WHITE NOISE APPROACH TO STOCHASTIC INTEGRATION

L. ACCARDI*-W. AYED**-H. OUERDIANE***

ABSTRACT. We extend to white noise integrals the scalar type integrator inequalities introduced by
Accardi, Fagnola and Quaegebeur [1] as a generalization of the Hudson—Parthasarathy basic estimates
on stochastic integrals. We use these estimates as ”regularity results”, showing that some Hida
distributions are in fact elements of the Fock space. We also use them to prove an analogue regularity
result for solutions of white noise equations with bounded coefficients.

The white noise approach to stochastic calculus emerged, between 1993 and 1995, from the stochas-
tic limit of quantum theory as a new approach [7] to both classical and quantum stochastic calculus
[9], [16]. The main achievements of the new approach have been:

(i) The identification of both classical and quantum stochastic equations with white noise Hamil-
tonian equations.

(ii) The explanation of the emergence of the unitarity conditions of Hudson and Parthsarathy as
expression of the symmetricity of the associated Hamiltonian equation.

(iii) The explicit expression of the coefficients of the stochastic equation as (nonlinear) functions
of the coefficients of the associated Hamiltonian equation.

(iv) The emergence of a natural nonlinear extension of stochastic calculus. The deep and surprising
results obtained in this direction in the quadratic case suggest that the completion of this programme
for the higher powers of white noise is one of the most challenging and fascinating problems of
contemporary stochastic analysis.

None of these results could have been even formulated in the framework of the usual (classical or
quantum) stochastic analysis. However the exciting new developments emerged from the white noise
approach to stochastic calculus delayed a systematic exposition of its basic analytical tools such as
white noise integrals, white noise equations, the theory of distributions on the standard simplex, the
causal normal order, ...

A large literature existed in the first two of the above mentioned directions, in the framework of
Hida’s white noise analysis. However to create a bridge between these results and those of classical and
quantum stochastic analysis, one needs some “regularity results”, i.e. conditions which assure that
objects, which a priori are Hida distributions, are in fact vectors in a Hilbert space. Such regularity
conditions will be formulated here in terms of estimates on white noise integrals.

Estimates of this type were developed in [3] and they were strong enough to prove an existence the-
orem for a multidimensional white noise integral equation. However, as we shall see in a forthcoming
paper [8], these estimates were not strong enough to prove the fundamental result of the theory, i.e.
the unitarity condition. The main results of the present paper are:

(i): The extension of the white noise estimates of [3] to a larger domain (the “maximal algebraic”
domain introduced in Section 1) on the lines of [5].

(ii): The introduction of the notion of white noise adaptedness and the proof, under this assump-
tion (which requires a white noise with 1-dimensional parameter), of the white noise analogue
of the “scalar type integrator” inequalities of Accardi, Fagnola and Quaegebeur [1] which,
in their turn, generalize the basic Hudson—Parthasarathy estimate on stochastic integrals (cf.
Proposition 25.6 in [15]).
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The present paper is the first step of our plan to complete the programme initiated in [3] of
giving a systematic derivation of the white noise unitarity conditions. Here we only deal with the
basic estimates on stochastic integrals and with the corresponding existence theorem for stochastic
differential equations.

NOTATIONS

In this section, in order to fix our notations, we review some well known material. The terms
quantum white noise and free field are synonyms: the former is more used in mathematics, the latter
in physics. Since classical white noise is included in quantum white noise, in the following we will use
the term white noise to mean the more general (quantum) case. A standard way to construct white
noises is through the Fock space. We will consider the scalar Boson Fock space over L2(R9):

FLARY) = F =@y L2, ,(R") =@ Fn ; Fo:=C
Fo=L2,,(R"™) n=1,2,...

is the Hilbert space of square integrable functions of n-variables in R?, symmetric under the permu-
tation of their arguments. If S is a subspace of L?(R?) we will use the notation

S) =P LS

which is clearly a subspace of F(L?(R?)) because, for each n, @7 S C F,. The elements of F,

sym
are called n-particle vectors and the set of n- partlcle vectors, for all n € N | is also called the set

of number vectors. For an element (" € F,, we write (") = w(”)(sl, ey Sn), 8i € R® and, for any
permutation 7, on {1,...,n} one has:

w(”) (317 ey Sn) = ¢(") (871'(1)7 ey ST((’VL))‘

So an element of the Boson Fock space F is a sequence of functions

Y = {© M @} where v € C, 9™ € F,,n=1,2,... and

1917 = 11132 gany < o0
n=0

More explicitly

2
(815 Sn)| dsy...dsy

o1 = [5O] + Z /

The inner product of elements ) = {1 }ZOZO and ¢ = {qﬁ(”)}ﬁf’zo in F is given by

o0

(¥, 0) => (W™, ¢") = 0 4 Z 1(51, s 50) ™ (51, ..., 8p)dS1...dSn,

n—0 Rdn

The vector ® = (1,0,0,...) is called the vacuum vector. A vector ¥ = (1»() such that there exists
f € L?(R?) with the property that, ¥n € N, we have

(0.1) W™ (51, 8,) = \/15 (s1)f(s2) - f(sn) 5 ae forn>1
o) =19
o = P

is called an exponential vector with test function f and denoted 1 or ¢(f) = (1/)50")).
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Definition 0.1. Let S(R™) denote the Schwartz space, i.e. the set of infinitely differentiable complex
valued functions h on R™ such that, for any o, 8 € N" one has:

1illap = sup |2*DWh(z)| < 00

z€R
Define the subspaces of F:
F(SRY) :=Dg:={ € F:¥neN, ™ e SR™)} (1.1.q)
N = {1/1 € Dg : Y™ =0 for almost all n € N} (1.1.b)
DY = N NDg

These are the vectors in F for which all components, with the exception of at most a finite number
are equal to zero. They are called finite particle vectors. We also define:

Dy:={Y €Dg: Y _ nllv™|? < oo} (1.1.c)
n=1

Dhi={peF: > n|p™|> < oo} (1.1.d)
n=1

Similarly we define D¢, Dc?, D& by replacing in (1.1.a), (1.1.b), (1.1.c) the Schwartz space S(R"?)
with the space C(R") N L2(R™) where C(R™) denotes the space of continuous functions on R™?,

Remark 0.1. Fach of the 3 spaces Dg, Dg, D}g is dense in F.

