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Abstract.
A model independent generalization of usual quantum mechanics, including
the usual as well as the dissipative quantum systems, is proposed. The theory
is developed deductively from the basic principles of the standard quantum
theory, the only new qualitative assumption being that we allow the wave
operator at time t of a quantum system to be non differentiable (in t ) in the
usual sense, but only in an appropriately defined (Section (5.) ) stochastic
sense. The resulting theory is shown to lead to a natural generalization of
the usual quantum equations of motion, both in the form of the Schrödinger
equation in interaction representation (Section (6.) ) and of the Heisen-
berg equation (Section (8.) ). The former equation leads in particular to a
quantum fluctuation-dissipation relation of Einstein’ s type. The latter equa-
tion is a generalized Langevin equation, from which the known form of the
generalized master equation can be deduced via the quantum Feynman-Kac
technique (Sections (9.) and (10.) ). For quantum noises with increments
commuting with the past the quantum Langevin equation defines a closed
system of (usually nonlinear) stochastic differential equations for the observ-
ables defining the coefficients of the noises. Such systems are parametrized
by certain Lie algebras of observables of the system (Section (10.) ). With
appropriate choices of these Lie algebras one can deduce generalizations and
corrections of several phenomenological equations previously introduced at
different times to explain different phenomena . Two examples are considered
: the Lie algebra [q, p] = i (Section (12.) ) , which is shown to lead to the
equations of the damped harmonic oscillator ; and the Lie algebra of SO(3))
(Section (13.) ) which is shown to lead to the Bloch equations . In both cases
the equations obtained are independent of the model of noise. Moreover, in
the former case, it is proved that the only possible noises which preserve the
commutation relations of p, q are the quantum Brownian motions, commonly
used in Laser theory and solid state physics.

1 Introduction

The problem of describing some mathematical model of ”quantum noise”
arises in the description of various quantum phenomena of dissipative nature
(radiation damping , nuclear magnetic resonances, ... ). Originally (Kerner
[20] and Stevens [34]) the time evolution of such systems was described by
adding a dissipative term to the quantum equations of motion thus leading,
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for the harmonic oscillator, to an equation of the form:

dq

dt
= ωp− γq ;

dp

dt
= −ωq − γp (1)

where p(t) and q(t) are now operators which, at time zero satisfy the usual
commutation relations. However, as noted by Senitzky [33], doing so the
resulting time evolution was not unitary in particular for t > 0, q(t) and p(t)
satisy the commutation relations

[q(t), p(t)] = ie−2γt (2)

rather than the usual one, against one of the basic principles of quantum
mechanics. Senitzky proposed to derive the quantum dissipation mechanism
with the introduction of a ”quantum noise ” i.e., a (nonrelativistic ) quan-
tum field interacting with the oscillator . For an appropriately chosen form
of the interaction, energy will flow away from the oscillator to the quantum
noise field (also called ”heat bath ” or ”resevoir” in the literature) so that,
if one looks only at the observables of the oscillators, dissipation effects will
be detected, while for the global system (i.e. oscillator + noise ) the unitar-
ity of the evolution is respected. Starting from an idealized, but plausible,
physical model and introducing several approximations, he was led to look
for a quantum field π(t) such that the solutions of the equations

dq

dt
= p (3)

dp

dt
= −ωq − γp+ π(t) (4)

on the Hilbert space Ho ⊗H -the tensor product of the oscillator space and
the noise space - satisfy at each time t the commutation relations:

[q(t), p(t)] = i (5)

He found an approximate solution to this problem by choosing the quan-
tum field π(t) to be the self-adjoint gaussian quantum field with mean zero,
covariance

< πs πt >= c1δ(t− s) + ic2P
1

(t− s)
(6)

(< · > means average in the state of the field ) and commutation relations

[πs, πt] = κP
1

(t− s)
(7)
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where P denotes the principal part, κ is a complex constant and c1, c2 are
real constants.
Using the formula ∫ ∞

0

eiω(t−s)dω = iP
1

(t− s)
+ πδ(t− s) (8)

one sees that the correlations < πs πt > proposed by Senitzky are just the
positive part of the classical white noise correlations. Lax [22] found an exact
solution of the problem posed by Senitzky by taking the whole spectrum of
the white noise. More precisely he considered the equations

dq

dt
= ωp− γq + φ(t) (9)

dp

dt
= −ωq − γp+ π(t) (10)

where φ(t), π(t) is a pair of conjugate gaussian quantum fields with mean
zero, covariance

