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via Columbia 2, 00133 Roma, Italia
accardi@volterra.mat.uniroma2.it

Andreas Boukas
Department of Mathematics and Natural Sciences, American College of Greece

Aghia Paraskevi, Athens 15342, Greece
andreasboukas@acgmail.gr

1



Contents

1 Introduction 3

2 A new look at the counter-example of the previous section 11

3 A renormalization suggested by conditions (16)-(18) 16

4 The canonical RHPWN commutation relations 17

5 The w∞ algebra 18

6 Poisson brackets 19

7 White noise form of the w∞ generators and commutation
relations 22

2



Abstract. We introduce a new renormalization for the powers of the
Dirac delta function. We show that this new renormalization leads to a sec-
ond quantized version of the Virasoro sector w∞ of the extended conformal
algebra with infinite symmetries W∞ of Conformal Field Theory ( [5]-[8],
[12], [14], [15]). In particular we construct a white noise (boson) represen-
tation of the w∞ generators and commutation relations and of their second
quantization.

1 Introduction

Classical (i.e Itô [11]) and quantum (i.e Hudson-Parthasarathy [13]) stochas-
tic calculi were unified by Accardi, Lu and Volovich in [4] in the frame-
work of Hida’s white noise theory by expressing the fundamental noise pro-
cesses in terms of the Hida white noise functionals bt and b†t defined as fol-
lows: Let L2

sym(Rn) denote the space of square integrable functions on Rn

which are symmetric under permutation of their arguments and let F :=⊕∞
n=0 L

2
sym(Rn) where if ψ := {ψ(n)}∞n=0 ∈ F , then ψ(0) ∈ C, ψ(n) ∈ L2

sym(Rn)
and

‖ψ‖2 = |ψ(0)|2 +
∞∑
n=1

∫
Rn

|ψ(n)(s1, . . . , sn)|2ds1 . . . dsn

The subspace of vectors ψ = {ψ(n)}∞n=0 ∈ F with ψ(n) = 0 for all but
finitely many n will be denoted by D0. Denote by S ⊂ L2(Rn) the Schwartz
space of smooth functions decreasing at infinity faster than any polynomial
and let D be the set of all ψ ∈ F such that ψ(n) ∈ S and

∑∞
n=1 n |ψ(n)|2 <∞.

For each t ∈ R define the linear operator bt : D → F by

(btψ)(n)(s1, . . . , sn) :=
√
n+ 1ψ(n+1)(t, s1, . . . , sn)

and the operator valued distribution b†t by

(b†tψ)(n)(s1, . . . , sn) :=
1√
n

n∑
i=1

δ(t− si)ψ(n−1)(s1, . . . , ŝi, . . . , sn)

where δ is the Dirac delta function and ˆ denotes omission of the corre-
sponding variable. The white noise functionals satisfy the Boson commuta-
tion relations
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[bt, b
†
s] = δ(t− s)

[b†t , b
†
s] = [bt, bs] = 0

and the duality relation

(bs)
∗ = b†s

Letting H be a test function space we define for f ∈ H and n, k ∈
{0, 1, 2, ...} the sesquilinear form on D0

Bn
k (f) :=

∫
R
f(t) b†t

n
bkt dt

i.e for φ, ψ in D0 and n, k ≥ 0

< ψ,Bn
k (f)φ >=

∫
R
f(t) < bnt ψ, b

k
t φ > dt

with involution

(Bn
k (f))∗ = Bk

n(f̄)

and with

B0
0(ḡf) =

∫
R
ḡ(t) f(t) dt =< g, f >

The Fock representation is characterized by the existence of a unit vector Φ,
called the Fock vacuum vector, cyclic for the operators Bk

n(f) and satisfying:

B0
kΦ = Bh

kΦ = 0 ; ∀k > 0 ; ∀h ≥ 0 (1)

It is not difficult to prove that, if the Fock representation exists, it is
uniquely characterized by the two above mentioned properties.

In [1] it was proved that for all t, s ∈ R+ and n, k,N,K ≥ 0, one has:

[b†t
n
bkt , b

†
s

N
bKs ] = (2)
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εk,0εN,0
∑
L≥1

kLN (L) b†t
n
b†s
N−L

bk−Lt bKs δ
L(t− s)

−εK,0εn,0
∑
L≥1

KLn(L) b†s
N
b†t
n−L

bK−Ls bkt δ
L(t− s)

where

εn,k := 1− δn,k

δn,k is Kronecker’s delta and the decreasing factorial powers x(y) are de-
fined by

x(y) := x(x− 1) · · · (x− y + 1)

with x(0) = 1. In order to consider higher powers of bt and b†t , the renor-
malization

δl(t) = c l−1 δ(t), l = 2, 3, · · · (3)

where c > 0 is an arbitrary constant, was introduced in [4]. Then (2)
becomes

[b†t
n
bkt , b

†
s

N
bKs ] = (4)

εk,0εN,0
∑
L≥1

kLN (L) cL−1 b†t
n
b†s
N−L

bk−Lt bKs δ(t− s)

−εK,0εn,0
∑
L≥1

KLn(L) cL−1 b†s
N
b†t
n−L

bK−Ls bkt δ(t− s)

Multiplying both sides of (4) by test functions f(t)g(s) and formally in-
tegrating the resulting identity (i.e. taking

