the associated Hamiltonian is both translation in-
variant and flip invariant. In the following we identify
the space HpHp with any of the spaces A JA J and the
suffix j appended to an operator acting on Hp means that
we are letting this operator act on A J. With these nota-

—(P/2)(N +AN N+.1+N +1)

with A, )0, which is clearly flip invariant. Thus, recalling
the notation (2.4),

So T——r2(K„*K„)=Trl(K„*K„)

=Tr2(e p ~' p~NN p'~N)=Tr2 y e p p~ " p"
~

m )(m
~

I3)
~

yg )(11
~

m, n

—Pm

~
m)(m

~
=f2 p(N), (3.4)

where we have introduced the notation
—Pn

—P(A.n+ 1)f (11)= (3.5)

Therefore, following the prescriptions of Sec. II, we can
define the normalized conditional density amplitude

tained for A, &0 if one could extend our method to a re-
gion of negative A, .

The pair w, K will define, according to the discussion of
Sec. II, a stationary Markov chain y on the algebra
M=(3)J~NA(A J)=NA(Ho) with the property that
for any observable a localized on a finite interval one has

K=K„[f2p(N)1]

(1 e P(AN@ 1+1))1/—2(e —(2P/2)NsN —(P/2)lsN)

and the density matrix

(3.6)

y(a)=Trio, }(~(o, )a), aHM(o, }

with 8 ~p„~ given by

(3.9)

w=fp, ) (»/'Zp, 2.
=

Zp, A,

e
—PN( 1 e

—P()I,N+ 1)
)
—1 ~p~p ~n —1 ~ (3.10)

where the partition function Zp 2 is defined by

Zp) =Tr(So)
=Tref2,p(N) l

e —Pm—X,

(3.7)

(3.8)

where mp denotes m acting on A p and the transition
operator P is defined, according to the prescription (2.19),
by

p K+K (I e —p(xNel+l))e xpNN plsN —
(3 11)—

Thus the transition probability between the jth and the
(j +1)th mode takes the particularly simple form

It is not difficult to see that, as a function of A, , the parti-
tion function Zpq is an analytic function in the half-
plane Rez ~ 0 while in the negative half-plane it has poles
in the points

1 2mki+
m mp

—P(A, m +1)¹+)e
mi)(m,

~

(3

J

(3.12)

(k and m integer) and it is still analytic in the strips del-
imited by two vertical lines drawn over two consecutive
poles. This behavior of Zp ~ suggests that one might ob-
tain a more interesting phase diagram than the one ob- Z(m) =Z(p(Am + 1))=(1—e p( +1)) (3.13)

where the index j in mj means that the state is referred to
the jth mode and Z(p(A. m+ 1)) is defined by
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—p(x)vj+ i)

j=1
(3.14)

where by definition, if n =1 the product is equal to 1. In
particular

—P(No+N i +ANoN i )
r

Zp, A,

Notice that both the density operator t(), defined by (3.7),
and the transition operator P have a direct physical mean-
ing. In fact, the former defines the Hamiltonian

(3.15)

Hg p
———lnf)„p(N)+lnZp g, (3.16)

which is the renormalized Hamiltonian of the single
modes and defines the invariant distribution of the chain;
and the operator P can be naturally interpreted as "transi-
tion density operator" defined. by a "renormalized interac-

I

i.e., it is the usual Planck factor at inverse temperature
(A,m+1)P. Using the explicit expression for wo and PJ,
for every n, the density matrix of the restriction of y on
Mto „~ can be written explicitly:

1 n n —1

exp —p Q NJ —pk g NJNJ+)
A,,P j=0 j=0

tion Hamiltonian. " The analogy with the classical Mar-
kov chains is evident and in the following section this
analogy will be made more precise.

