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Abstract. Let §(t) denote the Dirac delta function. We show how,
when the renormalization constant ¢ > 0 in §%(t) = cd(t) is large
or approaches 400, the commutation relations for the Renormalized
Powers of Quantum White Noise (RPQWN) can be truncated to yield
either the Heisenberg Canonical Commutation Relations (CCR) or the
Renormalized Square of White Noise (RSWN) commutation relations
of [18], parametrized by the order of the white noise functionals. The,
still open, problem of choosing a renormalization of the powers of the
delta function that will lead to a Fock representation of the RPQWN
commutation relations is described.

1. INTRODUCTION

The standard boson white noise Lie algebra is defined by its gener-
ators, by, bl, 1 (central element) satisfying the (first order white noise)
commutation relations

[, bT] = 6(t — s) - 1
and

(b7, 01] = [b1,bs] = 0
where t,s > 0 and §(t) is the Dirac delta function. The, so called,
Hida white noise functionals b, and bI can be rigorously defined as
follows: Let Lgym(R”) denote the space of square integrable functions
on R™ symmetric under permutation of their arguments, and let F' :=

@, L2, (R") where if 1 == {p™}>* € F, then v € C, y™ €

sym

L? (R") and

sym

2 l(0)|I? N M (s1,.. ., s0)2dsy ... dsy
I = O+ 32 [ 1687

The subspace of vectors ¢ = {1} € F with 1) = 0 for almost
all n will be denoted by Dy. Denote by S C L?(R") the Schwartz space
of smooth functions decreasing at infinity faster than any polynomial
and let D := {¢p € Flyp™ € S, 5 n|yp™]2 < 0o}. For each t € R
define the linear operator b, : D — F' by

(b)) ™ (51, ..., 8,) ==V + 1D (¢ sy, ... sy)
and the operator valued distribution (cf. [18] for details) b by



(b )™ (51, - T; (t —s)W " D(s1,. .., 80, 8n)

where "~ denotes omission of the corresponding variable. The possibil-
ity of giving a meaning to the higher powers of white noise, i.e. to the
symbolic expressions b}, bsk, where n, k € {0,1,2,....} is an old problem
of quantum field theory which has been the subject of recent research
activity (see e.g [3],[4], [14], [16]). For n,k € {0,1,2, ...} we will intro-
duce the notation €, =1 — (5n k, where 9, ;, is Kronecker’s delta, and
use "falling” factorial powers ) defined by W) = r(z—1)--- (x—y+1)
with z(® = 1.

Lemma 1. For | € N let §(t — s) denote the formal [-th power of the
d—function (6° :=1). For allt,s € R, and n,k >0,

(1.1) b7, b1"] = €noero Xysy (3) KO b b0t — 5)

Proof. We will let k be arbitrary and use induction on n. The cases
n =0 and/or k = 0 are obvious. For n =1 and k& > 0 we have



b 6] = bt — b,
= bt — b,
= (biby+6(t—s)) b — b1,
= bbb 5t — s)bt T — b,
= binbin" st — s)bi" T — b,
— b (bt + 6t — ) b 4 6(t — s)bl T — 0l D,
S S N A TP L S 1S T A 8
= bbbt 25t — s)bi" T — biFp,
= 2ot 200t — s)bt* T — bt
— 1 (blbe + 0t — ) b+ 26(t — s)b1" T — b1,
= bbbl 4+ 35(t — s)bt* Tt — bi"p,

= b+ kot — )bl — biFD,

= ko(t— )b
1 .
=y <z) kO pt* el sl — ).
>1

Thus (1.1) is true for n = 1. Suppose that it is true for n = m. We
will show that it is true for n = m + 1. We have



prtptt = bt

= b, (bg’“b;” +3° (”;) O oyt sl (¢ — s))

>1

= blkb?+1 + kbl‘kilb;na(t — 3) + Z (7 bt ka lbmfl (Sl(t _ S)

>1

= oo kb st s) D (77

>1

KO (b,

+ (k=D — st — s)
= oo b A —s) + > (77 O pt* T pm=tt1gl — o)
>1
m k—l—1
+ 0y (l)k(’)(k—l) bl bl (t — s)

>1

which, upon letting L = [ 4 1 in the last sum, becomes

— et et s — ) + M k@ prEtym—ttislp _ g
s t S t l S t

>1

m _ k=L
+ Y (L_1> EEV(k— L+ 1)t " pm=LHish(t — )