∫ ∫
. . . dsdt), we obtain the fol-

lowing commutation relations for the renormalized higher powers of white
noise (RHPWN)

[BN
K (g), Bn

k (f)] (5)
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=
K∧n∑
L=1

bL(K,n)BN+n−L
K+k−L (gf)−

k∧N∑
L=1

bL(k,N)BN+n−L
K+k−L (gf)

=

(K∧n)∨(k∧N)∑
L=1

θL(N,K;n, k) cL−1BN+n−L
K+k−L (gf)

where
bx(y, z) := εy,0 εz,0 yx z

(x) cx−1 (6)

and for n, k,N,K ∈ {0, 1, 2, ...}

θL(N,K;n, k) := εK,0 εn,0KLn
(L) − εk,0 εN,0 kLN (L) (7)

with

(K∧n)∨(k∧N)∑
L=1

= 0

if (K ∧ n) ∨ (k ∧N) = 0. In what follows we will use the notation

Bn
k := Bn

k (χI) (8)

whenever I ⊂ R with µ(I) < +∞ is fixed. Moreover, to simplify the
notations, we will use the same symbol for the generators of the RHPWN
algebra and for their images in a given representation. As above, we denote
by Φ the Fock vacuum vector with bt Φ = 0 and 〈Φ,Φ〉 = 1. It was proved
in [1] that, with commutation relations (5), the Bn

k do not admit a common
Fock space representation. The main counter-example is that if a common
Fock representation of the Bn

k existed, one should be able to define inner
products of the form

< (aB2n
0 (χI) + b (Bn

0 (χI))
2)Φ, (aB2n

0 (χI) + b (Bn
0 (χI))

2)Φ >

where a, b ∈ R and I is an arbitrary interval of finite measure µ(I).
Using the notation < x >=< Φ, xΦ > this amounts to the positive semi-
definiteness of the quadratic form
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a2 < B0
2n(χI)B

2n
0 (χI) > +2 a b < B0

2n(χI)(B
n
0 (χI))

2 >

+ b2 < (B0
n(χI))

2 (Bn
0 (χI))

2 >

or equivalently of the (2× 2) matrix

A =

[
< B0

2n(χI)B
2n
0 (χI) > < B0

2n(χI) (Bn
0 (χI))

2 >
< B0

2n(χI) (Bn
0 (χI))

2 > < (B0
n(χI))

2 (Bn
0 (χI))

2 >

]
Using the commutation relations (5) we find that

A =

 (2n)!c2n−1µ(I) (2n)!c2n−2µ(I)

(2n)!c2n−2µ(I) 2(n!)2c2n−2µ(I)2 + ((2n)!− 2(n!)2) c2n−3µ(I)


The matrix A is symmetric, so it is positive semi-definite only if its minors

are non-negative. The minor determinants of A are

d1 = (2n)!c2n−1µ(I) ≥ 0

and

d2 = 2c4(n−1)µ(I)2(n!)2(2n)!(c µ(I)− 1) ≥ 0⇔ µ(I) ≥ 1

c
.

Thus the interval I cannot be arbitrarily small. The counter-example was
extended in [2] to the q-deformed case

bt b
†
s − q b†s bt = δ(t− s)

A stronger no-go theorem, which establishes the impossibility of a Fock
representation of any Lie algebra containing Bn

0 for any n ≥ 3 and satisfying
commutation relations (5), can be proved using the following results.

Lemma 1 Let n ≥ 3 and define

C1(n) := [B0
n, B

n
0 ]

and for k ≥ 2
Ck(n) := [B0

n, Ck−1(n)]
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Then
C3(n) = β(n)B0

2n +N(n) (9)

where, in the notation (6), β(n) ∈ R− {0} is given by

β(n) :=
n−1∑
L1=1

n−L1∑
L2=1

bL1(n, n) bL2(n, n− L1) bn−(L1+L2)(n, n− (L1 + L2)) (10)

and N(n) is a sum of operators given by

N(n) :=
n−1∑
L1=1

n−L1∑
L2=1

n−(L1+L2)∑
L3=1

bL1(n, n) bL2(n, n− L1) (11)

×bL3(n, n− (L1 + L2))B
n−(L1+L2+L3)
3n−(L1+L2+L3)

with adjoint

N(n)∗ :=
n−1∑
L1=1

n−L1∑
L2=1

n−(L1+L2)∑
L3=1

bL1(n, n) bL2(n, n− L1) (12)

× bL3(n, n− (L1 + L2))B
3n−(L1+L2+L3)
n−(L1+L2+L3)

where the triple summations in (11) and (12) are over all L1, L2, L3 such
that L1 + L2 + L3 6= n.