Definition 0.2. For any s € R, n € N and for any 1) € D' we fix a representative 1/1(”)(81, Cee e Sp)
in the Lebesgue class of ™ and we define:

a-: the annihilation density as as the linear operator:

as d] € Dl - (a’sw)(n)(slu S2, 7371) =Vvn+ 1¢(n+1)(57 51,52, 75n) eF (denl)
which associates to 1) € D' the F-valued linear functional on the square integrable functions
on RY:

(0.2) fvn+1 /dsf P (5,51, 89,y 80) = (Ap) P (51, -+, 55)

Ay is called the annihilation operator. It follows that

(0.3) A = /R au(s)ds.

b-: the creation density a as the linear operator:
1 n
af c e F — (af) ™M (s, 59, ,8,) = N 25(8 — )™ D (51, Sy, 80) (den2)
i=1

which associates to 1) € D' the F-valued linear functional on the square integrable functions
on RZ:

(04) Z f w(n 1) ) §i7 T, Sn) = (A?Q;Z))(n) (517 e 7Sn)

A;{ 1s called the creation operator and we get:
(A}rw)(n)(sh... Sn) = \FZ 8(s — s) f() ™ D (s, -+, Siy -+, sn)ds

05 = [ farn® s
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It follows that
(0.6) A}WJ = /Rd al f(s)ds.

c-: the number density is defined on D' by:
ns = ay as (den3)

Using (denl) and (den2), for any ¢ € D', one has

n

(nsw)(")(sl, S9,c ,8p) = 26(3 — si)w(")(s, S1,° 5 8iy " 4 8n) (den4)
i=1

which allows to interpret the number density in the same way as the creation density.

Remark 0.2. Taking f = X[o4 in 0.3 and 0.6, we oblain:

t
(0.7) A = /asds

and
t
(0.8) Af = /ajds.

These notations are those for white noise over R, at,aj, since a Brownian motion ( classical or
quantum ) is obtained by integrating a white noise .Also, we get [4] the commutation relations:

[Ar, AF] = min(s, ) ;[Ay, A)] = 0 = [AF, AF] (5.5)
Ad =0 (5.6)

Proposition 0.1. The operators introduced in Definition (0.2) are well defined and depend only on
the sequence (™) (and not on the representatives of its elements). Moreover

Af:]:n—>fn_1 ; Aff(]:o,n:LQ,---
AT Fy — Fag1, n=0,1,2,- -

The creation and the annihilation operators are adjoint to each other on D', and we have:

(0.9) Ar® =0
Proof. For any measurable function ¥ the right hand side of (denl) is well defined and the identity
(1), (Af¢)(”_1)> - Flsm) 0™ (s1, -+, 80) 0" (51, , Sp_1)dsy - - - dsp
Rdn

shows that the Lebesgue class of (Afw)("*l) does not depend on the choice of w(”)(sl, -+, 8y) but
only on its Lebesgue class 1)(™). The fact that ¢ = (™) € D! and the Schwartz inequality the
sequence ((A1)™) defines a continuous linear functional on F hence a unique element in JF. If
Y € D' and f € L2(RY), A}Fw is in F because:
Jarelr =3 /R A ® (s 0)
n=1

2
dsi...ds,

&) n 2
1
= = f Si w(nil) S1y 7§i7"' y Sn dSl...dSn
S [ |(r e )
> 2
= Z/ n’f(sl)z/)("*l)(s%-w vy Sn)| dsi...dsp
n—1 Rdn
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o0
= 1A nle ™ VI s w1y} < 00

n=1
The same argument used above shows that the Lebesgue class of (a;f)(”) only depends on the classes

of f and ("1, The remaining statements are proved in a similar way. O

Definition 0.3. We can extend the definition of number operator; let TEB(L*(R?)) be a pre—closed
linear operator with integral kernel T, i.e.for all f € L*>(R%):

Tﬂmz/k@wﬂm@

The number operator N is defined by:

NT—//T(x,y)a;ayda?dy

Notice that, for all f € Dom(T) C L*(R?) and for all exponential vectors ¢¢, one has:

Nriy = [ dn [ dyre)s@atos = [asTn@atos = 45y
We allow 7(x,y) to be a distribution: the choice
T(z,y) = V(x)d(z —y)
allows to include all the multiplication operators.
Remark 0.3. The Boson commutation relations:
las,,al] =d(s1 — s2) 2.c

are interpreted weakly on D' and easily verified on that domain.

1. THE MAXIMAL ALGEBRAIC DOMAIN

D' is not an invariant domain under the action of all creation, annihilation, number and Weyl
operators. There is a number of invariant domains which are useful in different situations [9].

In this section we introduce the smallest domain containing the vacuum and invariant under the
action of all these operators. We call it "maximal algebraic domain” that is the largest domain
obtainable from the vacuum with purely algebraic operations on the basic operators.

Definition 1.1. The mazximal algebraic domain denoted by Dyrap is by definition the linear span of
the vectors set

(11) DS)WAD = {A}:L A‘—;‘_1¢f7wf7 /f7 flu'” )fTL € LQ(Rd)un > 1}

where A]f for f € L2(R%) is the creator operator, and Yy is the exponential vectors with test function

f.
Since Dysap contains the exponential vectors it is dense in F.

Lemma 1.1. For every fo, f1,--- , fn € L*(R%) one has Yy, € Dom(A;[n : --A;fl); Vn > 1.

Proof. We will prove by induction on n > 1, that for any fo, f1,---,fn € L?(R%), one has
A}: . ~-A;flwf0 € F, so for n = 1, since for all f,g € L?(R?), we have (see [3]) :

[Ap, Ag] = (f.9)
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it follows:
1AL Unll? = (Af 5, AT Y5)
= (g, Ap AL Ug)
= A1 12 + (g, AR Aptog,)

= AlPIgpl? + (Apts, Ants,)
= AP 1P+ 1 fod Pllbg, I < oo

Suppose that for any fo, f1,- -, fn € L*(R?), we have A}: . --A;[lwfo € F and let fo, f1,--, fat1 €
L?*(R%). To prove that A7 A+ : 'A,lefo e F, we will use the fact:

St
n+1
Apn AL LA A s = s o) AT AR+ Y (fnets VAT oo gy Af g € F
j=1
then:
1AL A
= (A} AR An i AfL AL )
n+1
= (far JONAT, - AR g 1P+ Y (AL - Af s, AF o Afy - AT ) (Fasts )
j=1
n+1
2 + +
< (g 1512) 147, A { 147, -4 ol + AT, oAy Aol <o

O

Now, to prove some property of invariance of Dy;ap, we will recall the definition of the Fock-Weyl
representation of L2(R?) given in [3], in the following:

the Weyl operator Wy is an element of the unitary group U(F) with the strong operators topology.
Moreover W acts on the exponential vector v, as:

Wy (tg) = =2 MIP=Fadyy(g 4 f).
we also have the following properties
1-:
W,® = e—%llgﬂzwg 1.2.0
2-:

(Wy)" AWy = Af + —= _(.9)

\f

or equivalently

\j§<f’ W, 1.2

Lemma 1.2. For every g, fi,-- , fn € L*(R?) and TEB(L*(R?)), the linear span of the vectors

AJr A}' g is the smallest vector subspace of F containing the vacuum vector and invariant under
the action of the operators

(1.2) AT, Ay, Wy, Nr

[Ap Wyl =

where Wy, Nr are the Weyl and the number operators. Moreover, on the domain Dasap, one has:
(A7) = Ay
(N7)* = Nr=
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Proof. Let g, fi, -+, fn € L*(R%), using (1.2.a), the prove of the fact that AfA]Tn : "A;cr11/1g €
Dasap follows from

ApAT ATy = (fL9)AL - AT g+ Y (f )AL -+ Ap - Af g € Dyap.
j=1

To prove that WfAan . ~A;{11,Z)g € Dyrap, it is sufficient to prove that WfA?n . A;{leCD € Dyrap.
Hence

+ _ +
WfAfn--'A;Ele@ = WfA;?n‘--AlefoWg@
= [Iwazwiww,e
i=1
_ At 4+ K , f)edmib oy o
E[ ) \/§<f f)]e (f+9)
= Z AQ[A}EI '--A}Z_QW(f+g)‘1>] € Dyrap
{jla"'vja}c{lv"'vn}
where
1: n—«a
Aoi= (= 5) 11 (f, )
{h1,eshn—a }={1,-jateC{1,...n}
Let f, f1 € (L?(R%)), then using
(1.3) [Nt Af] = Ay, Ny = Az iy,
we obtain:

NpAf by = A Ny + A,—Itfl b = A} AT r + (T, f)vos € Dyvap
by induction, suppose that for f,g, fi, -+, fn+1 belongs to € LQ(Rd) one has
NrAj - Af by € Dyap
and using (1.3), we get:

ot vt + + + + +
NpAp (Ap A = Ap (NrAp - Apdbg+ Ay Ap - Ap g € Dyap

Corollary 1.1. Denote by Pw the *algebra generated by the operators (1.2) acting on Dyrap which
called the polynomial-Weyl algebra. We have:

Dyap = Pw@®
Proof. It is clear that
Dyrap € Pw®
The converse inclusion, i.e:
Pw® C Dyap

follows easily from the relations (1.2.a), (1.2.b) and (0.9).
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2. WHITE NOISE STOCHASTIC INTEGRALS

In this section we will discuss white noise and stochastic integrals in R? rather than in R because
exactly the same formulae are valid in the 1-and in the d-dimensional case, but, as we shall see in
Section (3), some estimates are slightly worse in the non adapted case, compared to the will be called
white noise adapted. We define the operators:

A(F) =< FvA >= / dSFsas 5 A+(F) =< A+,F >= / dSCLerFS
R4 Rd

where F is a complex valued function on R%. The generalization of these integrals to the case when
F in an operator valued function are called right (resp. left) stochastic integrals with respect to as
(resp. af). Similarly one defines the two-sided stochastic integral:

/dds a;rFSaS.
R

It is clear that, the existence of left and two sided stochastic integral, (also of right ones if the integrand
process Fy is unbounded), requires some compatibility conditions on the domains.

Definition 2.1. Let £ := L(D) be the space of maps

F:RY — L(D,F)
s — F

where L(D, F) is the space of linear operators on the Fock space F densely defined on a domain D,
such that for any ¢, € D, the maps

s ER! <, Fup > s [|[Fy|® g, € D
are locally integrable.
Elements of £ will be called processes or, if confusion may arise, D-processes.
Remark 2.1. If D = Dyap, then the map s — as is in L, while the map s — a} is not in L
2.1. Right annihilator stochastic integral.

Definition 2.2. The right annihilator stochastic integral of F' € L is the operator:

(P /RddsFSasd) (2.1.a)

where the integral is meant as a Bochner integral in the Fock space. It is defined for each v € F such
that as is in the domain of Fy for each s and the vector valued function s € R% — Fyaz) is Bochner
integrable [14].

Lemma 2.1. The stochastic integral (2.1.a) is defined for all processes F' € L and for all vectors
Y € D} such that

S al /R dsF,p™ (s, )| < 0o (2.1.0)

n>0

In this case the integral (2.1.a) is equal to

/ Fsas,dsy = Z vn + 1/ dstw(”H)(s, ) (2.1.d)
Rd R4

n>0
where (" (s, ) is the function

(81,5 8p) € R 1/1(”+1)(s,51, ey Sn)



WHITE NOISE APPROACH TO STOCHASTIC INTEGRATION 9
Proof. We start from the explicit form of the right annihilator on a vector ¢ € D}}

(2.1) (as)™ = Vi + 1 (s,)

Therefore, in the notation (2.1)

/ Fsas¢ds:/ ds» Vn+ 1Fap" (s, ) (2.1.¢)
Rd Rd

n>0
Now by assumption, for each n, the function
se R — Fapt(s,))

is Bochner integrable. Moreover, because of (2.1.b), the series on the right hand side of (2.1.c) is

absolutely convergent. Therefore, one can exchange the series and the integral. This gives (2.1.d).
O

If 9 = 19)¢; an the exponential vectors, the explicit form of the stochastic integral (2.1.a) is

(22 [ ds Py = [ ds fs) Py

where the right hand side of (2.2) is defined on the set of the exponential vectors ¢y with test function
in L?(R?) such that the vector valued function s — f(s)Fsys is Bochner integrable.

2.2. The left creator stochastic integral.

Definition 2.3. The left creator stochastic integrals of a measurable element F' € L; F : s — Fs is
the operator:

wH/dsastw
Rd

and it is given by the formula for the scalar case:

() 1 <
+ - E (n—1) &
(23) (/Rddsas st) (517"'78n) \/ﬁ ‘:1(F57;17[}) (517"'7817"'5571)7 \V/TLZ 1

where 1 is in the domain of the operator Fy for all s € Ry.