< φ(s)π(t) >= λδ(t− s) (11)

< φ(s)φ(t) >=< π(s)π(t) >= 0 (12)

and commutation relations

[φ(s), π(t)] = κδ(t− s) (13)

and showed that, with this choice the canonical commutation relations

[q(t), p(t)] = i (14)

are satisfied for each t.
Approximately at the same time Haken [16] showed that the fields φ, π de-
fined above, can be deduced under plausible approximations from the usual
equations describing the interaction of the quantum electromagnetic field
witth the quantized oscillator (a clear exposition of Haken’s argument was
given by von Waldenfels in [36]).
Kubo [21] criticized the use of the above mentioned fields on the ground that
the associated quantum state (of the noise field) cannot satisfy the Kubo-
Martin-Schwinger condition which characterizes the equilibrium states. How-
ever the recent results of [5] clarify the role of the equilibrium conditions in
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the Lax-Haken type models.
A different model was proposed by Ford, Kac and Mazur [15] who, in anal-
ogy with the classical Ornstein-Uhlenbek process, considered a linear chain
of harmonic oscillators in which the collective action of all the remaining
oscillators are considered as a heat bath acting on the first ones. This leads
to describe the quantum noise as a self-adjoint gaussian quantum field with
mean zero and covariance

< Et Es >=
f

π

∫ +∞

−∞

~ω
1− e−~ω/kT

eiω(t−s)dω (15)

and commutation relations

[Es, Et] = 2if~δ′(t− s) (16)

This state satisfies the KMS condition with respect to the time shift. How-
ever, the analogy with the classical Ornstein-Uhlenbek process is broken by
the fact that, in the quantum case, the reduced process of the first oscilla-
tor has no particularly simple or canonical structure. A deep study of this
model was done by Lewis [23] and several other authors (Thomas, Maassen,
Nakazawa, [27] ... -cf. [24] for a survey and references.
Streater [35] had the idea of inverting the problem and, rather than looking
for a particular solution of the Senitzky problem which satisfies the KMS con-
dition, he started from the equations (12) (13) and classifies all the gaussian
solutions satisfying certain additional conditions that will not be discussed
here. He proved that there are infinitely many such solutions whose spectral
functions coincide for large (compared to the frequency ω) frequencies with
the spectral function of the Senitzky-Lax noise but in the region 0 ≤ k ≤ 2ω
depend on an essentially arbitrary function. This arbitrariness was criticized
by Hasegawa, Klauder, and Lakshmanan [17] who showed that, if one postu-
lates as model for the noise a single self-adjoint quantum stochastic process
(Wt), rather than a canonical pair {φt, πt} of quantum fields, then on the
same assumptions as Streater’s the solution to the Senitzky problem could
be determined uniquely.
In conclusion, even from these simple models, we can see that, contrarily
to the classical case (where there are two canonical forms of noises in terms
of which essentially all the noises can be constructed ) in the quantum case
there is a large arbitrariness in the choice of the models for the fundamental
noises. The simplest among these models is certainly the one which emerges
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from the abo ve mentioned work of Senitzky and Lax aa a natural general-
ization of classical white noise. We shall follow an established notation in
quantum optics and solid state physics [16], [22], calling a quantum white
noise any pair of canonically conjugate Gaussian quantum fields Q(t), P (t)
on the real line (or on the positive half line ) with correlations

< Qs Qt >= σ11δ(t− s) (17)

< Ps Pt >= σ22δ(t− s)

< Qs Pt >= σ12δ(t− s)

and satisfying the commutation relations

[Q(s), P (t)] = iλδ(s− t) (18)

for some complex constants σij (i,j = 1,2 ) and a real constant λ (the identities
(17) being meant in the distribution sense ) . The corresponding integrated
pairs