Proof 1 The commutation relations (5) imply that:

C1(n) = [B0
n, B

n
0 ] =

n∑
L1=1

bL1(n, n)Bn−L1
n−L1

and

C2(n) = [B0
n, C1(n)] =

n∑
L1=1

bL1(n, n) [B0
n, B

n−L1
n−L1

]

=
n∑

L1=1

n−L1∑
L2=1

bL1(n, n) bL2(n, n− L1)B
n−(L1+L2)
2n−(L1+L2)
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=
n−1∑
L1=1

n−L1∑
L2=1

bL1(n, n) bL2(n, n− L1)B
n−(L1+L2)
2n−(L1+L2)

since [B0
n, B

n−L1
n−L1

] = 0 for L1 = n, and finally

C3(n) = [B0
n, C2(n)]

=
n−1∑
L1=1

n−L1∑
L2=1

bL1(n, n) bL2(n, n− L1) [B0
n, B

n−(L1+L2)
2n−(L1+L2)

]

=
n−1∑
L1=1

n−L1∑
L2=1

n−(L1+L2)∑
L3=1

bL1(n, n) bL2(n, n− L1)

×bL3(n, n− (L1 + L2))B
n−(L1+L2+L3)
3n−(L1+L2+L3)

from which (20) follows by splitting the above triple sum into the parts
L1 + L2 + L3 = n and L1 + L2 + L3 6= n.

Remark 1

Notice that 3n− (L1 + L2 + L3) is at least equal to 2n and

N(n)∗Φ :=
n−1∑
L1=1

n−L1∑
L2=1

n−(L1+L2)∑
L3=1

bL1(n, n) bL2(n, n− L1)

×bL3(n, n− (L1 + L2))B
3n−(L1+L2+L3)
n−(L1+L2+L3)

Φ = 0

due to (1) and n− (L1 + L2 + L3) 6= 0.

Remark 2
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For n = 2 the previous lemma is not valid since

C1(2) = 2B0
0 + 4B1

1 , C2(2) = 8B0
2 , C3(2) = 0⇒ β(2) = 0

Therefore, what follows is not in contradiction with the well established
Fock representation of the square of white noise operators B2

0 , B0
2 and B1

1

proved in [4].

Corollary 1 Let n ≥ 3 and suppose that an operator ∗-Lie sub algebra L of
the RHPWN algebra contains Bn

0 . Then L will also contain

a
(
β(n)B2n

0 +N(n)∗
)

+ b (Bn
0 )2

for all a, b ∈ R, where β(n) and N(n)∗ are as in (10) and (12) respectively.

Proof 2 Since L is an operator algebra containing Bn
0 , it will also contain

(Bn
0 )2 and b (Bn

0 )2. By the ∗-property L will also contain B0
n and since L is a

Lie algebra, by lemma 1 , it will contain β(n)B0
2n+N(n) and a (β(n)B0

2n +N(n)).
Again by the ∗-property, L will contain a (β(n)B2n

0 +N(n)∗) and, since L
is a vector space, it will also contain a (β(n)B2n

0 +N(n)∗) + b (Bn
0 )2.

Theorem 1 Let n ≥ 3 and suppose that an operator ∗-Lie sub algebra L
of the RHPWN algebra contains Bn

0 . Then L does not admit a Fock space
representation.

Proof 3 By Corollary 1, L will also contain a (β(n)B2n
0 +N(n)∗)+b (Bn

0 )2,
for all a, b ∈ R, where β(n), N(n)∗ are as in (10) and (12) respectively. As
in the previously discussed counter-example, it follows that the Fock-vacuum
norm

‖
(
a
(
β(n)B2n

0 +N(n)∗
)

+ b (Bn
0 )2
)

Φ‖ = ‖
(
aB2n

0 + b (Bn
0 )2
)

Φ‖

cannot be nonnegative for arbitrarily small I ⊂ R.

In the remaining sections of this paper we provide a new renormalization
prescription for the powers of the delta function which bypasses the no-go
theorems proved so far and which leads to an unexpected connection with the
Virasoro algebra and the w∞ and W∞ algebras of Conformal Field Theory
(cf. [12]).
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2 A new look at the counter-example of the

previous section

In this section we generalize (3) to

δl(t− s) = φl−1(s) δ(t− s), l = 2, · · · (13)

and we look for conditions on φ(s), and an appropriate set of test func-
tions, that eliminate the difficulties posed by the counter-example of Section
1. The white noise commutation relations (2) now become

[b†t
n
bkt , b

†
s

N
bKs ] = (14)

εk,0εN,0
∑
L≥1

kLN (L) b†t
n
b†s
N−L

bk−Lt bKs φ
L−1(s) δ(t− s)

−εK,0εn,0
∑
L≥1

KLn(L) b†s
N
b†t
n−L

bK−Ls bkt φ
L−1(s) δ(t− s)

from which, by multiplying both sides by f(t)g(s) and integrating the
resulting identity we obtain

[BN
K (g), Bn

k (f)] = (15)

K∧n∑
L=1

b̂L(K,n)BN+n−L
K+k−L (g f φL−1)−

k∧N∑
L=1

b̂L(k,N)BN+n−L
K+k−L (g f φL−1)

=

(K∧n)∨(k∧N)∑
L=1

θL(N,K;n, k)BN+n−L
K+k−L (g f φL−1)

where

b̂x(y, z) := εy,0 εz,0 yx z
(x)

n, k,N,K ∈ {0, 1, 2, ...}, and θL(N,K;n, k) is as in (7). Turning to the
counter-example of Section 1, for an interval I ⊂ R, introducing the notation
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In =

∫
I

φn(s) ds, n = 0, 1, 2, · · ·

and using commutation relations (15) we have for n ≥ 1

B0
2n(χI)B

2n
0 (χI) Φ = [B0

2n(χI), B
2n
0 (χI)] Φ

=
2n∑
L=1

2nL(2n)(L)B2n−L
2n−L(φL−1 χI) Φ

= 2n2n(2n)(2n)B0
0(φ2n−1 χI) Φ = (2n)!