Remark 2.2. This definition has a meaning for any measurable function s — F, the natural domain
of the left creator stochastic integral is

(023 [ dsat Pl gy < 0}
or more explicitly, a vector ¢ in D(/ ds al Fy) if and only if v € D(Fy), Vs € R4
R4

o0
Souf
el Rdn

We want now to obtain estimates on the norm of / ds a Fyip which guarantees that the stochastic
d

2
(Fsﬂb)(n_l)(SQ, ceey Sn) dSl...dsn < 0

integral exist. An example of such estimates is given by the following lemma:

Lemma 2.2. Let 1) belong to D(F) for all s € R%. Then one has, for each n € N*

(2.4) I( /R dsat F) (")Hz <n /R ds |[(Fa) "2
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Proof We have

I(f asar) [

= / /d31 dsnlZ((Fw)("—l)(sl,...,7,...,sn),(stqp)("—l)(sl,...,gj,...,sn)>

< Z,]/ [ ds. ()" D51, s 85| | | (B ) D1, 5 50)
n —

= s [ dsedsa[(F) " D s ) P = [ sl (Fa)
n Jrn Rd(n—1) R4

2.3. The normally ordered two-sided integral.

Definition 2.4. In the above notations, the two-sided normally ordered integral of F' € L:

/ ds a;rFsas
]Rd

is defined,weakly on the maximal algebraic domain:

Vfﬂ? € DMAD) <€7/ ds G:FSCLSTD = / ds <as§7 Fsa5n>
Rd Rd

In particular, on exponential vectors one has

(r. [ dsat Fraw) = ([ asF01a(s)) oy, Fo)

Lemma 2.3. For any n € N and for any exponential vector 1y one has the estimate
(n))2 _
(25) |( [ st Baacir)”| < [ asif) Pl D)
R R

3. MULTIDIMENSIONAL ESTIMATES ON Dysap (C)

In this section, we prove some estimates on the maximal algebraic domain in the multidimensional
case. Since Dysap is linearly spanned by the vectors of the form A}“n e A;{lwf, then it is useful to

have estimates on the norm of these vectors. Recall that F = I'(L?(R?)) the symmetric Fock space

over L2(R%) and Dy;ap(C) is the maximal algebraic domain i.e. the linear span of the vectors in the
set

Do = { A}, - Ajp by, [f.fro fo € C= AR)NCRY,n 2 1] (4.1.1)
Lemma 3.1. We have: a)
(3.1) [as, A7) = f(s)
where fis a test function in L?(R?).
b)

+ t

(3.2) as AT, AT | = Zf, AT
where fi,--- , fn are test functions in L*(R?).

Proof. a) For all ¥ € Dy;ap We have:

(A}r(w))(n) (517 o 7577«)

.’gi’...’sn)

I
B
™
=
<
3
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Using that:
(as¢)(n)(817 Tt 7Sn) =vVvn + 11/}(n+1)(87 S1, " 78n)
we obtain:
(asAF ()™ (s1,- -y 50) = Vi F LAF@)T D (5,51, ,50)

N s, )
= == ST )™ sty S Sna)
=1

n+1

= Zf(sz)w(n)(sla 7‘§i7"' 78n+1)
i=1

where s,,+1 = s. Moreover:

(A}_asw)(n)(sl,.. : 7Sn) - \}_ﬁZf(Si)(asw)(nl)($1,‘ 7§’L7 7371)
i=1
LN ) D s g s
- \/ﬁ;f( z)\r('@b) ( y 91y » Oy ) nfl)

then:

(@ AF )™ = (AFaw) ™) (s, ) = ((@AFO)™ = (Afa) ™) (s1, -+ ,50)
n+1

=5 P (51, Sy sar)— Sy Fs)@) D (5,51, S 50m)
=1

= f(8n+1)1/}(n)(817 Ty Sn)
— f(S)w(”)(51,--~  Sn)

b) This result will be proved by induction on n: let P, be the following property:
n ~
[GS,A};...A;] =3 fis)AL AL AT
i=1

Using a) the case n = 1 was verified, so we suppose that P,, was verified, then we will prove Py, 41 so:

+ +] _ - - - -
[as,Aan-.-Afl} = a,Af AL - AT oAb,
_ + - + + + + + +
- [as,Afn+1]Afn--~Afl+Afn+1aSAfn---Afl—Aan---Aflas
_ + - + + + -
- [as,Afn+1]Afn.--Af1+Afn+1[as,Afn--.Af1

= Son(&)Af AR AL LD fi(9)A] AR A
i=1

n+1 .
_ , + + +
- Zfl(S)Afnﬂ'”Afi'“Afl
=1

Proposition 3.1. (Right annihilator estimates)
For each F € L and for each bounded subset I C R?, it follows :
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i): for each number vector: ¢ = A?n e A;{lfl) where fi,--- , fu are test functions in L*(R?), we
have:
1
2
3 | [aspass| <cor 3 ( [asimer)
! pe(w) 1
where

J() = {AF, - A7

2

AT @, /1<i< n} C Dmap

ot i= a1 filz.) (3.1.0)

Vfillos = ( / !fi(8)2d8>é (3.10)

ii): For each vector i) = A}: : "A}iwf and for f, f1, -+, fn, I CR? (as in (i) above), (3.3) hold

with
JW)={A] ... AT Afyp AT AT 1<i<n} (3.1.¢)
ey, = max (||fillz,r, | fll2,r) (3.1.d)

Proof i) Using lemma (3.1) and the fact that a;® = 0, we have for fi,---, f, € L?(R9):

+ +3 — + +
/IdsFSasAfn---Aﬁ(I) - /Idst[as,Afn.--Aﬁ}@

— [dsF, S fi(s)AT - AT .. AT ®

SO
n ~
H /Ids FsasA}: . ..AJ‘;(I)H = H /Ids F, Zfl(S)A}'n . A}"i . ..A};CI)H
i=1
n ~
< Z/jdsyfi(s)\y\FsA;n.-.A};.--A;@n
i=1
n L 3
< Z(/dsm(s)ﬁ) (/dsHFsA?n--'A£-~A£‘P|!2)
i=1 !
n 3
< C#)JZ (/st ||FSAJtn . A;{ . --A}FI‘I’!?)
i=1
and this proves (3.3) where ¢y s is given by (3.1.b). -
ii)
For 1) = A}Ln e A}rl Yy, where f, f1,---, fn are test functions and 1y is an exponential vector, we
have:

/IdsFSasA?n---A}rlwf :/]dst[as,A}Ln~--A}rl}¢f+/ldstf(s)A}rn---A}Llwf

= /IdSFs[Zfi(S)A}rn---AAZ---A}ZQ/)f +f(5)A}Fn...A;¢f]
i=1
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+ -+ + _ - , + + + + +
H/IdstasAfn---Afi---Aflwa - H/Idst[Zfl(s)Afn-~-Afi---Af1wf+f(s)Af Aflqpf”’
=1
A + -+ + + +
< /IdsH[ZFSf,(s)Af"-..Afi.-Af1¢f+st(s)A Aflzpf”‘
=1
</ a5 (IS F()A], oo A+ IR, Aok v
< /ds[Zm (NIFAF, -+ AT o AL gl + | F I FAL, - AT gl
: :
<y ([1ecopas)” ( [asimag, - af - ajorl?)
=1
: :
w([ireras)” ([ asirag, o)
1
2
< CQ/J’]Z(/dS ‘FAJr A;A}Z@Z)f”2>
%
+(fasiag, - a,001?)
U

where ¢y 1 is as in (3.1.d)