Q(χ[0,t]) =

∫ t

0

Q(s)ds ; P (χ[0,t]) =

∫ t

0

P (s)ds

(χ[0,t] = 0 if s /∈ [0, t] and = 1 if s ∈ [0, t] ) are called quantum brownian
motions .
From the mathematical point of view the the Senitzky-Lax white noise is a
particular non relativistic free boson field and from the works of Segal it had
become clear that the notion of free boson field was a distribution general-
ization of the Wiener process and the calculus on these fields distributios, a
generalization of Ito calculus (Hudson and Streater [18] took advantage of
the particularly simple form of the covarianc of the Senitzky-Lax white noise
and remarked that, in this case the procedure of Wick ordering reduces ex-
actly to the classical Ito formula for polynomials. Hudson and Parthasarathy
[19] systematically developed a stochastic calculus for this model of quantum
white noise. All the results mentioned above depend very strongly on the

choice of some specific models of the perturbed system, the noise, the cou-
pling of the system with the noise... ) and it is not clear a priori to what
extent they reflect a universal mechanism of quantum dissipation.
A natural way to clarify this point is to try and develop a model indepen-
dent analysis of the mechanism of quantum noise and quantum dissipation in
analogy with the analysis of classical stochastic motions [28]. This program
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is particularly well suited for quantum theory, in fact, while in classical me-
chanics the stochastic description should be in some sense superimposed to
the classical, deterministic description, quantum theory is stochastic by itself
and we only have to distinguish the kind of stochasticity that is peculiar to
what we would call quantum noise from the generic stochasticity which is
common to every quantum system (cf. Section (4. below for a mathematical
formulation of this distinction). In other terms, we do not want to sepa-
rate a priori a ”system” in interaction with a ”noise”, but within a single
quantum system we want to separate two time scales at which its dynamical
evolution takes place: a slow scale , corresponding to the deterministic mo-
tions and a fast scale, corresponding to the stochastic motions. To achieve
this separation, we shall extend to a quantum theoretical context some well
known tools of classical stochastic analysis. It is somewhat surprising that,
starting from such abstract qualitative premises, one is led to the unification
of several phenomenological equations, introduced at different times and for
different purposes by several authors and, what is maybe more interesting,
to the individuation of a general mechanism which allows to produce a whole
new class of such equations.

In this sense we might refer to this program as to ”Quantum Stochastic
Mechanics”.

2 Statement of the problem and description

of the results

In this Section we recall some known facts about the interaction representa-
tion.

The study of a single Hamiltonian Ho is mathematically equivalent to the
study of the unitary evolution generated by it:

V o
t = eitHo (19)

If we think of Ho as the free Hamiltonian of some quantum system and if
we want to study perturbations of the free Hamiltonian of the form:

H = Ho +HI (20)
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a standard device is to go to the interaction picture and solve the time-
dependent Schrödinger equation

d

dt
Ut = −iHI(t)Ut ; Uo = 1 (21)

where HI(t) is the time t evolved of the interaction Hamiltonian HI under
the free evolution:

HI(t) = V o
t HIV

o
−t = uot (HI) (22)

and where we have introduced the shorthand notation:

uot ( · ) = V o
t ( · )V o

−t (23)

The solution of (21) is the wave operator at time t , i.e.

Ut = V o
t V−t (24)

where
Vt := eitH (25)

(Ut) is a one-parameter family of unitary operators satisfying the identity:

Us+t = uos(Ut) · Us (26)

with uos given by (23). A one-parameter family (Ut) of unitary operators
satisfying the identity, (26) is called a left unitary uot -cocycle. On the
other hand, if (Ut) is a left unitary cocycle then the one-parameter family
(Vt), defined by

Vt = U∗t · V o
t (27)

is a quantum dynamics, i.e. a one-parameter family of unitary operations
satisfying

Vs+t = Vs · Vt (28)

If Ut is strongly continuous, then the one parameter unitary group Vt is
strongly continuous hence, by Stone’ s theorem, differentiable on a dense
domain and therefore it has the form (25) for some self-adjoint operator H.

Moreover, if Ut is differentiable, then it satisfies the Schrödinger equation
(21) with HI(t) given by (22) and

−iHI =
d

dt
|t=0 Ut (29)
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On this assumption the interacting dynamics Vt has the form (20). A crucial
remark for what follows is that only the strong continuity of Ut is needed for
the differentiability of Vt, i.e. for the existence of the interacting Hamiltonian
H, while the identity (20) requires also the strong differentiability of Ut.
Summing up: The study of all the possible perturbations HI of a given
free Hamiltonian Ho is mathematically equivalent to the study of all the
differentiable left unitary uot -cocycles Ut, with uot given by (2), (23). Any
such cocycle satisfies the Schrödinger equation in interaction representation
(21) with HI(t) given by (22), (29). Conversely, once the free evolution uot is
given, any strongly continuous cocycle Ut defines an interacting evolution by

ut = U∗t · uot ( · ) · Ut

and, if uot is given by (23), then ut = Vt( · )V ∗t with Vt given by (27). If
moreover the cocycle Ut is strongly differentiable on a dense domain contained
in the domain of Ho, then Vt will satisfy, on this domain, the Schrödinger
equation:

d

dt
Vt = iVt(HI +Ho) (30)

with HI , Ho given by (29), (2) respectively. If Ut is only strongly continuous,
then the interacting dynamics Vt has still a perfectly legal Hamiltonian gen-
erator H, but it might happen that this Hamiltonian is not related to the free
Hamiltonian via the simple relation (20). In this paper we shall investigate
this possibility.