IV. THE NUMBER-OPERATOR PROCESS

The family of random variables (NJ) corresponding to
the occupation numbers of all the modes of the field with
the distribution induced by the state y will be-called the
number-operator process. From the explicit formula
(3.14) of the sequence of density matrices W(o „) it follows
that (NJ) is a classical stationary Markov process with
transition matrix

P(X~+) n——
~

N =m)

=p =e p(&m+1)n(1 —p(Am+1))

and invariant initial distribution

P~(~)=$'n =
Z p(~„+„=fi,,p(rt)/Zq p .

p, g 1 —e

(4.2)
This is most easily seen by writing the density matrix
8 [p +] ln (3.14) in the number-operator representation,

p.g..,., p.„,.„ I
~o&&~o

I I
~) &&ni I I ~k &&nk I (4.3)

TABLE I. Zp i and photon distributions for various P, A, . I,=0 gives Planck distribution.

A, =O. 1

X=0.5

A, =100

z
po

p2
z
po
pi
p2
z
po
Pl
p2
z
po
pi
p2
z
po
pi
p2
z
po
p&

p2
z

. po

p2

P=0.1

110.42
0.0952
0.0861
0.0791

70.225
0.150
0.124
0.103

41.101
0.256
0.158
0.110

32.101
0.327
0.155
0.098

21.911
0.480
0.092
0.056

20.633
0.509
0.065
0.005

20.016
0.525
0.005
0.004

P=0.5
6.459
0.393
0.238
0.145
5.900
0.431
0.243
0.079
5.000
0.508
0.230
0.116
4.595
0.553
0.209
0.103
4.116
0.617
0.155
0.090
4.085
0.622
0.149
0.009
4.083
0.622
0.149
0.009

2.503
0.632
0.233
0.086
2.433
0.650
0.227
0.080
2.296
0.689
0.206
0.068
2.230
0.710
0.191
0.006
2.165
0.731
0.170
0.006
2.164
0.731
0.170
0.006
2.164
0.731
0.170
0.063

1.014
0.993
0.006
0.000
1.014
0.993
0.007

1.014
0.993
0.007

1.014
0.993
0.007

1.014
0.993
0.007

1.014
0.993
0.007
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where the mode zero distribution p„ is given by (3.7), and
the transition matrix (p;i ) is defined by (4.1). Notice that
for A, =O one has

Zpo =(1—e ~)

while for A,—+ oo one has

Zp „——coth(P/2) .

Moreover by explicit computation of the derivative
(8/BA, )Zp)„one sees that Zp~ decreases monotonically
from Zpp to Z~ . Correspondingly, for X=O in (4.2) we
find the Planck distribution, while for A, = Oo we find

0 1
p()(~ )=

coth(/3/2)(1 —e ~)
—Pn

coth(/3/2)
'

Notice that p„)p„+1 for each n Th. e transition matrix
(4.1) corresponds to an antiferromagnetic Ising interaction
in which, however, the "spin" variables do not vary in a
compact space, but over all the natural integers. In par-
ticular, for each j, the conditional distribution of the num-
ber of quanta in the mode EJ.+& conditioned by the pres-
ence of I quanta in the mode j is a Planck distribution at
the lower temperature T'=[P(tom+1)] ' ("cooling" ef-
fect of the interaction). In Table I we have reported the
values' of Z)q~ and the values of the probabilities of the
first three number states (n =0, 1,2) for various choices of
P and t)(,. In particular, as a function of A, , these values
tend to stabilize after t)(, = 10, while in the range 0 & I, & 10,
the discrepancy with Planck's law (A, =O) is large enough
to be detected experimentally.

One can now apply the known results on Markov
chains with countable state space to the Markov chain de-
fined by the transition probability (4.1). In particular,
since p „&0for all m and n, then the Markov chain is
irreducible, aperiodic, positive recurrent, and mixing.
This means in particular that if we call T(n) the gap be-
tween two successive occurrence in two different modes of
the number state

~

n ) then the mean value of T(n) will be
equal to

P, A,
ePn( 1 e

—P(An+1) )Z
Jn

Moreover, from the estimate

Zp, A,

Pmn &, Iapn
j. —e

one easily deduces (via Ref. 5, p. 209) that there are con-
stants y and p with 0&p & 1 such that for all integer m
and for any set of integers A one has

g [Pk(m, n) —p„] &yp",

where Pk(m, n) denotes the (m, n) coefficient of the kth
power of the matrix P. This implies an exponential decay
of correlations (i.e., no thermodynamical phase transi-
tions).