3.1. Multidimensional left creator estimate.

Lemma 3.2. Consider the stochastic integral
A (F)yp = /ds afFyp, T CRY
I
where F' € L and Vs € I, ¢ € Dom(F;) such that

2L

2
dsy...ds, < oo,

Fo )" (s, ..., 5,)

then
IAT (F)ol|* < /Idt Il + /I><Idet I(Esw) (2, )P
where ||.| is the norm defined by:
(3-4) Iol? =Y nlpt™)?
n>0
Proof

(AF(F)b, AF(F)g) = /ds dtlat Fub, aj Fyb)

I I

= /ds/dt F, as,at |Fy) /ds/dt Sw,at asFyp)
I I

= /dt(Ftw,Ftw dsdt{a;Fs, asFu).
I IxI
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Now consider the integral:

J = /Ids/ldt<atF51/1,asth/1>

= dsdt i(” +1) /}Rnd (Fa) D (¢, o) (Fp) ™) (s, 0)do

IxXI -

Using Cauchy Schwarts inequality and Lebesgue theorem, we get:

o0

(n+1) (n+1) 2
J < nzo 5 /IX?SdtH(st) (&, M 72gna)
30 D gt ) 5,
= 2 IxI ®)
_ g)n+n/ﬁwwu@mW“Nnm;mM)
n—0 IxI

!/@ﬁmawaﬁw
IxI

where ||| is the norm (3.4). O

Remark 3.1. This estimate in the multidimensional case is not useful to prove the convergence of
iterated series, but as it follows, we can find a good estimate in the white noise adapted and one-
dimensional case.

4. WHITE NOISE ADAPTED STOCHASTIC INTEGRAL EQUATION

In this section, we will show that the white noise adaptness condition gives the opportunity to
have more precise results with more regularity. We will generalize some results proved by Hudson
and Parthasarathy in two directions:

(i) the adaptness condition will be replaced by white noise adaptness [15]

(ii) the estimate will be valid not only on the exponential domain, but on the whole maximal

algebraic domain.
At first, we recall that a stochastic process in F, indexed by Ry, is a family (F}):>o of elements of
L(D,F) satistying that for each ¢ € D, the map t — Fyi) is Borel measurable. Alternatively, a
stochastic process indexed by Ry can be looked as a map t € Ry — F; € L(D,F) with the above
mentioned measurability property. We remark that elements of £ can be regarded as stochastic
processes. In the next, we shall only deal with processes indexed by I C R,.

Definition 4.1. A process (Fy)i>o is said to be white noise adapted if for any my € {as,a], ara; },
we have:

(41) \VI¢ S DMAD, Fsmtw = thS¢, Vs < t.

Lemma 4.1. If a process (Fy)i>o is adapted in the sense of Hudson and Parthasarathy, it is white
noise adapted.

Proof. Let (F});>0 an adapted process in the sense of Hudson and Parthasarathy [15], which means
that for any exponential vector ¢y = 1 fog @ Vs for t € R™ one has:

Fopy = (Fy,) @ ¥y,
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)
asFipy = as(Ftwft]) ® y,, Vs >t

GsFtl/ff = (Ftwft]) ® aswf[tavs >t
= Fagxpp,Vs>1

Then, we conclude that (F});>o is white noise adapted.

4.1. The Hudson-Parthasarathy estimate. In the following section we will prove that the white
noise approach allows to obtain a stronger result. In fact the next estimate was proved by Hudson
and Parthasarathy [15], in the adapted case and here we given a different proof of the same result
but for general kind of processes, and this using the white noise approach.

Proposition 4.1. For all strongly continuous processes (Fs)s>0 on Dyrap(C), we have:

(42) | [as oy [ < [asimagiisor

Proof. Let 1)y be an exponential vector with test function f, then, we denote by:
t

I(t)wf = /dSFsaswf
0
{6}
2 ! 2
1001 = | [ ds Praay |
0
For fixed t,dt > 0 and arbitrary function F'(t), we use the notation
dF(t) = F(t +dt) — F(t)
(finite difference). In this notation one has the algebraic identity:

AW, IEnsy) = (AT I(bs) + (dI()bg, dI(E0by) + ([AI(E0by, dT(E)by)
t+dt t+dt t+dt
- 2Re</t ds Fuf (sybog T(E)5) + { / dty Fo, £ (0 )y, / dty Fio f (t2)0y)

t+dt t+dt t+dt
— 2Re / ds F(s) (Futby, T(E00s) + / dt, / dtsF(00) f(t2) (P g, Fovthy).
t t t

Denote

h(t1,t2) == f(t) f(t2)(Fr¥f, Fi¥p)
Since the map s +— Fyiby is continuous, we deduce that the map (ti,t2) — h(ti,t2) is uniformly
bounded on [¢,t + dt] for each t € Ry, in fact:

At t2)l < I fl5 sup  [|Esyy
s€(t,t+dt]

using this and the identity

1
WL @)y, L)) =
1 t+dt |t t+dt
dt2Re</t Fof (s)dsoy, I(t)iy) + dt/t dt1/t dtah(t1,t2)

we get, for dt — 0
d

7 Oy, I)Yy) = 2Re(Fef ()1, 1(t)1y)

therefore

%U(thJ(tWﬂ < IFef @wrl + 1)y
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Thus, by Gronwall lemma:

t
11wyl < e /O dt| £ () PI| Foao |
which is (4.2). O

4.2. 1-dimensional, white noise adapted left creator estimate. We need the following prelim-
inary result, which is true in arbitrary dimensions.

Lemma 4.2. For all ¢ in Dyap(C) satisfying
(4.3) 1% ==l < oo.
n>0

Then for each s; € RY, the following series:

Z(?’L + 1) /d d82 e d8n+1’¢(n+1)(817 82, 7871-‘!—1)’2
n=0 Ren

s finite a.e.