∫
I

φ2n−1(s) dsΦ

and so

< B0
2n(χI)B

2n
0 (χI) >= (2n)!

∫
I

φ2n−1(s) ds = (2n)! I2n−1

Similarly,

B0
2n(χI) (Bn

0 (χI))
2 Φ =

(
Bn

0 (χI)B
0
2n(χI) + [B0

2n(χI), B
n
0 (χI)]

)
Bn

0 (χI) Φ

= Bn
0 (χI)B

0
2n(χI)B

n
0 (χI) Φ + [B0

2n(χI), B
n
0 (χI)]B

n
0 (χI) Φ

= Bn
0 (χI) [B0

2n(χI), B
n
0 (χI)] Φ + [B0

2n(χI), B
n
0 (χI)]B

n
0 (χI) Φ

= Bn
0 (χI)

n∑
L=1

b̂L(2n, n)Bn−L
2n−L(φL−1 χI) Φ

+
n∑

L=1

b̂L(2n, n)Bn−L
2n−L(φL−1 χI)B

n
0 (χI) Φ

12



= 0 +
n∑

L=1

b̂L(2n, n) [Bn−L
2n−L(φL−1 χI), B

n
0 (χI)] Φ

=
n∑

L1=1

n∑
L2=1

b̂L1(2n, n) b̂L2(2n− L1, n)B
2n−(L1+L2)
2n−(L1+L2)

(φL1+L2−2 χI) Φ

= b̂n(2n, n) b̂n(n, n)B0
0(φ2n−2 χI) Φ = (2n)!

∫
I

φ2n−2(s) dsΦ

which implies that

< B0
2n(χI) (Bn

0 (χI))
2 >= (2n)!

∫
I

φ2n−2(s) ds = (2n)! I2n−2

We also have

B0
n(χI) (Bn

0 (χI))
2 Φ =

(
Bn

0 (χI)B
0
n(χI) + [B0

n(χI), B
n
0 (χI)]

)
Bn

0 (χI) Φ

= Bn
0 (χI)B

0
n(χI)B

n
0 (χI) Φ + [B0

n(χI), B
n
0 (χI)]B

n
0 (χI) Φ

= Bn
0 (χI)

(
Bn

0 (χI)B
0
n(χI) + [B0

n(χI), B
n
0 (χI)]

)
Φ+[B0

n(χI), B
n
0 (χI)]B

n
0 (χI) Φ

= Bn
0 (χI) [B0

n(χI), B
n
0 (χI)] Φ + [B0

n(χI), B
n
0 (χI)]B

n
0 (χI) Φ

= Bn
0 (χI)

n∑
L=1

b̂L(n, n)Bn−L
n−L(φL−1 χI) Φ+

n∑
L=1

b̂L(n, n)Bn−L
n−L(φL−1 χI)B

n
0 (χI) Φ

= Bn
0 (χI) b̂n(n, n)B0

0(φn−1 χI) Φ
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+
n∑

L=1

b̂L(n, n)
(
Bn

0 (χI)B
n−L
n−L(φL−1 χI) + [Bn−L

n−L(φL−1 χI), B
n
0 (χI)]

)
Φ

= b̂n(n, n)

∫
I

φn−1(s) dsBn
0 (χI) Φ + b̂n(n, n)Bn

0 (χI)B
0
0(φn−1 χI) Φ

+
n∑

L1=1

n−L1∑
L2=1

b̂L1(n, n) b̂L2(n− L1, n)B
2n−(L1+L2)
n−(L1+L2)

(φL1+L2−2 χI) Φ

= 2 b̂n(n, n)

∫
I

φn−1(s) dsBn
0 (χI) Φ+

n−1∑
L=1

b̂L(n, n) b̂n−L(n−L, n)Bn
0 (φn−2 χI) Φ

= 2 (n!)

∫
I

φn−1(s) dsBn
0 (χI) Φ +

(
(2n)(n) − 2 (n!)

)
Bn

0 (φn−2 χI) Φ

Thus

(B0
n(χI))

2 (Bn
0 (χI))

2 Φ =

2 (n!) In−1(s)B
0
n(χI)B

n
0 (χI) Φ +

(
(2n)(n) − 2 (n!)

)
B0
n(χI)B

n
0 (φn−2 χI) Φ

= 2 (n!) In−1 [B0
n(χI), B

n
0 (χI)] Φ +

(
(2n)(n) − 2 (n!)

)
[B0

n(χI), B
n
0 (φn−2 χI)] Φ

= 2 (n!)2 (In−1)
2 Φ +

(
(2n)(n) − 2 (n!)

) n∑
L=1

b̂L(n, n)Bn−L
n−L(φn−2+L−1 χI) Φ

= 2 (n!)2 (In−1)
2 Φ +

(
(2n)(n) − 2 (n!)

)
b̂n(n, n)B0

0(φ2n−3 χI) Φ

= 2 (n!)2 (In−1)
2 Φ +

(
(2n)(n) − 2 (n!)