Remark. An even more general class of perturbations could be con-
sidered, namely one parameter families jt of ∗-automorphisms such that
uto · jt = ut is a one–parameter group of automorphisms. This reduces to
the preceeding case when each jt is an inner automorphism, i.e. it has the
form jt = Ut( · )U∗t for some unitary operator Ut. This more general situation
has been studied in [6/d] and shall not be considered in the present paper.
To the evolution Vt we can associate the forward Heisenberg evolution

Xf (t) = VtXV
∗
t (31)

and the backward Heisenberg evolution

Xb(t) = V ∗t XVt (32)
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of an arbitrary observable X. In the present context the two evolutions differ
only for the sign of the Hamiltonian, but in the generalization we are going
to consider the difference will be substantial. The root of this difference can
be somewhat anticipated by spelling out the derivation of the equation for
the two evolutions. In fact differentiating in t the backward equation (32)
one obtains

d

dt
Xb(t) = [−iHo, Xb(t)] + [−iuo−t(HI(t)), Xb(t)] (33)

which, in view of (22) yields

d

dt
Xb(t) = [−i(Ho +HI), Xb(t)] (34)

The same argument applied to the forward evolution (31) yields

d

dt
Xf (t) = [iH̃o(t), Xf (t)] + [iH̃I(t), Xf (t)] (35)

with
H̃o(t) = VtHoV

∗
t ; H̃I(t) = VtHIV

∗
t (36)

and since Vt does not commute separately with Ho and HI it is not true in
general that

H̃o(t) = Ho ; H̃I(t) = HI (37)

but we have only
H̃o(t) + H̃I(t) = Ho +HI (38)

we shall come back to this remark in Section (9).

On the physical meaning of the right and lef equations

Definition 1

Ut(+) := eitH0e−itHR

Ut(−) := e−itHReitH0

Allora
Ut/λ2(±) −→ U(t,±)

Se
HI = i(D ⊗ A+(g)−D+ ⊗ A(g))

eitH0De−itH0 = e+itωD (ω > 0)

Abbiamo che
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i)

U(t,+) = 1+

∫ t

0

(D⊗dA+
s (gω)−D+⊗dAs(gω)−D+D⊗1(gω|gω)−ds)U(s, t)

dove

(fω|gω) :=

∫ +∞

−∞
〈f, eitH1g〉eitωdt

ii)

U(t,−) = 1+

∫ t

0

U(s,−)(D⊗dA+
s (gω)−D+⊗dAs(gω)−D+D⊗1(gω|gω)−ds)

dove

(fω|gω) :=

∫ +∞

−∞
〈f, e−itH1g〉e−itωdt

Abbiamo risultati similari in casi generali.

3 Wave automorphism, cocycles and quan-

tum flows

Let u0t , ut be two dynamical systems. For each t ∈ R, the automorphism

j−t := utu
0
−t ; t ≥ 0 (39)

is called the backward wave automorphism at time t and the automor-
phism

j+t := u−tu
0
t = j−−t ; t ≥ 0 (40)

is called the forward wave automorphism.
The definition (.3) has been adapted, for example, in [ReSi III]; the Def-

inition (.1) was used in [Acnois], [AcMo1].
For two inner Heisenberg dynamics,

u0t (x) = V o
−txV

o
t ; ut(x) = V−txVt (41)

V o
t = e−itHo ; Vt = eitH (42)
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the backward wave automorphism at time t is

j−t (x) = utu
0
−t(x) = V−tV

o
t xV

o
−tVt = eitHe−itHoxeitHoe−itH ; t > 0 (43)

Similary for the forward wave automorphism

j+t (x) = u−tu
0
t (x) = VtV

o
−txV

o
t V−t = e−itHe−tHoxe−itHoeitH (44)

Suppose that the limits

lim
t→−∞

utu
0
−t = lim

t→−∞
jt =: ω+ (45)

lim
t→+∞

utu
0
−t = lim

t→+∞
jt =: ω− (46)

exist in some topology and are automorphisms of A. Then the automorphism
of A, defined by

σ := ω−1− ◦ ω+ (47)

is called the scattering automorphism and ω+ (resp. ω−) is called the
forward (resp. backward) wave automorphism.