Proof
Using the Dini theorem and (4.3), we get

loll” = /Rd dsiy (n+1) o dsy -+ dspia [P (51,89, sp41)]? < 00
n=0

Then, we deduce that for each s; in R% we have

o0
Z(n+ 1)/ dsg - --dsnﬂw(”H)(sl,sQ, s spa1) ]2 < 00 ace.
n—0 Rdn

Proposition 4.2. (1-dimensional left creator estimates)

For all white noise adapted processes (Fs)s>o and all 1 € Dyrap(C) such that the map (t1,t2) —
Fy1(ta,.) is continuous for ti,te in every interval of Ry for the norm (8.4), we have, for any 0 <
t<T <40

(4.4) dsa

T2 3 [ e

hi€J ()
where J() is the subset of F defined by

JW) ={i = A} ... A} .. A}y, A . AT b1 <i < n} C Dyap,
|.| denotes the cardinality,

Crop = max 21, CTp; = (Hf]”ooTva“ZqT)' (4.1.a)

where || flloo,r = SUP¢e[0,T] | £ ()]
Proof. Let ¢ = A;{n e A;{lwf, and
t
F)wz/dsastqﬁ
0

so to estimate || A;(F)p||? it is sufficient to estimate d{A;(F)w, A;(F)v) for this we obtain
d(AL(F), Af(F)Y) = (dA((F)Y, Ad(F)Y) + (A(F)), dAd(F)y) + (dA(F)), dA(F)i)
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= 2Re({dAy(F)y, Ay(F)) + (dA(F), dA(F)y)
For the term (dA(F)y, dA(F)), we obtain

t+dt t-dt
(dAL(F)Y,dA(F)) = </ dty atlFtlw,/ dta a Fy 1)

t+dt t-+dt
= / dtq / dt2 atlFt1¢a atQFt2¢>

t+dt t+dt

= / dtl/ dtg Ftlw,atlatQFt2z/1>
t
t+dt t+dt
= / dtl/ dto(Fy ), 8(t1 — t2) Fyyt))
t
t+dt t+dt
+/ dtl/ dtg Ftlw,atzatlFthJ)
t

t+dt
= / dt1<Ft11/}7Ft1w>
t

t+dt t+dt
—|—/ dtl/ dta(at, [y, v, ar, Fiy1))
t

tdt t-dt
Denote by: A := / dtl/ dta(a, Fy, v, ar, Fi,10) then, we get:
t

t4dt t4dt
/ dtl/ dtzZ/ (at, F 00) ™ (1,82, , sn)

atlthi/J (51, S9,+ ,8p)dsy . ..dsy
t+dt t+dt =~ ©©
/ dtl/ dtQ n+ 1)/ (Ftlw)(n+1)(t2asl7827' T 787’1)
Rnd

X (Fyyp) ™l (t1781,82,-~- ,Sp)dsy .. .dsp

t-dt ttdt
/ dt1/ dtag(ty,ta)

gltita) = Y (n+1) / (Fy, )+ (tg, o) (Fryh) "V (81, 0)do ae.
n—0 Rdn

=t (NFy,(t2,.), Fiotp(ts,.))
The continuity of the map: (t1,t2) — g(t1,t2)a.e. on [t,t + dt]?, is a consequence of the following
inequalities: Ve > 0
glti+eta+€) =gt ta) = (NFypeb(ta+6.), Frep(t +6,.)) — (NFyt(te, ), Fiip(ty, )

= (N (Frelta + 6 = By liz, ), Fect( +6,)
HNE (s, ) Fyscth(ty +.) — Fi(t,.)
IVN(Fyy (2 + €, .) = Fryo(ta, )| Fraet(t1 + 6, )|
HIVNF (b2, )| (Fioetb (b1 + €, ) = Fitb(tr, )|

and of the continuity of (t1,t2) + Fy,1(t2,.) in the norm (3.4). Since g is bounded in [t,t + dt]?
follows that: |A| < B(dt)?, where 8 > 0, i.e. A= O(dt?). In conclusion:

where:

IN

1 tdt |t 1
@d@‘lt( )b, Ag(F)) = dt2Re</t dsaf Fop, Ay (F)y) + dt/t dty (Fy, v, Fy ) + &«4
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and, if dt — 0, we get
a
dt
Let ¢ = A;{m e A}Fl Yy in Dyrap(C) where f, fi... fn are test functions in C', and F; is a white noise
adapted process, for each ¢, so we obtain:

¢
(Ag(F)p, Ay(F)p) = 2Re(a;rFt1[1,/0 dsaf Fap) + (Fyp, Fp).

(a:rFtl/J,/Otds al Fo) = /tds (Fy, aral Fyap)

0

¢

/OdS (Fp, af Fsan)
¢

/ds (Fyb, af Fsa)

since:

t t t
/ds aj Fsa A} . Aj gy = /Dds ast[at,AJtn...A;tl]wfder/Ods af Fedsf(t) AT ... A} g

0
t
= /dsa;“Fs
0

Y LMAL AT AT+ F(OAT ATy
=1

SO: )
t
‘/OdsastasA?n...A};...A};l/zf
2
H/dsa+F Zfl b AL AL+ F(AT ATy
=1
n t X : 2
oS [/dsastfi(t)A}:...A};...A};wf] +/dsas+psf(t)A+fn...A;¢f
i=1 L/0 0
t R 2 t 2
s Ot RAf, A afur| 2| [asarmoa) gy
0
n t A 2 t 2
g2cm[z /OdsastA}rn...A};...A}rll/)f +’/OdsastA;{n...A}'lwf }
=1
where
Ty = (Illeloo 7 1 f13er)
then p
7 (At(F), Ae(F)y) <

2

t
2| Fyap||2 4 2¢r ||| Ae(F)|2 dsal F, AL .. AL . AL 4y

We denote by
1A(F)IE, = D 1A
wzer
where

~

Fy={¢i=Af ... A} .. Al A} .. A4y, 1<i<n}

We note that V; € Fy :
1A(F)il)? < Al F)olIE,
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and

t t
| Ad(F)ill? < /0 ds | Fasl]? + 2074, / ds | As(F i
J

t t
JAEIE, < [ 30 IRlPds+ CrulFol [ AP, ds
0 yer, 0
where CTﬂ/, = MaXy,cF QCT#,Z..
2 ‘ 2 ! 2
JAEIE, < Y [ IRwds + CrlFol [ AP, ds
ek, 0 0
by Gronwall lemma, we obtain
t
[A(F) (> < [ Ad(F)l[f, < eCrulFult 37 /0 1 Fspil|*ds.
wiEFw

So we get the result where J(¢) = Fy,.

19

Corollary 4.1. For v = v, we have, using the fact that Fy is white noise adapted and Gromwall

lemma:

t 2 t
H [asatray| < it [[asqifll 1012
0 0

The above estimate is similar to those proved by Hudson and Parthasaraty on the exponential

vectors.

