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1 Introduction

The notion of (d)–Markov property was introduced for discrete random fields
by R.L. Dobrushin [1]. E. Nelson [2] formulated the Markov property in the
continuous case and showed that this notion plays a significant role in the
theory of Euclidean Bose fields. The attempt of extending Nelson’s method
to the case of Fermi fields naturally leads to the problem of defining a non-
commutative Markov property.

On the other hand, in connection with the results obtained by H. Araki
[3] on quantum lattice systems, Ya.G. Sinai pointed out (appendix to the
Russian edition of D. Ruelle’s book [4]) that an investigation of such systems
naturally leads to the problem of defining the concept of “noncommutative
Markov chains” (i.e. a class of states on the algebra of quasilocal obsev-
ables on a one–dimensional quantum lattice system, analogue to the classical
Markov chains).

The present paper solves this problem by introducing a general definition
of noncommutative Markov property and showing that, in the uniformly
hyperfinite case, the structure and properties of the corresponding states
have noteworthy analogies with the usual Markov chains.

The noncommutative analogue of the Chapman–Kolmogorov equation is
deduced and it is proved that it generalizes the Schrödinger equation for the
density matrix.

A relationship is established between our noncommutative Markov states
and the Gibbs states constructed by H. Araki [3].

The author thanks Ya.G. Sinai for his fruitful discussion of the present
paper.

2 General definitions

Definition 1 Let d(B) ⊆ B ⊆ A be C∗–algebras. The quasiconditional ex-
pectation with respect to the triplet d(B) ⊆ B ⊆ A is called a linear mapping
E : A→ B with the following properties:

1) E(A) ≥ 0, if a ∈ A, a ≥ 0; 2) E(c · a) = c · E(a) ∀ c ∈ d(B), ∀ a ∈ A;
3) ‖E(c′)‖ ≤ ‖c′‖ ∀ c′ ∈ d(B′), where (·)′ is the commutant in A.

For example, if P : A → B is a conditional expectation (see [5]) and
H ∈ d(B)′, ‖H‖ ≤ 1, then E(a) = P (H∗aH) defines a quasiconditional
expectation with respect to the triple d(B) ⊆ B ⊆ A.
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Definition 2 Let d(B) ⊆ B ⊆ A be the same as they are above, and let E
be the quasiconditional expectation with respect to this triplet. It is said that
E has the (d)–Markovian property if E(d(B)′ ∩ A) ⊆ d(B)′ ∩B.

The quasiconditional expectation given in the example of Definition 1 has
the (d)–Markovian property1.

Let {Aα}α∈F be a filtering family of C∗–algebras, and let d : F → F
be a mapping such that d(a) ≺ α, α ≺ β ⇒ d(α) ≺ d(β). It is said that
the family {Eβ,α}α≺β of quasiconditional expectations relative to the triplets
Ad(α) ⊆ Aα ⊂ Aβ has the (d)–Markovian property if each Eβ,α has this
property (i.e., if Eβ,α (Aa(d) ∩ Aβ) ⊆ A′d(α) ∩ Aα, α ≺ β (the commutant is
understood in relation to A = C∗ − lim

→
Aα which is the C∗–inductive limit

of the family {Aα}α∈F)).

Definition 3 Let {Aα}α∈F and d be the same as they are above. The state ϕ
on A = C∗− lim

→
Aα is called (d)–Markovian if there exists a family {Eβα} of

quasiconditional expectations relative to the triples Ad(α) ⊆ Aα ⊆ Aβ which
is such that ϕ(αβ) = ϕ(Eβ,α(αβ)) ∀αβ ∈ Aβ, α ≺ β.