)
(n!) I2n−3 Φ
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= 2 (n!)2 (In−1)
2 Φ +

(
(2n)!− 2 (n!)2

)
I2n−3 Φ

and so

< (B0
n(χI))

2 (Bn
0 (χI))

2 >= 2 (n!)2 (In−1)
2 +

(
(2n)!− 2 (n!)2

)
I2n−3

Thus the matrix A of the counter-example of Section 1 has the form

A =

[
< B0

2n(χI)B
2n
0 (χI) > < B0

2n(χI) (Bn
0 (χI))

2 >
< B0

2n(χI) (Bn
0 (χI))

2 > < (B0
n(χI))

2 (Bn
0 (χI))

2 >

]

=

[
(2n)! I2n−1 (2n)! I2n−2
(2n)! I2n−2 2 (n!)2 (In−1)

2 + ((2n)!− 2 (n!)2) I2n−3

]
with minor determinants

d1 = (2n)! I2n−1

which will be ≥ 0 if

I2n−1 ≥ 0 (16)

for all n and I ⊂ R, and

d2 = (2n)! (2 (n!)2 I2n−1 (In−1)
2

+ ((2n)!− 2 (n!)2) I2n−1 I2n−3 − (2n)! (I2n−2)
2)

which will be ≥ 0 if

2 (n!)2 I2n−1 (In−1)
2 +

(
(2n)!− 2 (n!)2

)
I2n−1 I2n−3 − (2n)! (I2n−2)

2 ≥ 0

i.e if(
(2n)!− 2 (n!)2

)
I2n−1 I2n−3 ≥ (2n)! (I2n−2)

2 − 2 (n!)2 I2n−1 (In−1)
2

which will be satisfied if

(I2n−2)
2 = I2n−1 I2n−3 (17)

and

I2n−1 (In−1)
2 ≥ I2n−1 I2n−3 (18)

for all n and I ⊂ R. It was condition (18) that created all the trouble in
the counter-example of Section 1.
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3 A renormalization suggested by conditions

(16)-(18)

We notice that if supp(φ) ∩ I = ∅ then conditions (16)-(18) are trivially
satisfied. If supp(φ) ∩ I 6= ∅ then conditions (16)-(18) are satisfied by In =
1 for all n = 1, 2, ..., which is true if φn = δ for all n = 1, 2, .... The
renormalization rule (13) then becomes

δl(t− s) = δ(s) δ(t− s), l = 2, 3, · · · (19)

and (2) takes the form

[b†t
n
bkt , b

†
s

N
bKs ] = (20)

εk,0εN,0 (k N b†t
n
b†s
N−1

bk−1t bks δ(t− s)

+
∑
L≥2

kLN (L) b†t
n
b†s
N−L

bk−Lt bKs δ(s) δ(t− s))

−εK,0εn,0(K nb†s
N
b†t
n−1

bK−1s bkt δ(t− s)

+
∑
L≥2

KLn(L) b†s
N
b†t
n−L

bK−Ls bkt δ(s) δ(t− s))

which, after multiplying both sides by f(t)g(s) and integrating the re-
sulting identity, yields the commutation relations

[Bn
k (g), BN

K (f)] = (εk,0εN,0 k N − εK,0εn,0K n) BN+n−1
K+k−1 (gf) (21)

+

(K∧n)∨(k∧N)∑
L=2

θL(n, k;N,K) g(0) f(0) b†0
N+n−l

bK+k−l
0

where θL(n, k;N,K) is as in (7). We can write (21) as

[Bn
k (g), BN

K (f)] = (εk,0εN,0 k N − εK,0εn,0K n) BN+n−1
K+k−1 (gf) (22)
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+

(K∧n)∨(k∧N)∑
L=2

θL(n, k;N,K)BN+n−L
K+k−L (g f δ)

and notice that repeated commutations with the use of (22) will introduce
terms containing δ(0).

4 The canonical RHPWN commutation rela-

tions

We may eliminate the singular terms from (21) by restricting to test functions
f that satisfy f(0) = 0. We then define the canonical RHPWN commutation
relations as follows.

Definition 1 For right-continuous step functions f, g such that f(0) = g(0) =
0 we define

[Bn
k (g), BN

K (f)]R := (k N −K n) Bn+N−1
k+K−1 (gf) (23)

Letting

C(n, k;N,K) :=

[
N n
K k

]
(24)

commutation relations (23) can also be written as

[Bn
k (g), BN

K (f)]R = detC(n, k;N,K)Bn+N−1
k+K−1 (gf) (25)

Proposition 1 Commutation relations (23) define a Lie algebra.