Corollary 4.2. Let (F})i>0 be a white noise adapted process such that, for each n € N* and test

functions f, f1--- fn in C, the map

(t1,t2) = Fy,¥(to,.); )= A}rn : '-A;wf € Dyrap(C)

is continuous under the norm (3.4). Then the following inequality holds for any 0 <t < T < co:

t 2 t
(4.5) H/dSG:Fsast < Céf,zp/ds Z HFs¢zH2
’ O pieiw)
where J(¢) C D, cp, are defined by
J() = {Aﬁ;"AEWAE"'Aﬁ“'AEW 1 gz’gn}

2

2 F)T |E DT
C/T7w =2n 112%}%(”f1”w’7v, ||f||oo,T)cT,1ZJ 112%}%(6(CT,¢;| ) ’e(Cva'L‘ il) )

where || filloo,r = supgepo,r 1f(s)| and cry, ey, are defined as in (4.1.a)
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Proof. Using lemma (4.1), we get:

t 2 t n ~ 2
H/dsa:stasdJH = H/dSa:Fs[Zsti(S)A}:"'A};."'A}ii/)f+f(S)A}:'”A}E¢f]H
0 0 i=1
t n ~ 2
< 2”/dsajFSZsti(s)A;n---A};..-A;wa
+2H/dsa Fof(s)AF, -+ Atp vglf?
< 2n. max Hf,HOOT ZH/dsCﬁFAJr T/”H
+mﬂ&fyﬁduqu;~-A+ﬁwM2
<2 s (]l 12 211 1% 1) guax (el DT cler T
no_ oot . , t ,
[ [asipay, - Ap o]+ [ asinag, Ay P
i=1
where (cry|F|), (cr.,|F;|) are defined as in (4.1.a). O

Corollary 4.3. Let (F;)i>0 be a white noise adapted process such that, for each n € N* and test
functions f, f1 -+ fn in C, the map

(t1,t2) = Fy,¥(to,.); Y= A}rn : "A;wf € Dyrap(C)
is continuous under the norm (3.4). Then the following inequalities hold for any 0 <u <t <T < oo:

a-:
¢ 3
(4.6) dsFasdJH <cpr Y </ ds !\st!2>
PeJ (1))
where
J() = {A}'n...A;{i...A}'lwf,A;{n...A}rlg/;f,l <i<n}
and
ey = max ([ filla.r, [1ll21)
b-:
(4.7) dsa+F < elCrypl Y / | Fyas||?ds
P, eJ (Y
where J(1) is the subset of F defined by
J(’Qb) = {1/)1 :A;nA}ZA;’QDf,AEA;@[)fl <13 S’I’L} C Dyap,
|.| denotes the cardinality,
Cro = mare 2er, cr = mas (1 e 1) (1.1.a)
where || f oo = supseio 1y | f(£)]-
c-:
(4.8) dsa Fasq/JH <CT¢/d8 Z | Esi |

€J(¥)
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where J(¢) C D, ¢y, are defined by

~

J() = {A* ---A*@Z)f,A* "‘A}Z“‘A;@ﬁf» -1 Sign}
Iy =2n max (U fillZoms 1F 130 ) ery ma<x( elerwlFDT glery, [FDT)

where || filloo,r = supsepor [f(8)| and cry, cry, are defined as in (4.1.a).

Proof. a- is obtained by taking I = [u,t] in proposition 3.1. Also the proof of b- and c- are
obtained by replacing o by u in those of proposition 4.2 and corollary 4.1. (Il

Corollary 4.4. Let Hg a Hilbert space called initial space. The inequalities (3.3), (4.4) , (4.5) are
verified if we take
V=u®YEHs®F

where u is in the initial space Hg and 1 is an element of the mazimal algebraic domain.

Proof. Using the fact that:
Ftu ® ’Qb =uQ Fﬂ/}
and the inequalities (3.3), (4.4) and (4.5), one has:

H /F asdsu®wH < ey Z </dS|U®Fsgp||2)

peJ(¥)

H/ dsi Faue | < clersiont /uuwsmn ds

i€ ()
H/ a; Fasdsu@)ll}H < CT¢/ ds ||u®FS@ZJiH2
wzeJ(w
where ¢y 1, ¢, and CT¢ are defined in propositions (3.1), (4.2) and Corollary (4.1). 0

5. NORMALLY ORDERED WHITE NOISE STOCHASTIC DIFFERENTIAL EQUATION

5.1. Introduction and definitions. The normally ordered white noise stochastic differential equa-
tion:

(51) U, = aertUt + FiUiay + CL?GtUtCLt + H:U; U(O) =0

where (Et)t>0, (F1)i>0, (Gt)i>0 and (H¢)¢>0 be measurable and locally bounded operators acting on

the initial space Hg.
The meaning of equation (5.1) can be specified in two different ways:

(i): as an integral equation, i.e.
t t t t
(5.2) U = Uy +/ ds ajEsUs + / ds FyU,ag +/ ds astUsaS +/ ds HU,
0 0 0 0

where the integrals on the right hand side are defined in section (3.1).
(ii): as a weak equation in some domain D'( our choice of this domain will be specified later):

(5.3) 0(o, Up)) = (s, E;Uptp) + (¢, FUragh) + (ard, EyUragp) + (o, EyUgap)
where ¢ and 1 are in D'.

Since also the notion of stochastic integral requires the specification of some domain, the two methods
may lead to inequivalent notions of solution. However the main goal of the theory is to produce
solutions which are unitary (in particular bounded). Within this class it can be proved that, for a
large family of coefficient processes (including the constant bounded ones, which are the most used
in applications) the two equations lead to the same solution.
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5.2. White noise adapted normally ordered white noise equation in R?. Using the above
results, we will prove the existence and the uniqueness of solution of a class of whit noise adapted
normally ordered white noise equation by:

Definition 5.1. A white noise adapted normally ordered white noise equation with coefficients is a
normally ordered white noise equation as defined above:

(5.4) aU; = [F,} Usas + af F2U, + af F3Usay + F,?Ut} dt

where (F)i>0, (F2)i>0, (F)i>0 and (F{)i>o are, white noise adapted processes in B(Hg) continuous
for the norm operator topology on B(Hg).

5.3. Existence and uniqueness of the solution of a WN stocahstic equation.

Theorem 5.1. Consider the normally ordered white noise equation:
t t t t
(5.5) U, =Up +/ ds FXUsa, + / dsal F2U, +/ dsal F3U,a, +/ ds FAU,
0 0

where (F)s>0, (F2)s>0, (F2)s>0 and (F3)s>o are locally bounded continuous processes for the norm
operator topology on B(Hg) such that the maps:

(tl,tg) — Ft21 (tQ, .), (tl,tg) — Ft31 (tg, ) (6.6)

are continuous for the norm (8.4) for each 1 € Dyap(C) and ti,ty € R. Under the above condi-
tions, equation (5.5) has a unique white noise adapted locally bounded continuous solution for all Uy
white noise adapted strongly continuous process on Dyrap(C).