L>2

= bt kbt TS (¢ — s) + m kb TS (t — 8)

S () () s

+ k(m)(k—m)blk_m_15m(t s)
= b 4 (o )BTRS (¢ — s)

e m m k=l )
+ ) ((z) + (z— 1) O ot (t — s)
=2

4 g s m g )

Using (";) + (lTl) = (mH) this becomes



= oMbt 4 (m+ DR

m 1 B
+ Y (mj )k@ b sl — )

=2

b*o(t — s)

T s L
1 _
= ooty (mj ) KO B el (¢ — ),

>1

Lemma 2. For allt,s € Ry and n,k, N, K >0,

(1.2) bi" b bt B =

b b OE K 4 epenio sy (B) NO B 0EN T 0 K 6 (1 — )

Proof.

DA AR R TIS
= " (1ol 0L 0f ) b

= b:srn <€k,0€N,0 Z (I;) N blN_lbf_lcSl(t —s)+ blef) b

>1

k -
= oeno Y ( z) NOGpt oSt — ) + bbb

1>1

k . "
= roeno Y < z) NO oY oK st — 5) + " b1 bk bE

1>1
U

Lemma 3. Forallt,s € R, andn,k, N, K >0

(1.3) b bF, b1 b =
ek0en0 Ssy (F)NO B Y BT 0K 6t — s)

N j4n—L g
—€K 06,0 ZLZI (IL()n(L) bl bI bE-L ok 6L (t — s)
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Proof. The first term on the right hand side of (1.2) is
n, +N N, n

R A AR AR A
= ot (1ol 0]+ b))
= 1 (=l ol + e

NV KN @y pint ki s Kpt™ | ok

= b | —enocxo Y ;)BT 8 — s) + 00 ) b

>1
K n— n
= —en0K0 Y (l>n(l) bV bi" T pE 1k 1 (¢ — ) + bt bbbk
>1

from which (1.3) follows by substituting into (1.2). O

For reasons explained in the following section, Accardi, Volovich and
Lu introduced in [18] the renormalization

(1.4) 2t —s)=c - d(t—s)

where ¢ > 0 is an arbitrary real number. This particular renormal-
ization of the square of the delta function turned out to be very fruitful
in relation to the study of the squares of the Hida white noise func-
tionals (cf. [2], [7], [19],[20] ). It has found applications to quantum
optics and to the control of quantum systems described by quantum
stochastic differential equations ([8]-[13],[21]-[25]). For a test function
f iR — C we define the symbols

By(f) = / F(s) 01" b ds

with involution

(BE(f))" = By(f)
and with

BY(f) = / £(s)ds 1

which implies

BY(gf) = / 9(s) f(s)ds1 =< g, f > 1

R



9

where < g, f > is the usual Ly inner product and 1 is the identity
operator. The renormalization formula (1.4) has the obvious general-
ization

(1.5) 't —s)=c"1 . §(t—s)

where n > 2. Multiplying both sides of (1.3) by f(¢)g(s) and formally
integrating the resulting identity (i.e. taking [ [ ... dsdt), we obtain
the commutation relations

(1.6) [BX(9), Bl (f)]
= S0 b (K,n) BRIE@GS) — S bk, N) BRIl (gf)
= AV g (N, Kn k) 2 BR R E (g f)
where

b (Y, 2) == €y0 €20 (y) 2(®) &
x
n kN, K € {0,1,2,...} and

K k
QL(Na K;n, k) = €Lo (GK,O €n,0 (L) ntt) — €k,0 €N,0 (L) N(L)> .

In particular (1.6) contains the Heisenberg or Canonical Commuta-
tion Relations (CCR) of [28], namely

[BY(9), Bo(f)] =< g, f >
and

[BY(9), Bi(f)] = BY(af), [B1(9), Bo(f)] = By(af),
as well as the commutation relations of the Renormalized Square of

White Noise (RSWN) of [18], i.e

[B3(9), By(f)] =4Bi(gf) +2c <g,f >
and

[B1(9), By(f)] = =2 B3(gf). [Bi(9), B3(f)] = 2 B3 (gf).
From the point of view of Probability Theory, the Heisenberg com-

mutation relations lead to Brownian Motion and the Poisson process
([28]). The Renormalized Square of White Noise (RSWN) Lie algebra,
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on the other hand, leads to the Gamma process and the Meixner poly-
nomials ([1], [15],[6]). The generalized renormalization formula (1.5)
and the commutation relations (1.6) have been the focus of recent ef-
forts aiming at examining the possibility of existence of a Fock space
representation for the Lie algebra associated with the higher powers of
the white noise functionals ([3],[4], [16]). This amounts to establishing
the positive semi-definiteness of the kernel