Proof 4 Clearly, for all test functions f, g and n, k,N,K ≥ 0,

[BN
K (g), BN

K (f)]R = 0

and

[BN
K (g), Bn

k (f)]R = −[Bn
k (f), BN

K (g)]R

17



To show that commutation relations (23) satisfy the Jacobi identity we
must show that for all test functions f, g, h and ni, ki ≥ 0, where i = 1, 2, 3,[

Bn1
k1

(f), [Bn2
k2

(g), Bn3
k3

(h)]R
]
R

+
[
Bn3
k3

(h), [Bn1
k1

(f), Bn2
k2

(g)]R
]
R

+
[
Bn2
k2

(g), [Bn3
k3

(h), Bn1
k1

(f)]R
]
R

= 0

i.e. that

detC(n2, k2;n3, k3) detC(n1, k1;n2 + n3 − 1, k2 + k3 − 1)+

detC(n1, k1;n2, k2) detC(n3, k3;n1 + n2 − 1, k1 + k2 − 1)+

detC(n3, k3;n1, k1) detC(n2, k2;n3 + n1 − 1, k3 + k1 − 1) = 0

which is the same as

(n2k3 − n3k2)(n1k2 + n1k3 − n1 − k1n2 − k1n3 + k1)+

(n1k2 − n2k1)(n3k1 + n3k2 − n3 − n1k3 − n2k3 + k3)+

(n3k1 − n1k3)(n2k3 + n2k1 − n2 − n3k2 − n1k2 + k2) = 0

and is easily seen to be true.

5 The w∞ algebra

Definition 2 The w∞ algebra (see [5], [12]) is the infinite dimensional non-
associative Lie algebra spanned by the generators B̂n

k , where n, k ∈ Z with
n ≥ 2, with commutation relations

[B̂n
k , B̂

N
K ]w∞ = ((N − 1) k − (n− 1)K) B̂n+N−2

k+K (26)

and adjoint condition (
B̂n
k

)∗
= B̂n

−k (27)
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The w∞ algebra is the basic algebraic structure of Conformal Field Theory
in the study of quantum membranes. Since it contains as a sub algebra the
Virasoro algebra with commutations

[B̂2
k(g), B̂2

K(f)]V := (k −K) B̂2
k+k(gf)

w∞ can be viewed as an extended conformal algebra with an infinite
number of additional symmetries (see [5]-[8], [12], [14], [15]). The elements
of w∞ are interpreted as area preserving diffeomorphisms of 2-manifolds. A
quantum deformation of w∞, called W∞ and defined as a, large N , limit of
Zamolodchikov’s WN algebra (see [15]), has been studied extensively ( see
[6]-[8], [12], [14]) in connection to two-dimensional Conformal Field Theory
and Quantum Gravity. w∞ is a ”classical” or ”Gel’fand-Dikii” algebra (see
[10]) in the sense that it is a W algebra (see [12]) where all central terms are
set to zero.

6 Poisson brackets

The construction produced in the following section was inspired by the anal-
ogy with the realization of the w–algebra in terms of Poisson brackets. This
realization is well known and, in the following, we recall it briefly.

Definition 3 For scalar-valued differentiable functions f(x, y) and g(x, y),
the Poisson bracket {f, g} is defined by

{f, g} =
∂f

∂x

∂g

∂y
− ∂f

∂y

∂g

∂x

We notice that the functions f(x, y) = x and g(x, y) = y satisfy {f, g} = 1
which we can write as

{x, y} = 1

in analogy with the Canonical Commutation Relations (CCR). We can
model commutation relations (26) and the adjoint condition (27) using the
Poisson bracket as follows:

Proposition 2 For n, k ∈ Z with n ≥ 2, let fn,k : R× R→ C be defined by
fn,k(x, y) = eikx yn−1. Then
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{fn,k(x, y), fN,K(x, y)} = i (k(N − 1)−K(n− 1)) fn+N−2,k+K(x, y) (28)

and

fn,k(x, y) = fn,−k(x, y)

Proof 5 By the definition of the Poisson bracket,

{fn,k(x, y), fN,K(x, y)} =
∂

∂x
(eikx yn−1)

∂

∂y
(eiKx yN−1)

− ∂

∂y
(eikx yn−1)

∂

∂x
(eiKx yN−1)

= i (k(N − 1)−K(n− 1)) ei(k+K)x yn+N−3

= i (k(N − 1)−K(n− 1)) fn+N−2,k+K(x, y)

Moreover,

fn,k(x, y) = eikx yn−1 = e−ikx yn−1 = fn,−k(x, y)

Using the prescription

[A,B] =
~
i
{A,B}

we thus obtain, letting ~ = 1, that the quantized version of (28) is

[fn,k, fN,K ] = (k(N − 1)−K(n− 1)) fn+N−2,k+K

which is precisely (26). Similarly, we can model commutation relations
(23) and the RHPWN adjoint condition (Bn

k )∗ = Bk
n using the Poisson

bracket as follows:
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Proposition 3 For n, k ≥ 0, let gn,k : R× R→ C be defined by

gn,k(x, y) =

(
x+ iy√

2

)n(
x− iy√

2

)k
Then

{gn,k(x, y), gN,K(x, y)} = i (kN − nK) gn+N−1,k+K−1(x, y) (29)

and

gn,k(x, y) = gk,n(x, y)

Proof 6 By the definition of the Poisson bracket,

{gn,k(x, y), gN,K(x, y)} =

∂

∂x

((
x+ iy√

2

)n(
x− iy√

2

)k)
∂

∂y

((
x+ iy√

2

)N (
x− iy√

2

)K)

− ∂

∂y

((
x+ iy√

2

)n(
x− iy√

2

)k)
∂

∂x

((
x+ iy√

2

)N (
x− iy√

2

)K)

= i (kN − nK) 21−n+k+N+K
2 (x+ iy)n+N−1(x− iy)k+K−1

= i (kN − nK)