Proof. i) Existence. Define by induction U = U? | and

t
Ut = / FlU aqds + / ot F2Umds + / at F3UMa,ds + / FiUnds
0 0 0 0

For simplicity, we use the notation:
t
1 . .
uptt = /0 FlUMM!

The sequence (U'),en is well defined. In fact U° is a strongly continuous process on Dysap(C).
Suppose that V0O < k < n, Utk is a white noise adapted process on Dy ap(C), strongly continuous
and such that the map :

(t1,t2) = UL (L, .) (10.10)

is continuous for the norm (3.4). Using the scalar type integrator inequalities (3.3), (4.4) and (4.5),
we have for any 0 <u <t < T, and each i € {1,2,3,4}:

y/ FiUmadse]? < 11 (©)l(erin)? Y /dsHFlU"nH?

neJi (€

H/ af F2U2ds|® < erom Y /dsHFQU”nHQ

neJ2(§)

||/ af F2UPauds|® < eran Y /ds|\F3U"77||2

neJs (&)

|| / FUnds|? < eay S / ds| FAUm )

neJa(€)
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where crip, Ji(£),1 = 1,2,3,4 are defined as in (3.3), (4.4)and (4.5). Then

2 t o 2
(56) [oee]” = || [ amirienvng|
(5.7) < erekr Y / by U762
&1€J(§)
where:
cre =4 max CTin ; Ji(& = sup ||Fs|co-
BT Nieqasdbmere U Hr= o 15

Let us now prove that U™ satisfy (10.10). In fact Ve, € > 0:
Un Tt + €)= ULt ) < IULTe(te + €)= Ut + €, )

HIUZ (b + €)= UR o (ta, )|
t1+e ] )
= | dsF ULdMp(ty + €, )|
t1

H [ dsFUzaMne + €)= vta. )]
using the inequality 5.6, we get:
Ut ew(ts + €)= UL (e, )l <

ds||FLUGs(ta + €, )P + {cf, Z/ dsl| FLUZ 5 (ts + €',.) = w(ta, )P}

t1+e€

{CthlﬁZ/
P Jh

using our hypothesis, we have the continuity of the map
s = |FLU it + €, )|
so it will be uniform bounded on the compact [¢,t + €], then, we obtain that:
t1+e€

1
(e 35 [ sl ) < K 1>
Moreover under the assumptlon the terms

{ctle / AU 5t + €.) — (12, )P}

vanish when ¢ — 0,80 we get the result.

Because of the above hypothesis of the induction, for all M! € {as,a’,asal} and i € {1,2,3,4}, FiU?
is a continuous process integrable with respect to M!, then we have that U™"! is a continuous process
on Dyrap(C) with the same property as U". It follows by induction that U is strongly continuous
on Dyrap(C) for all n € N.

We will prove now the basic estimate:

2 1

< ma 21Ul T (&) | K e 0,¢))"—=
< manc [l U0l 1 (€)|" K e (0,1)"
For all n € N and all 0 <t < T, where:

:4 i 5 J - JZ ,K = F .
re z'e{l,;:%r,lf})fnel(i) CTiim © Llj (©), Kr SSEFT] 1#5lloe

(5.8) HUt”é

Using the scalar type integrator inequalities (3.3), (4.4)and (4.5), we have for each i € {1,2,3,4}:

H / FIU aydsé)? < 1A (©)lerag)? 3 / ds|| FLUT )

€J1
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H / GRS < eray 3 / ds| F2Um |

neJ2(§)
H/ af F3UPabyds|* < cray Y /dsHF3U"n|]2
neJs(§)
||/ FIUPAS)? < ey 3 /dsF4U"17||2
n€Ja(§)

where c7;p, Ji(§),1 =1,2,3,4 are defined as in (3.3), (4.4)and (4.5). Then

2
|omwe|” = H/ M}, F (1) U] gH <ereKr /dtlng T2
greJ(€
— ek Y / at | ( / thiQFtiQUgﬂ)&H
£1€J(§)

where:

cre =4 max 3 J(E) = | Ji(§), Kr = sup || Fs|eo

e ie{1,2 34}neJ(£) Tin i J€) LZJ (©), Kz se[o?T}H |

because of the conditions on F*, then:
2 ¢ t1 4 . 2
HUn(t)gu <ereKr Y / dt1H / M}, (FZ;U{;—2>€1H
6”0 0
Using the same inequality again

t1
< G KR D / dtl/ dt2 ]Uz; 152H
£2€J(8)
An n-fold iteration of the same arguments gives us the estimate:

t1 tn—1
U@ < e KpIEPT Y / dty / dts - / At |Untenl?
1

EnEJ

< max 2NU NP KR T(E)|M ™ =
< UEJ(E)HUH |UoI*cr e K 7| T (€)] .

Therefore the series Y > U/* converges in the strong topology on Dysap(C) uniformly on bounded
intervals of Ry. This implies that it defines a process Uy strongly continuous on Dy 4p(C). We show
that Uy is a solution of (5.5). By the integrator of scalar type estimate we have, for all n € N,

H/ F;Ung;g—/ dM;F’ZUéH < creKr Z / > UEn|Pds
0 0 k=n+1

then, we obtain for all s € [0,¢],k € N,n € J(&)

1
Ul < mase 200 (€) P K5 et

then the series > 72 ||[U*(s)n||? converges in the strong topology on the Fock space uniformly on
bounded intervals of R,. It follow from Lebesgue theorem that

t k=n t
Jim [ an; (F%U) - /0 AMIFiU,
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This together with the identity
k=n+1

t . Ak:n
> ute=tic+ / avi(r 3y Ut)e

implies that U; verifies the stochastic differential equation (5.5).
ii)uniqueness It will be sufficient to prove that all bounded continuous process Z;, t € R, satis-
fying the following white noise stochastic differential equation:

t
Z; = / F!ZdM:
0
must be zero. In fact, for all ©» € Dyrap(C), applying our estimates, we have:

t
122 < erpkr S /O | Zen|?ds
)

neJ (@

applying again the estimates to the integral in the right-hand side (n - 1) times and computing the
iterated integral as we did before, we obtain:

1
Zb||? < sup || Zs||%. max 2l "KReR t—
1 Ze|| _sggﬂ s||oonej(w)||77|| | J(@)[" Kpep "

Since this is true for all n € N, it follows that Zy) = 0 for all t € [0, 7. O
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