Remark 1 . If ϕ is a (d)–Markovian state and {Eβ,α} is the corresponding
family of quasiconditional expectations, then

Eβ,α(aα) = aα(mod ϕ) ∀ aα ∈ Aα, α ≺ β

The latter equation should be understood in the sense that

ϕ(Eβ,α(aα)) = ϕ(aα)∀ aα ∈ Aα, α ≺ β

We shall continue to hold to this agreement further on. Specifically, if
{E ′β,α} is another family of quasi–conditional expectations satisfying the
conditions of Definition 3, then Eβ,α = Eβ,α(mod ϕ). Therefore, the (d)–
Markovian state defines the corresponding family of quasiconditional expec-
tations uniquely. Moreover, Eγ,α = Eβ,α ◦ Eγ,β(mod ϕ), α ≺ β ≺ γ.

Remark 2 . The property of being a (d)–Markovian state depends essen-
tially on the family of local algebras {Aα}α∈F . Further on the dependence
will be assumed in the general case.

1It may be proved that each quasiconditional expectation has the (d)–Markovian prop-
erty.
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Let S be a topological space and F a family of a closed subsets of S such
that

I) the union of all sets in F is equal to S;
II) if F ∈ F , then S − F and ∂F (the boundary of F ) belong to F .
The family of local algebras on S is the family of C∗–algebras {AF}F∈F

which is such that F satisfies I), II), and
III) F ⊆ G⇒ AF ⊆ AG (isotonicity),
IV) A′F = AS−F (duality).
(For the open subset U ⊂ S, AU is defined as a C∗–algebra generated

by all AF , F ∈ F , contained in U , while the commutant is understood in
relation to A = C∗ − lim

→
AF ). The context of the local algebras is natural

for formulation of the noncommutative Markovian property.

Definition 4 The Markovian state ϕ on A = C∗−lim
→
AF is a (d)–Markovian

state in which the mapping of d is defined as d(F ) = F (the interior of F ),
F ∈ F .

If ϕ is a Markovian state and {EG,F}F⊆G is the corresponding family of
quasiconditional expectations relative to the triple AF ⊆ AF ⊆ AG, then the
Markovian state can be expressed by the relationship

EG,F (AS−F ∩ AG) ⊆ AS−F ∩ AF , F ⊆ G,F,G ∈ F

In the general case the relationship AS−F ∩AF = A∂F does not hold. There-
fore, the relationship EG,F (AS−F ∩ AG) ⊆ A∂F , F ⊆ G, F , G ∈ F , will
be called “the strong Markovian proeprty”. Assume now thata {AF}F∈F is
such that if F ⊆ G, then AG is generated by AF and AG−F . In this case we
shall write AG = AF ∨ AG−F and say that the family {AF} is factorizable.
Moreover, let EG,F be a conditional expectation; then it can easily be seen
that for G = S, ES,F = EF is a strong Markovian property equivalent to the
relationship EF (AS−F ) ⊆ A∂F .In the commutative case the family of local
algebras is factorizable (see [6]) and the relationship given, as can easily be
shown, coincides with the Markovian property in the Nelson formulation, is
being true that the (d)–Markovian property generalizes the analogous con-
cept formulated by Dobuschin [1].
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3 The Uniformly Hyperfinite Case

Let A = C∗−lim
→
M[0,n], where M[0,n] is a factor of the type Ipn , pn ∈ N , while

all M[0,n] are assumed to have one and the same unity. Fro m ≤ n we place
M[m,n] = M ′

[0,m−1] ∩M[0,n]. If ϕ is a state on A, then we use ϕ[0,n] to denote
the constriction of ϕ on M[0,n] and ϕn the constriction of ϕ on M[n,n] = Mn

(which is Iqn–factor). The Markovian state will be a (d)–Markovian state,
where the function d is defined as d : [0, n] → [0, n − 1]. The Markovian
property for the quasiconditional expectation En+1,n: M[0,n+1] → M[0,n] is
expressed thus: En+1(M[n,n+1] ⊆ Mn. The family {M[0,n]} is factorizable,
and the Markovian property coincides with the strong Markovian property.