Notice that, if the limits (??) and (??) exists in a sufficiently strong
topology (e.g. the strong operator toplogy), then

ω+(x) = lim
t→−∞

jt(x) = Ω+xΩ−1+ (48)

ω−(x) = lim
t→+∞

jt(x) = Ω−xΩ−1− (49)

therefore
σ(x) = ω−1− (ω+(x) = Ω−1− Ω+xΩ−1+ Ω− = SxS−1 (50)

By construction the backward wave automorphism j−t satisfies the identity

j−t u
0
t = ut (51)

which implies
ut+s = j−t+su

0
t+s = utus = j−t u

0
t j
−
s u

0
s (52)

and, since the left hand side of (60) is symmetric is (s, t) this is equivalent
to:

j−t+s = j−t u
0
su

0
−t = j−s u

0
sj
−
t u

0
−s (53)
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The corresponding identities for j+t is

j+t+s = j+t u
0
−tj

+
s u

0
t = j+s u

0
−sj

+
t u

0
s (54)

Notice that also the definitions of the wave automorphism at time t

j̃t := u0tu−t (55)

j̃′t := u0−tut = j̃−t (56)

are a priori possible.
The cocycle identities for j̃t, j̃

′
t are respectively

j̃t+s = j̃tu
0
−tj̃su

0
t = j̃su

0
−sj̃tu

0
s (57)

j̃′t+s = j̃′tu
0
t j̃
′
su

0
−t = j̃′su

0
s j̃
′
tu

0
−s (58)

4 Connection with scattering theory

U
(λ)
t = eitHoe−itHλ = (U

(λ)−
t )∗ (59)

the notation U
(λ)−
t , in (62) has been introduced to underline that, as t→ +∞

the operator U
(λ)
t , defined by (62) converges to the wave operator Ω∗− (cf.

Section (scattering)).
jλt in the limit gives the Möller wave automorphisms

lim
t→∓∞

jλt =: jλ± (60)

and the scattering automorphism is defined by

σλ := (jλ−)−1 ◦ jλ+ (61)

The wave automorphism at time t (cf. Section (scatt))

jλt := uλt · uo−t (62)

is an uo−t–flow (also called an uo−t–1–cocycle) in the sense that its time shift

jλ[s,t] := uos · jλ[s,t] · uo−s (63)
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satisfies the flow equation

jλ[s,t] · jλ[r,s] = jλ[r,t] (64)

The whole discussion above is based on the differentiability of Ut, how-
ever the differentiability of Ut is certainly not a law of nature, but only a
technical assumption useful to derive interesting equations. Therefore, if we
can substitute for the differentiability of Ut a weaker property which still
allows the derivation of a class of interesting equations, this would provide a
natural generalization of the Schrödinger equation (1.3). The goal of
this paper is to realize this program and to show that the resulting equations
are of considerable physical interest. The non triviality of this program and

its compatibility with the basic principles of quantum mechanics is based
on the remark, already made above, that if Ut is a left unitary V o

t -cocycle
such that the map t 7→ Ut is strongly continuous , then Vt, defined by (27) is
a strongly continuous unitary group and therefore, by Stone’s theorem it is
also strongly differentiable on some dense domain and on it satisfies a usual
Schrödinger equation

d

dt
Vt = iVtK (65)

where K is some self-adjoint operator. The basic remark is that, even if
both Vt and V o

t are differentiable, the product V ∗t = VtV
o
−t need not be

differentiable for domain reasons. If it is , then necessarily the equations
(21), (22), (29) hold and one has:

K = Ho +HI

But if it isn’t, then the abstract Hamiltonian K of equation (65) is related
in a more complicated, non additive, way to Ho and the following problem
naturally arises:

Is it possible to describe the usual (differentiable) quantum
dynamics (Vt), associated to an arbitrary strongly continuous co-
cycle, not in terms of the usual Schrödinger equation (65) (on
whose Hamiltonian we have no control) but of a different equa-
tion, which exploits different infinitesimal characteristics of the
non-differentiable wave operator (cocycle) Ut ?

It might happen (and in fact it happens in several interesting models of
quantum optics) that these infinitesimal characteristics of the operators Ut
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have a simple direct physical interpretation which could not be read off from
the abstract Hamiltonian K.