(By ™ (fn) - By (f1)®, By (gu) - - By (91) @)
where f;, g; € H are suitably chosen test functions (containing
the characteristic functions of intervals), K;, n; € N U {0} for all
1 =1,2,..,N, 5 =1,2,...,M, and ® is the Fock vacuum vector de-
fined by

B)® = 0 ; VkeN
B'¢ = 0 ; Vk>0h>0.
So far, most results have been in the direction of non-existence of a
Fock representation. The main counter-example is that if a common

Fock representation of the B} existed, one should be able to define
inner products of the form

< (a Bg"(xr) + b (B (x1))*)®, (a Bg" (x1) + b (Bg (x1))")® >

where a,b € R and I is an arbitrary interval of finite measure p(7).
Using the notation < x >=< &, ® > this amounts to the positive
semi-definiteness of the quadratic form

a* < By, (x1) By"(x1) > +2ab < By, (x0)(Bg (x1))* > +a® < (By(x1))* (By (x1))* >

or equivalently of the matrix

A= < Bgn(XI) Bgn<XI) > < Bgn(XI) (BSL<XI))2 >
< By, (x1) (By (x1))* > < (By(x1))* (Bg(x1))* >

Using the commutation relations (1.6) we find that

L [ eeu (2n)1c22u(T)
(2n)le=2u(I) 2(n!)2e2u(I)? + ((2n)! — 2(nt)2)c2 ()

A is a symmetric matrix, so it is positive semi-definite if and only if
its minors are non-negative. The minor determinants of A are
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dy = (2n)!" (1) >0
and

dy = 2" V(1) (n!)*(2n) (e (1) = 1) > 0 & p(1) >

Q-

Thus the interval I cannot be arbitrarily small. The counter-example
extends to the ¢g-deformed case

bbl —qblb, = 6(t—s)
where ¢ € (—1,1),q # 0. As it turns out,

Q-

pu(l) =

is a universal sort of bound for these "no-go” theorems ([3], [4],5],
6], [15], [16]). The problem of choosing a good renormalization of
the powers of the delta function, that is, one that will lead to a Fock
representation of the operator commutation relations obtained by mul-
tiplying both sides of (1.3) by the product of test functions f(t)g(s)
and integrating the resulting identity, is therefore still open and very
challenging. It is also very interesting to see what kind of probability
distributions one could obtain in this way. In this paper we will show
how by suitably truncating the commutation relations (1.6) we can be
reduced to either the Heisenberg (CCR) or the Renormalized Square
of White Noise (RSWN) commutation relations, which are known to
admit a Fock representation.

2. THE RENORMALIZED SQUARE OF THE DIRAC DELTA
FuNcTION

It is well known ([26]) that the square of the Dirac delta function can-
not be rigorously defined as a generalized function. Accardi, Volovich
and Lu renormalized the square of the Dirac delta function in [18] mo-
tivated as follows: Let S = S(R) be the Schwartz space on the real
line, let

So={p €8 :¢0) =0} ={z¢(z) : ¥ €S}
and, for n € {1,2,...} define

2oif —l<cr<d
n _‘ — n
0 otherwise.

fa(2) :{
For all ¢ € S,
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iy, oo o fo(®) O(@) do = lim, o % f?% o(x) dx

where we have used the substitution z = %y, and so

lim f,(z) =d(z)

n—-+o0o

in the sense of generalized functions. To give a meaning to §%(x) we
notice that for ¢ € S

Nt
limy, oo Jo fr(2) @(x) do =lim, o % [ x () da
=l § J1 y0(Gy)dy = 50(0) [ ydy =
thus, as a distribution on Sy,
. 2 .

Let F' be an extension of lim, ;. f2(z) to all of S. For any ¢ € S
we have

(2.1) o(z) = o(x) — ¢(0) ¥(x) + ¢(0) ¥(x)

where ¢ € S is arbitrary with ¢(0) = 1. Since ¢(z) — ¢(0) (x) € Sy
and F' is zero as a distribution on Sy, applying F' to both sides of (2.1)
we obtain

(2.2) F(¢) = ¢(0) F(v)
which is satisfied by
F=c-9
ie
P=c-9

where ¢ € C is arbitrary.