Theorem 1 Let ϕ be a Markovian state on A. Then ϕ defines the pair
{(σn); ϕ0} such that the following hold: (i) ϕ0 is a state on M0; (iii) σn :
Mn → L(Mn+1,Mn) is a linear operator such that the mapping an · an+1 ∈
M[n,n+1] 7→ σn(an)[an+1] ∈ Mn is pn−1–positive in the sense of [7] with a
norm not exceeding 1. (L(Mn+1,Mn) is the space of linear operators from
Mn+1 into Mn). (iii) Let bi ∈Mi, σi(bi)∗ be conjugate with respect to σi(bi),
0 ≤ i ≤ n, for each n ∈ N . Then the equation

ϕ[0,n](b0 · . . . · bn) = [σn(bn) · . . . · σ0(b0) · ϕ0] (1)

completely defines the projective family (ϕ[0,n]). Conversely, each such pair
defines a unique Markovian state on A.

Proof . Let ϕ be a Markovian state. Then there exists a family {En,n−1} of
quasiconditional expectations relative to the triples M[0,n−2] ⊆ M[0,n], which
has the Markovian property, and ϕ is completely defined by the inductive
relationships

ϕ[0,n](a[0,n]) = ϕ[0,n−1](En,n−1(a[0,n])) ∀ a[0,n] ∈M[0,n] (2)

Since {M[0,n]} is factorizable, the quasiconditional expectation En,n−1 is de-
fined by its values on M[n−1,n]. Let σn be defined by the equation

σn(bn)[bn+1] = En+1,n(bn · bn+1) , bn ∈Mn, bn+1 ∈Mn+1 (3)

Then the first statement in (ii) and (iii) derive, respectively, from the Marko-
vian property and from Eq. (2). From factorizability it follows thatM[0,n+1]Wpn−1(M[n,n+1])

2

2Wn(A) is a matrix algebra of order n× n having coefficients in A.
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and M[0,n]Wpn−1(Mn); therefore, positiveness of En+1,n is equivalent to pn−1–
positiveness of the mapping an · an+1 ∈ M[n,n+1] 7→ σn(an)[an+1] ∈ Mn, and
this proves (ii).

Assume conversely that {(σn);ϕ0} is a pair satisfying (i), (ii), (iii). The
family (ϕ[0,n]) is projected and defines a unique state ϕ on A. Let En+1,n:
M[0,n+1] → M[0,n] be a linear mapping that is defined by means of (3) and
the equation

En+1,n(b[0,n−1] · b[n,n+1]) = b[0,n−1] · En+1,n(b[n,n+1]), b[0,n−1] ∈M[0,n−1]

The concepts presented above prove that En+1,n is a quasiconditional expec-
tation and that the Markovian property derives from (ii). The quasicondi-
tional expectation Em,n+1, is defined by a composition for m ≤ n; the state
ϕ satisfies the relationship (2) and is consequently Markovian. The theorem
has been proved.

Remark 1 . The fact that Eq. (1) defines a projective family of states
may be expressed by the equation

σn(bn)[1] = bn (mod ϕ) (4)

Remark 2 . In the commutative case, (1) takes the form

ϕ[0,n](b0 · . . . · bn) = [ tPnbn · tPn−1bn−1 · . . . · tP0bn · w0] (5)

where tPk is a transposed stochastic matrix; w0 is a stochastic vector; bk is a
diagonal matrix, and w0(u) =

∑
i

miui, w0 = (wi), u = (ui). If bk are projec-

tors, then the right side of (5) yields the expression for joint probabilities in
a conventional nonuniform Markovian chian.

Assume now that Zn = σn(1) for each n ∈ N.The sequence (Zn) is called
a sequence of transitional matrices for the Markovian state ϕ. The following
concept justifies this name.