V. THE ENTROPY

From the explicit formula (3.14) of the density matrix
we can compute the entropy density:

S( W[p ] ) = —Tr[() ]( W[p ]111W[() ] )

n n —1 n

=/3 g Tr (WiXJ)+A/3 g Tr[~~+, ](W[J1+1]X&XJ+,) —g Tri[WJln(1 —e
j=0

P(AN +1)—
= —Tr(w ]nw)+n/3Tr(wX)+A/3n Tr[p 1](W[p ]X)Xo) )nTr[w ln(1 —e ~ —+")]

hence the entropy density of (p is

1
S(tp) = lim —Tr[o, ]( W[o, ]ln W[o, ])

n —+ (x) n

=)(3Tr(wX)+ A p Tr[o, 1](W[o, 1]ln W[o, 1] ) (5.2)

Up to the additive factor Z~ p the first term in the expres-
sion (5.3) for the entropy density is easily seen to coincide
with the entropy density of a free Gibbs state correspond-
ing to the Hamiltonian (3.16).

VI. THE FIELD PROCESSES

QO

S(y) = — g fg p(m)]nfl p(m)
~P m=o

Xe
—~

+ g me~" ' f (I)
~P m=o

(5.3)

—Tr[w ln(1 —e-&("N+")]

The various terms on the right-hand side of (5.2) are easi-
ly computed, taking into account the expression (3.7) of
w, and one finds

%'e want now to calculate the joint probability distribu-
tion at different times and relative to different modes of
observables which are linear combinations of the electric
and magnetic fields. First notice that, for j) 1, the evolu-
tion of the field observables Aj=u*aj+uaj is easily
computed using (2.24) and one finds

itP[(ANo+1) —qp)„(N() —AN&]
B
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Notice that, up to the renormahzation factor qtt 2 (X(),
which vanishes for A, =O, this is exactly the second-
quantized form of the solution of the classical equations
of motion. This result suggests the conjecture that a siini-
lar theorem might hold for all the completely integrable
classical systems. Towards this goal, we begin with a

single-field observable A(u)=u*a+ua at time zero, rel-
ative to the zero mode (for simplicity, we drop, for the
moment, the index zero). In order to evaluate the charac-
teristic function (Wigner distribution) of this observable in
the given state we begin by remarking that for any num-
ber state

~

m ) one has

P„( )(t
~

m)=(m e""(")m)=e-' ~"
~ "g ( —1)"(

' ')"
k p=

et ~u~ l2 g( t2~u ~2)m —(

~. I=0t

(m —k)!

(m —l)!

'2

(t2
~

u
~

2) (6.1)

where L (x) denotes the mth Laguerre polynomial normalized so that they form an orthonormal system for the measure
e dx and L (0)= 1 [cf. Ref. 2, p. 93, where, however, the normalization L (0)=m. is used]. In particular, since the
characteristic function of the observable A(u) in the state

~

m ) is integrable, this distribution admits a probability densi-
ty p~ („){x

~
m ) with respect to the Lebesgue measure given by

)dt= —J cos(xt)e-" "~ (6.2)

The right-hand side of (6.2) is evaluated using the formula (cf. Ref. 4, p. 846, 7.4182)
1/2

mt e ~ icos byL, y dy= — e ~2 H b 2
0 m (6.3)

where 12&R and H(x) denote's the mth Hermite polynomial normalized so that

I e "H„(x)H (x)dx=5 „2 m!v tt . (6.4)

Using (6.3) with b =x/
~

u
(

and y =t
~

u ~, we obtain

Hm (x ~~2
pg(„)(x i

m ) =
u 2m m!2

(6.5)