In the remaining part of this section we provide some formal calcu-
lations which indicate that the renormalization constant ¢ should be
somehow allowed to go to infinity or, at least, be thought of as a ”very
large” positive number: From (2.2) we see that the renormalization
constant ¢ could be taken to be equal to



13

c=< F,¢ >=F(y) :/ F(s)y(s)ds
R
where F' = §% and 1 € S is arbitrary, but such that

$(0) = 1.
This choice of ¢ has only one possible value, namely, ¢ = 400. To

see this, let {f,}2 be any sequence that can be used to define the
delta function. For such a sequence we have

Therefore,

c=<F,¢) >=< %9 >=lim, 100 < fn 0,9 >
A different approach, based on distributions with compact support,
is the following: We know ([27]) that every distribution with support

{0} can be written as a linear combination of the Dirac delta function
and its derivatives. Therefore

52 = Z Co - 6@

a<N

for some N > 0 where ([27])

_1)e
Co = (=1) < 6% 2% >,
a!

and ¥ € C§°(R) with ¢(x) = 1 for |z| < 1/2 and ¥(x) = 0 for

- +
|z| > 1. Since, for any delta-sequence { fx};°]

< 8%, 2% >=limy_ 100 < fr 0, 2% >=limy_, o0 < 0, fr 2% >
= 1My 400 f1(0) - 0-9(0) = +00- 0-1=0

for a > 0, where we have used the convention 0 - +00 = 0, while for
a=20

< 527 x* w >= 11mk—)+oo < fk 67 ¢ >= hmk—)—i—oo < 57 fk ¢ >
it follows that,
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P=c-6
where ¢ = +00. In addition, since for the delta function, apart from
its pointwise properties, the fact that

/Ré(x)dle

is very important, the following formal calculation also indicates that
¢ should be allowed to go to infinity or be considered to be a very large
positive number: Let H denote the Heaviside function. We know that
H' = §. Then, we formally have

Jo 0%(z)dz = [ &( dx_f]R H'(x) 6(x) du
= H(z)6(z ;_tz Je H x) d
= H(400) §(400) — H(—00) (5(—00) - 0+°° &' (x) d
=0 — (5(+00) — 6(0)) = 6(0).

Since
62 = ¢4,
we have
/ 8% (z) dr = / co(z)dx
R R
and so

5(0) —c/ d(z)de =c-1
which implies that )
c=94(0).
3. HEISENBERG TYPE COMMUTATORS ASSOCIATED WITH THE

RPQWN

Definition 1. Forn,k, N, K € {0,1,2,...} with (K An)V(EAN)>1
we define the commutator

BY@), Bl o= i s [BR(), B ()
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i.e [BN(9), BR(f)]o is the coefficient of the leading term c(KAMVFAN)=1
corresponding to the most singular term, i.e the highest power of 4, in
the expansion of [BY¥(g), BX(f)] as a polynomial in ¢. We should in-
terpret it as

By (9) Bi(f) = Bi(f) Bg(9) + [BK(9). B ()]s
Proposition 1. Forn > 1,

[B(9), By ()l =0l < g, f >,
and for all 1 < k <n,

[Bi (), By (9)lss = n™ By (fg)

and

[B1(9)), BE())oo = ™ BY(3f).
i.e BY, By and By satisfy CCR type commutation relations with re-
spect to [+, |0 -
Proof.

[B1(9), BE (f)]o
04+n—(nAn)V(0AO) , —
= e(n/\n)\/(O/\O) (07 n;n, 0) BniO—((n;\\n))\\//((O//\\O))( f)
= 0,(0,7;n,0) Byio=h(af) =n! BY(gf) =n! <g,f>.

Moreover,

[Bi(9), By (f)]s
k+n— E)WV(kAn) /-
= Oy (kan) (K, k3, 0) Bkio—((gxfk))vv((kxfn))( )
= Ok, kin,0) Byfo 5 (g.f) = n'™ By (3f)

from which by taking adjoints we find

[Ba(f), Bi(9)]es = 0™ Bi(fg).
Corollary 1. Forn > 1, if

Au(f) = Ba(f), AL(S) = By(f), Aalf) =) Bi(f)

k=1
then
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[An(§)>AIL(f)]oo =nl <g,f>

A7), A (Z " ) AL (o)

and

Dol = (350
i.e A, Al and A, satisfy CCR type commutation relations with re-
spect to [+, ] o-

Proof. The proof follows from Proposition 1 and the linearity of [-, -]
O

The RPQWN commutator [B¥ (), BX(f)] of (1.6) is a polynomial in
c of degree (K An)V (kAN)—1. If ¢ is very large, then [BX(g), BE(f)]
is dominated by the ¢ ?)V*AN)=1 torm which corresponds to BY. We
can then obtain the Heisenberg commutation relations as follows.