Corollary 1 . The operator Zn ∈ L(Mn+1,Mn) is defined by the matrix(
(n)
ξij,αβ

)
, 1 ≤ i, j ≤ qn, 1 ≤ α, β ≤ qn+1, whose coefficients satisfy the

relationships

ξ
(n)
ij,αβ = ξ

(n)
ji,βα (6)
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qn+1∑
α=1

ξ
(n)
ij,αα = δij(mod ϕ) (7)

Proof . From the property (ii) in Theorem 1 it follows that Zn is positive
and therefore transforms Hermite operators into Hermite operators, which
proves (6). The relationship (7) is particular case of Eq. (4).

Using Wn to denote the density matrix of ϕn, we derive the relationship
Wn+1 = WnZn, from (1); this relationship represents the analog of the well–
known relationship vn+1 = vnPn (Pn is a stochastic matrix; vn is a stochastic
vector) for a conventional Markov chain. One may write the equation

Wt = WsZ(s′, t), s ≤ t (8)

in a more general way, where Z(s; s) = 1, Z(s; s + 1) = Zs, and Z(s; t) sat-
isfy the noncommutative Chapman–Kolmogorov equation Z(r; t) = Z(r; s) ·
Z(s; t), r ≤ s ≤ t. It may be proved that Theorem 1 also holds for continuous
parameters of these equations; then applying reasoning which is analogous to
the reasoning used in the commutative case, we derive the noncommutative
direct Kolmogorov equation (d/dt)W W (t)S(t), where the operator B →
BS(t) transforms Hermite operators with a zero trace for each t. A simple
example of an operator of this form is B → i[B,H(t)] = i(BH(t)−H(t)B),
where H(t) = H(t)∗. Substituting this operator into the noncommutative
direct Kolmogorov equation, we obtain (d/dt)W (t) = i[W (t);H(t)] (i.e., we
obtain the Schrödinger equation for the density matrix). Conversely, starting
from the Schrödinger equation, we obtain the semigroup K(s, t) of matrices
whose coefficients satisfy the relationships (6) and (7) which define a non-
commutative stochasti matrix.

4 The Uniform Case

Unlike the commutative case, the Markovian state is not defined by just
the initial distribution ϕ0 ??? the sequence (Zn) of transition matrices; it
is necessary to know the sequence (σn). In this section it is proved that
nevertheless, the ergodic behavior of ϕ depends solely on the transition ma-
trices. ???? the notation in the preceding section, let us consider the case
when MnM does not depend on n. In this case A ⊗N M , where M is a
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fixed Iq–factor. We use Jn to denote the insertion of M into the n–th fac-
tor and products. The shift operator T in A is an algebra endomorphism,
which is defined by the property T ◦ Jk = Jj+1(k ≥ 0). It is said that
ϕ is stationary if ϕ ◦ T = ϕ. Let ϕ ≡ {(σn);ϕ0} be a Markovian state.
We shall consider linear operators σn : M → L(M) which arae such that
En+1,n(Jn(an) · Jn+1(an+1)) = Jn[σn(an)[an+1]].

Lemma 1 Let ϕ ≡ {(σn);ϕ0} be a Markovian state on A, and let Zn = σn(1)
for each n. Then ϕ is stationary if and only if 1) Z∗nϕ0 = ϕ0, 2) σ0(mod ϕ),
∀n ∈ N.

Proof . The sufficiency is obvious. If ϕ is stationary, then for each b ∈M
the equation

ϕ(J1(b)) = [σ1(b)
∗Z0ϕ0](1) = [σ0(b)

∗(1) = ϕ0(b)

holds, whence Z∗0ϕ0, σ1 = σ0(mod ϕ). The properties 1) and 2) derive from
this by induction.

Thus, the stationary Markovian state is defined by the pair {σ;ϕ0}, where
σ(1)∗ϕ0 = ϕ0. Since we shall consider Markovian states for different initial
data ϕ0, it is assumed in this section (in accordance with the agreement
adopted in the commutative case) that Eqs. (1) and (2) in Lemma 1 hold
absolutely are not only for modulo ϕ.