From this the characteristic function of A (u) in the state y is easily obtained. In fact, by translation invariance,

oo —pm
q)(e'~(" )=Tr(u)pe' ~ "))= y (m

~

e'~(u)
~

m )Z ~
—p(A, rn + 1)P~ m=p

—pm
et ~u ~/2L (t2~u ~2) (6.6)

Therefore
(X) e —pm oo e —pm

pg(u)(x
~
Ip) g tt(2 ) Pg(u)(x (

m ) g p(2 )) /2 (x (
u

) )
Zp~ m=o & —e Zp, ~ =p & —e + (6.7)

(6.9)

where we have introduced for the probability density function (6.5) the notation

Hm (x iv 2
i
u

i
)

h (x; iu i)= (6.8)
m!2 (2m

~

u
~

)'~

In particular, the mean and the variance of the probability distribution (6.7) are given, respectively, by zero and

(u~2 " e ~ 2m+1
Z ~

1 -t™+() m!p, g
-

o —e

Using the formulas (4.3) and (3.9), we find that the joint characteristic functions, in the given state, of the observables
Ap(up ) 3 ) (u ) ), . . . , Ak(uk ) relative to the modes 0, . . . , k are given by
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exp i g tJAJ(uj)
j=0

PA{)(u()),A)(u) ), . . . A (u )(tp tl ' ' ' tk
I
(P)

0 it()A(uo) it[ A(u$ ) itA(uk )

Pmg, m, Pm, k(mo, e mp)(m), e ml ). . . (mk, e mk)
Tarot Hj ) p ~ ~ ~

(6.10)

~o Jk

0
pmgmp, m,

' pm„, , tn„

L,(to
I
"o I') I

mO!

I „(tk I
uk I') k

exp ——,
' g t Iu
j=0

Thus, in view of (4.1) and (4.2), the corresponding distributions are given by

—P(km +1)
PA()(up), . . . , Ak{uk)(XP~X) t ~ ~ ~ &&k

I
')O)— lI (1—e ' )exp

~ops J p t 772k Pt~ J —1 j=0 j=0

k —1 k—p A, $ mj. m)+1+ $ mJ.

&&h,(xo'
I uo I )h, (&)

I
u)

I
) . h „(xk, I uk I ) . (6.11)

In particular if one chooses the parameters u~ HC to be all equal to some nonzero complex number u, then one obtains a
process [AJ(u)] which is translation invariant but not Markovian.

Using the expression (3.11) for the transition operators PJ and the explicit form (2.24) for the Heisenberg dynamics,
one can easily compute the correlation functions of an observable AI relative to the jth mode of the field. If j) 1 one
finds

( AJAJ(t) ) =Tr(w()P(') "A)P()'Pl'A)P) "), (6.12)

Inp)(no
I
s Z(1 it)(n— Z "(n

1
)Z" "'(m

1 )Z"(n )Pgo,

m&, n&

Taking the trace (over A p~) {3)A 2) of this expression and recalling that Z(np) = (1—e
—P(A,no+ 1)),one finds

where Tr means that one takes the trace over all the Hilbert spaces involved. Using the expression (3.12) for the quan-
tum transition operator and the simplifying notation (3.13), the right-hand side of (6.12) can be written as the trace of

(1 it )p(k+0+ 1)%1 i p(XII0+ )+1 (~~
&
+1)Nz —(1 it)P(~~ i+1)Nz

Al In))(n) IA) Im))(m) I

2
I (m)~An) )

I pno —it—p(kn&+))n) —(1 it)p(kn&+1)ml —

p[(km)�+�)—

)+itk(nl —. ml )]n2

m, „, ZpkZ"(n))Z' "(ml)
m&, n&

Hence, summing over no, n 2 one arrives at the result:

I
(m An )

I

2 1 e
—P(kn+1) (1 —P(km+))) —P[m+it(n —m)]

(A A (t))=
m, n

' p, ~
—p(km+)) t 1

—p[1+km+itk(n —m)])2—e

A similar calculation for the zero mode yields the result

I
(m An)

I
e P[ +("

(,'AoAo(t)) =Tr[P)(woPo) Ao(woPo) Ao]=g
m, n t
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