Definition 2. Forn,k, N, K € {0,1,2,...} with (K An)V(kAN) > 1,
we define the commutator

[BK (9), Bi(f)]1 =

n N+n—(KAn)V(EAN) /,—
Ok amyvienn) (N, K, k) (EAMVIEAN) =L B 0 ((Kfn)) ((k//\\N))(gf)

i.e [B¥(g), BX(f)]1 is the leading term in the expansion of [B¥ (g), BY(f)]
as a polynomial in ¢. We should interpret it as

By (9) Bi(f) = Bi(f) Bg(9) + [Bx (9), By (f)]s
Proposition 2. Forn > 1,

[BY(g), By ()i =nlc™ ! <g, f>,

[B1(f), By (9)h = n By (fg)

and

[B2(9), Bi(f)ly = n B,(3f)
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i.e BY, By and Bj} satisfy CCR type commutation relations with re-
spect to [-,-]1 -
Proof.

[B,(9), By (f)h
nAn — 0+n—(nAn)V(0AO) /-
= e(n/\n)\/(O/\O)(Ov n;mn, 0) C( An)V(00)-1 Bn+0_((n/\n))\/((o/\0)) (gf)
=0,(0,n;n,0) P BY(gf) =n!c" ' BY(gf) =nlc"! <g,f>

and

[B1(9), By (f)h
-0 1.1 (1An)V(1A0)—1 gltn—(1An)VA0) -
= (1/\n)v(1/\0)< » L, 0) c 14+0—(1An)V(1A0) (gf)
= 01(1,1;1,0) " By (9f) = n By (g9f) = n By (9/f)

from which by taking adjoints we obtain

1By (f), Bi(9)ly = n B, (fg)-
O

4. SQUARE OF WHITE NOISE COMMUTATORS ASSOCIATED WITH
THE RPQWN

Definition 3. Forn,k, N, K € {0,1,2,...} with (K An)V(kAN) > 1,
we define the commutator

[BR(9), BE (/)2 =

O s nmyv(eany (N, K, ) RNV EAN) =L Bgi;‘igﬁfﬁfvvg,’fﬁﬁf (9./)

H0uc w1 (N, K5, ) elBnmvEnN)=2 g e (3)

i.e [BX(g), BX(f)]2 is the sum of the two leading terms in the ex-
pansion of [BY(g), BE(f)] as a polynomial in ¢. We should interpret it
as

B (9) B (f) = Bi(f) BE(9) + [Bx (9), B ()2
Proposition 3. Forn > 2,

[Ba(9), By (f)l2 = nl ("™ < g, f>+n " Bi(gf)),

[B1(9). By (f)]2 = n By (3f)

and
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[Ba(f): Bi(9)]2 = n By(f9).
i.e BY, Bl and Bi satisfy Renormalized Square of White Noise (RSWN)
type commutation relations with respect to |-, |2

Proof.
[Bn(9), By (f)]2

nAnR 0+n—(nAn)V(0A0)
= e(n/\n)V(O/\O) (Oan;nv 0) (rAn)V(0R0)~ anIO n;\\n)\\;(O;\\O ( )

H0manv(0r0)-1 (0, mim, 0) AV Or0)=2 B (3 )
= 0,,(0,n;n,0) " BY(Gf) + 0,-1(0,n;n,0) "2 BH(gf)
=nlc" " BY(gf) +n - nle*? Bi(gf)
=n! (¢ ' BY(gf) +nc? Bi(gf))
=nl ("t <g,f>+nc"?Blgf))

and

= n n 1+n—(1An)V(1A0) /=
[Bll (g), BO (f)]Q = H(IAH)V(l/\O)(l 1 n O) C(l/\ V(An0)-1 B11_0 ((1//\\n)\/((1//\\0)) (gf)

v

n 14+n—(1An)V(1A0)+1
H0urmvano-1(1, 1;m,0) cMAmVar0 =2 gdr (ms (LG £)
)

= 0,(1,1:n,0) & B2(Gf) + 0(1,1;1,0) ¢ Bl (gf
=nBy(gf) +0=nDByf)
from which by taking adjoints we obtain

[Ba(f)), Bi(9)]2 = n By(fg).
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