For a stipulated ϕ = {σ;ϕ0} let the linear transform S[m,n] : M[m,n] →
L(M), m ≤ n, be defined as follows:

Jm(bm)·. . .·Jn(bn) 7→ σ(bm)[σ(bm+1)[. . . σ(bn)[·] . . .]] , bi ∈M , m ≤ i ≤ n

Let us place ρk = S[0,k](M[0,k])
∗ϕ0 ⊆M∗ for k ∈ N.

Theorem 2 Let ϕ = {σ;ϕ0} be a stationary Markovian state with the tran-
sition matrix σ(1) = Z. Then if 1 is the sole unitary eigenvalue of Z and at
the same time is prive, it follows that ϕ is a factor state. Conversely, if ϕ is
a factor–state and

⋃∞
k=1 S

∗
k = M∗, then 1 is the sole unitary eigenvalue of Z

and prime.
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Proof. Necessity . First of all note that if k ≤ m ≤ n, are stipulated, then
for each b ∈M[0,k], c ∈M[m,n] we have ϕ(b·c) = [S∗[0,k](b)ϕ0](Z

m−kS[m,n](c)[1]).
Moreover, from the properties of quasiconditions expectations it follows that
‖Z‖ ≤ 1 and ‖S[m,n](c)[1]‖ ≤ ‖c‖. From the fact that V → V Z conserves
??? trace it follows that Z(1) = 1. Therefore, from stationary in the results
obtained by S. Kakutani and K. Yoshida [8] it follows that lim

ν→∞
Zν = 1⊗ϕ0,

where (1 ⊗ ϕ0)(a) = 1 · ϕ(a), a ∈ M . Moreover, from stationary it follows
that ϕ0(S[m,n](c)[1]) = ϕ0(Z

mS[m,n](c)[1]) = ϕ(c). Therefore, if k ∈ N and
B ∈ M[0,k] are stipulated there exists a m0 ∈ N such that for n ≥ m ≥ m0

and ∀ c ∈M[m,n] we have

|ϕ(b · c)− ϕ(b)ϕ(c)| ≤ ‖c‖ (9)

¿From the arbitrariness of n, it follows that the inequality (9) is equivalent
to the factorizability derived by R.T. Powers [9], and therefore ϕ is a factor–
state.

Assume conversely that ϕ is a factor–state. Then Eq. (9) holds, and using
the compactness of the unit sphere in M[0,k], one may write it in equivalent
form

|ψ ∗ ([Zm−k − 1⊗ ϕ0](c))| ≤ ‖c‖ ∀ c ∈M
for each ψ = S∗[0,k](b)ϕ0c‖b‖ ≤ 1. But from the inequality presented above
and from the statement of the theorem it derives that lim

ν→∞
Zν = 1⊗ϕ0 with

respect to the norm. From this it follows (see [8]) that 1 is a prime eigenvalue
of Z, being unique modulo 1.

5 Gibbsian States

In this section we prove the following theorem.

Theorem 3 Each one–dimensional Gibbsian state is a limit of the inverse
(d)–Markovian states for d → ∞ in the H. Araki sense [3]. Under these
conditions convergence is exponentially fast.

The proof of Theorem 3 will be split into three steps:

(1) the structure of the inverse (d)–Markovian space is described;
(2) the class of state which are examples of inverse (d)–Markovian states is
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formulated;
(3) it is proved that by means of states constructed in (2) one may approxi-
mate the arbitrary Gibbsian state constructed by H. Araki [3].

Definition 5 Let M be a matrix algebra of the type Iq, A = ⊗NM ; let ϕ be
a state on A. It is said that ϕ is an inverse (d)–Markovian state if a family
{E[0,n],[1,n]}n∈N exists which is such that

1) E[0,n],[1,n] : M[0,n] → M[1,n] is a quasiconditional expectation having the
(d)–Markovian property, where d is defined on the et sof all segments of the
type [1, n](n ∈ N) by the formula d : [1.n]→ [d+ 2, n].