(
x+ iy√

2

)n+N−1(
x− iy√

2

)k+K−1

= i (kN − nK) gn+N−1,k+K−1(x, y)

Moreover,

gn,k(x, y) =

(
x+ iy√

2

)n(
x− iy√

2

)k
=

(
x− iy√

2

)n(
x+ iy√

2

)k
= gk,n(x, y)

We therefore have, as above, that the quantized version of (29) is

[gn,k, gN,K ] = (kN − nK) gn+N−1,k+K−1

which is (23).
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7 White noise form of the w∞ generators and

commutation relations

Motivated by the results of the previous section we introduce the following:

Definition 4 For right-continuous step functions f, g such that f(0) = g(0) =
0, and for n, k ∈ Z with n ≥ 2, we define

B̂n
k (f) :=

∫
R
f(t) e

k
2
(bt−b†t )

(
bt + b†t

2

)n−1

e
k
2
(bt−b†t ) dt (30)

with involution (
B̂n
k (f)

)∗
= B̂n

−k(f̄)

In particular,

B̂2
k(f) :=

∫
R
f(t) e

k
2
(bt−b†t )

(
bt + b†t

2

)
e

k
2
(bt−b†t ) dt (31)

is the RPQWN form of the Virasoro operators
The integral on the right hand side of (30) is meant in the sense that one

expands the exponential series (resp. the power), applies the commutation
relations (2) to bring the resulting expression to normal order, introduces the
renormalization prescription (19), integrates the resulting expressions after
multiplication by a test function and interprets the result as a quadratic form
on the exponential vectors.

Lemma 2 Let x , D and h be three operators satisfying the Heisenberg com-
mutation relations

[D, x] = h, [D, h] = [x, h] = 0

Then, for all s, a, c ∈ C

es(x+aD+ch) = esxesaDe(sc+
s2a
2

)h

esDeax = eaxesDeash
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and for all n,m ∈ N

Dnxm =
n∧m∑
j=1

n,mjxm−jDn−jhj

where

n,mj = njmjj!

Proof 7 This is just a combination of Propositions 2.2.2, 2.2.1 and 4.1.1 of
[9].

Lemma 3 In the notation of lemma 2, for all λ ∈ {0, 1, ...} and a ∈ C

Dλeax = eax
λ∑

m=0

λmDm(ah)λ−m

and

esDxλ =
λ∑

m=0

λmxm(sh)λ−mesD

Proof 8 By lemma 2

Dλeax =
∂λ

∂sλ
|s=0

(
esDeax

)
=

∂λ

∂sλ
|s=0

(
eaxesDeash

)
= eax

∂λ

∂sλ
|s=0

(
esDeash

)

= eax
λ∑

m=0

λm
∂m

∂sm
|s=0

(
esD
) ∂λ−m

∂sλ−m
|s=0

(
eash

)
= eax

λ∑
m=0

λmDm(ah)λ−m

Similarly,

esDxλ =
∂λ

∂aλ
|a=0

(
esDeax

)
=

∂λ

∂aλ
|a=0

(
eaxesDeash

)
=

∂λ

∂aλ
|a=0

(
eaxeash

)
esD

=
λ∑

m=0

λm
∂m

∂am
|a=0 (eax)

∂λ−m

∂aλ−m
|a=0

(
eash

)
esD =

λ∑
m=0

λmxm(sh)λ−mesD
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Lemma 4 Let the exponential and powers of white noise be interpreted as
described in Definition (4). Then:

(i) For fixed t, s ∈ R, the operators D = bt − b†t , x = bs + b†s and h =
2 δ(t− s) satisfy the commutation relations of lemma 2.

(ii) For fixed t, s ∈ R, the operators D = bt + b†t , x = bs − b†s and h =
−2 δ(t− s) satisfy the commutation relations of lemma 2.

Proof 9 To prove (i) we notice that

[D, x] = [bt−b†t , bs+b†s] = [bt, b
†
s]−[b†t , bs] = [bt, b

†
s]+[bs, b

†
t ] = δ(t−s)+δ(s−t) = h

while, clearly, [D, h] = [x, h] = 0. The proof of (ii) is similar.

Proposition 4 If f, g are right-continuous step functions such that f(0) =
g(0) = 0 and the powers of the delta function are renormalized by the pre-
scription (19), then

[B̂n
k (g), B̂N

K (f)] = (k (N − 1)−K (n− 1)) B̂n+N−2
k+K (gf) (32)

i.e the operators B̂n
k of Definition 4 satisfy the commutation relations of

the w∞ algebra. In particular,

[B̂2
k(g), B̂2

K(f)] = (k −K) B̂2
k+K(gf) (33)

i.e the operators B̂2
k of Definition 4 satisfy the commutation relations of

the Virasoro algebra. Here [x, y] := xy−yx is the usual operator commutator.