2) For each n ≥ d+ 1 and a[0,n] ∈M[0,n] the equation

ϕ(a[0,n]) = ϕ(TcE[0,n],[1,n](a[0,n])) (10)

holds, where Tc : M[1,∞] → A is an algebra homomorphism that is defined by
the equation Tc ◦ Jk = Jk−1 (k ≥ 1).

According to the general Definition 2 (see Section 1) the (d)–Markovian
property can be expressed in this case by the relationships E[0,n],[1,n](M[0,d+1]) ⊆
M[1,d+1] for each n ∈ N.

The following theorem determines the structure of inverse (d)–Markovian
states.

Theorem 4 Let ϕ be an inverse (d)–Markovian state on A = ⊗NM . Then
a pair {σ;ϕ[0,d]} exists which is such that: 1) ϕ[0,d] is the state on M[0,d]; 2)
σ : M → Ld+1(M[0,d]) is the linear operator such that the mapping a⊗a[0,d] ∈
M ⊗M[0,d] → σ(a)[a[0,d]] ∈M[0,d] is qd+1–positive (in the sense of [7]) with a
norm not exceeding 1; 3) for each ai ∈Mi, 0 ≤ i ≤ n, the equation

ϕ[0,n](J0(a0) · . . . · Jn(an)) = [σ(ad+1)
∗ · . . . · σ(an)∗ϕ[0,d]](J0(a0) · . . . · Jd(ad))

defines a projected family (ϕ[0,n]). Conversely, each such pair defines a unique
inverse (d)–Markovian state.

Remark . If one compares Eq. (3) in the theorem cited above to Eq. (1)
which describes the general structure of Markovian states, it is immediately
evident that for d = 0 the latter is derived formally from the former by
inverting the sequence of the indies {d + 1, . . . , n}. It is this which justifies
the name “inverse Markovian state”.
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Proof of Theorem 4 . Let ϕ be an inverse (d)–Markovian state on A, and
let {E[0,n],[1,n]}n∈N be the corresponding family of quasiconditional expecta-
tions. Then if ai ∈M , 0 ≤ i ≤ d+ 1, it follows that for each n ≥ d+ 1

ϕ(TcE[0,n],[1,n](J0(a0) · . . . · Jd+1(ad+1))) = ϕ(J0(a0) · . . . · Jd+1(ad+1)) (11)

Let us define the mapping σ
(n)
1 : M → L(M[0,d]):

σ
(n)
1 (ad+)(ad+1)[a[0,d]] = TcE[0,n],[1,n](a[0,d] · Jd+1(ad+1))

Then by virtue of the (d)–Markovian property

E[0,n],[1,n](a[0,d] · Jd+1(ad+1)) ∈M[1,d+1] ∀n ∈ N

for each a[0,d] ∈M[0,d], ad+1 ∈M . Therefore, the mappings σ
(n)
1 are correctly

defined. But then from (11), it follows that

ϕ[0,d](σ
(d+1)
1 (ad+1)[a[0,d]]) = ϕ[0,d](σ

(n)
1 (ad+1)[a[0,d]])

for each ad+1 ∈ M and a[0,d] ∈ M[0,d]. In this case we write, as usual,

σ
(n)
1 = σ

(d+1)
1 = σ(modϕ) ∀n ∈ N. Finally, the equation in the statement 3)

of the theorem derives from the properties of quasiconditional expectations
for repetition of the procedure described above.