Proof 10 To prove (32), we notice that by Definition 4, its left hand side is∫
R

∫
R
g(t)f(s)[e

k
2
(bt−b†t )

(
bt + b†t

2

)n−1

e
k
2
(bt−b†t )

e
K
2
(bs−b†s)

(
bs + b†s

2

)N−1
e

K
2
(bs−b†s)] dt ds

=

∫
R

∫
R
g(t)f(s) e

k
2
(bt−b†t )

(
bt + b†t

2

)n−1

e
k
2
(bt−b†t )
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×e
K
2
(bs−b†s)

(
bs + b†s

2

)N−1
e

K
2
(bs−b†s) dt ds

−
∫
R

∫
R
g(t)f(s) e

K
2
(bs−b†s)

(
bs + b†s

2

)N−1
e

K
2
(bs−b†s)

×e
k
2
(bt−b†t )

(
bt + b†t

2

)n−1

e
k
2
(bt−b†t ) dt ds

which, since [bt − b†t , bs + b†s] = 0, is

=

∫
R

∫
R
g(t)f(s) e

k
2
(bt−b†t )

(
bt + b†t

2

)n−1

e
K
2
(bs−b†s)

×e
k
2
(bt−b†t )

(
bs + b†s

2

)N−1
e

K
2
(bs−b†s) dt ds

−
∫
R

∫
R
g(t)f(s) e

K
2
(bs−b†s)

(
bs + b†s

2

)N−1
e

k
2
(bt−b†t )

×e
K
2
(bs−b†s)

(
bt + b†t

2

)n−1

e
k
2
(bt−b†t ) dt ds

=
1

2n+N−2
{
∫
R

∫
R
g(t)f(s) e

k
2
(bt−b†t )(bt + b†t)

n−1e
K
2
(bs−b†s)

×e
k
2
(bt−b†t )(bs + b†s)

N−1e
K
2
(bs−b†s) dt ds

−
∫
R

∫
R
g(t)f(s) e

K
2
(bs−b†s)(bs + b†s)

N−1e
k
2
(bt−b†t )e

K
2
(bs−b†s)
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×(bt + b†t)
n−1e

k
2
(bt−b†t ) dt ds}

Since, by lemmas 3 and 4,

e
K
2
(bs−b†s)(bt + b†t)

n−1 =

n−1∑
m=0

n− 1m(bt + b†t)
mKn−1−mδn−1−m(t− s) e

K
2
(bs−b†s)

and

e
k
2
(bt−b†t )(bs + b†s)

N−1 =

N−1∑
m=0

N − 1m(bs + b†s)
mkN−1−mδN−1−m(t− s) e

k
2
(bt−b†t )

and

(bt + b†t)
n−1e

K
2
(bs−b†s) =

e
K
2
(bs−b†s)

n−1∑
m=0

n− 1m(bt + b†t)
mKn−1−m(−1)n−1−mδn−1−m(t− s)

and

(bs + b†s)
N−1e

k
2
(bt−b†t ) =

e
k
2
(bt−b†t )

N−1∑
m=0

N − 1m(bs + b†s)
mkN−1−m(−1)N−1−mδN−1−m(t− s)

we find that

[B̂n
k (g), B̂N

K (f)] =
1

2n+N−2
{
n−1∑
m1=0

N−1∑
m2=0

n− 1m1N − 1m2
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×(−1)n−1−m1Kn−1−m1kN−1−m2

×
∫
R

∫
R
g(t)f(s) e

k
2
(bt−b†t )e

K
2
(bs−b†s)

×(bt + b†t)
m1(bs + b†s)

m2e
k
2
(bt−b†t )e

K
2
(bs−b†s)

×δn−1−m1(t− s)δN−1−m2(t− s) dt ds

−
N−1∑
m3=0

n−1∑
m4=0

N − 1m3n− 1m4(−1)N−1−m3kN−1−m3Kn−1−m4

×
∫
R

∫
R
g(t)f(s) e

K
2
(bs−b†s)e

k
2
(bt−b†t )

×(bs + b†s)
m3(bt + b†t)

m4e
K
2
(bs−b†s)e

k
2
(bt−b†t )

×δN−1−m3(t− s)δn−1−m4(t− s) dt ds}

The case (m1 = n − 1 , m2 = N − 1) cancels out with (m3 = N − 1 ,
m4 = n− 1). By the renormalization prescription (19) and the choice of test
functions that vanish at zero, the terms

∑n−3
m1=0

∑N−3
m2=0 and

∑N−3
m3=0

∑n−3
m4=0

are equal to zero. The only surviving terms are (m1 = n− 1 , m2 = N − 2),
(m1 = n− 2 , m2 = N − 1) , (m3 = N − 1 , m4 = n− 2) and (m3 = N − 2
, m4 = n− 1) and we obtain

[B̂n
k (g), B̂N

K (f)] =

=
1

2n+N−2
((N − 1)k − (n− 1)K − (n− 1)K + (N − 1)k)
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×
∫
R
g(t)f(t) e

k+K
2

(bt−b†t )(bt + b†t)
n+N−3e

k+K
2

(bt−b†t ) dt

=
2

2n+N−2
((N − 1)k − (n− 1)K)

×
∫
R
g(t)f(t) e

k+K
2

(bt−b†t )(bt + b†t)
n+N−3e

k+K
2

(bt−b†t ) dt

=
1

2n+N−3
((N − 1)k − (n− 1)K)

×
∫
R
g(t)f(t) e

k+K
2

(bt−b†t )(bt + b†t)
n+N−3e

k+K
2

(bt−b†t ) dt

= (k(N − 1)−K(n− 1))B̂n+N−2
k+K (gf)

The proof of (33) follows from (32) by letting n = N = 2.
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