Conversely, let the pair {σ;ϕ[0,d]}, satisfying the conditions 1), 2), 3) be
stipulated. Then the projective family (ϕ[0,n]) defines a unique state on A.
Let us define the family {E[0,n],[1,n]}n∈N by means of the formula

E[0,n],[1,n](a[0,d+1] · a[d+2,n]) = a[d+2,n] · E[0,n],[1,n](a[0,d+1])

Tσ(ad+1)[a[0,d]] = E[0,n],[1,n](a[0,d] · Jd+1(ad+1))

where T denotes the endomorphism of a rightward shift and a[α,β] ∈ M[α,β],
ad+1 ∈ M . Then, by virtue of the factorizability of the family (M[0,n]),
each E[0,n],[1,n] is a quasiconditional expectation satisfying the (d)–Markovian
property, where the function d is defined above. Moreover, Eq. (10) derives
from the condition of the theorem. Therefore, ϕ is an inverse (d)–Markovian
state. The theorem has been proved.

Note that the congruence condition for the family (ϕ[0,n]) is equivalent to
the equation σ(1)∗ϕ[0,d] = ϕ[0,d].

In order to formulate specific examples of inverse (d)–Markovian states
the following lemma is useful.
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Lemma 2 Let ψ (a state on A) be defined by the equation ψ(Q) = ϕ(K∗0QK0)/ϕ(K∗0K),
Q ∈ A, where ϕ is a state on A. Assume that the following conditions are
satisfied: 1) K0 ∈ M[0,d] (where d ∈ N is fixed). 2) An operator K ∈ M[0,d]

and a number λ > 0 exist which are such that ϕ0L = λϕ, where L denotes a
linear operator A→ A, defined as L(Q) = Tcτ 0(K

∗QK); (τ0 : A→M[1,∞] is
defined as τ 0(J0(a)b) = b · τ(a); a ∈ M ; b ∈ M[1,∞]). Then ψ is an inverse
(d)–Markovian state.

Proof . Let a[0,d] ∈M[0,d], ad+1 ∈M . We place

σ(ad+1)[a[0,d]] = λ−1Tc{τ 0(K∗a[0,d]K)}Jd(K∗0ad+1K0)

Then for n > d

ψ(J0(a0)·. . .·Jn(an)) = [σ(ad+1)
∗σ(ad+2)

∗σ(ad+2)
∗·. . .·σ(an)∗ψ[0,d]](J0(a0) . . . Jd(ad))

Moreover, the mapping Jd+1(ad+1) · a[0,d] → σ(ad+1)[a[0,d]] is completely pos-
itive. From Theorem 4 it then follows that ϕ is an inverse (d)–Markovian
state.

From Lemma 2 it is not difficult to derive the following.

Proof of Theorem 3 . Let ϕ be a Gibbsian state on A corresponding to
the finite potential Φ. H. Araki [3] proved that such always exists and ha the
form ψ(Q) = ϕ(K∗0QK0)/ϕ(K∗0K0), Q ∈ A, where K0 ∈ A, and ϕ satisfies
the relationship ϕ0L = λϕ, where L : A → A is the linear operator defined
by the equation L(Q) = Tcτ 0(K

∗QK), Q ∈ A, for a certain K ∈ A. The
operators K, K0 can be inverted, and therefore they may be approximated in
the norm by the sequences (Kd), (K0,d) and inverse opertors which are such
thatKd, K0,d ∈M[0,d]. From the reasoning presented by H. Araki ([3], Section
7) it then follows that states ϕ(d) on A and a number λd > 0 exist which are

such that ϕ
(d)
0 Ld = λdϕ

(d), and Ld(Q) = Tcτ 0(K
∗
dQKd). Consequently, by

virtue of Lemma 2 the state

ψd(Q) = ϕ(d)(K∗0,dQK0,d)/ϕ
(d)(K∗0,dK0,d)

is an inverse (d)–Markovian state for each d ∈ N. But L, and consequently
ϕ also, depend continuously on K (see [3], Section 5). Hence, it follows that
lim
d→∞

ψd = ψ (in the norm). This proves the first statement of the theorem.

The second statement derives from the fact that the approximating sequences
may be determined by truncating (starting with the d–th term) all series
in the expression for K and K0 means of the Tomonaga–Schwinger–Dyson
formula (see [3], Section 6). The theorem has been proved.
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