The hint for the solution of this problem comes from the classical theory
of stochastic processes. In fact, if Ut is the wave operator at time t, defined
by (24), introducing the notations:

Ut = U[0,t] ; uos(Ut) = U[s,t+s] (66)

the left cocycle equation (1.6) becomes equivalent to:

U[r,t] = U[r,s] · U[s,t] ; U[s,s] = 1 (67)

uor(U[s,t]) = U[s+r,t+r] (68)

In classical probability theory a 2-parameter family (U[s,t]) satisfying (67)
and (68) is called a homogeneous (more precisely: a vot -covariant) left mul-
tiplicative functional. We extend this notion to a quantum context.

Definition 2 A two parameter family U[s,t] satisfying (65) is called a right
multiplicative functional. If it satisfies

U[r,t] = U[s,t] · U[r,s] (69)

then we speak of a left multiplicative functional. If each U[s,t] is unitary (resp.
Hermitean) we speak of a unitary (resp. Hermitean) multiplicative functional.
If the covariance condition (68) is satisfied and if U[s,t] is localized in [s, t]
in the sense to be explained in Section (3.) below, then U[s,t] is called a
Markovian cocycle .

Generically (i.e under some regularity conditions not to be discussed here)
a classical multiplicative functional is the solution of a stochastic differential
equation. This suggests the program of extending to the quantum domain
the analysis which, in the classical case, leads to associate a stochastic dif-
ferential equation to a generic multiplicative functional, i.e. to look for a
stochastic generalization of Schrödinger’s equation (this, of course, should
not be confused with the use of classical probabilistic techniques to solve the
usual Schrödinger equation).

In Sections (2.) and (5) we introduce the quantum translation of the
probabilistic notions necessary to realize this program.

In Section (4) we introduce a hierarchy of chaoticity for quantum systems
which, up to some interesting peculiarity with no classical counterpart, is the
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quantum translation of the known hierarchy of ergodic type properties arising
in classical statistical mechanics and in the classical theory of stationary
stochastic processes.

In Sections (5) and (7) this machinery is put to work to deduce the form of
the announced quantum stochastic generalization of the Schrödinger equation
(21) and to show that, for systems which do not exhibit a chaotic behaviour
(i.e. which are very ”low” in the hierarchy of chaoticity) this equation re-
duced to the usual one, i.e. (21). For systems which are ”high enough” in the
hierarchy of chaoticity, the difference is quite substantial and in particular
implies, with the introduction of the notion of forward derivative, the choice
of a direction of time. The two main results of this Section are:

1.) The proof of the fact that quantum systems, sufficiently chaotic for
our theory to be applicable, behave as if their motion was the resultant of two
components: a deterministic one (drift) and a noisy one (called the random
force or the martingale term ). The two however are not independent,
being related by the quantum fluctuation-dissipation relation of point (2.)
below (cf. Section (5) for a precise definition of this notion ).

2.) The proof of the quantum analogue of the Einstein relation be-
tween the random force (fluctuation) and the drift (dissipation) in the clas-
sical Langevin equation. This relation is the common forefather of all the
”fluctuation-dissipation theorems” and in the quantum case it turns out to
be a consequence uniquely of the unitarity condition without any equilib-
rium condition . A classical analogue of our derivation can be obtained for a
linear random system subject to the only condition of exact conservation of
energy. This suggests that also in the quantum case the root of our quantum
fluctuation-dissipation result is conservation of energy and not equilibrium.

We express the result of point (1.) above by saying that ”chaotic quan-
tum systems create their own noise.” To understand the meaning of this
statement, one should underline that our theory is, apart from the very gen-
eral and qualitative chaoticity assumption, completely model-independent:
no reservoir or heat bath is put ”by hand ” from the exterior to create the
noise.

Here the situation, from a conceptual point of view, is quite different from
the classical case, where the fundamental laws of motion are supposed to be
deterministic and therefore chaotic behaviour can arise only as the result of
some external influence or as a very irregular deterministic motion. Since the
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quantum description of nature is statistical ab initio, the result (1.) above is
not in contradiction with any of its fundamental principles: it only points out
the necessity of a finer distinction among the various forms of stochasticity
which can arise in quantum theory.

The next step to which Section (8) is devoted, consists in the deduction of
the quantum stochastic analogue of the forward Heisenberg equation for the
time t evolved of an observable. This is called a forward quantum Langevin
equation.

In Section (10.) we restrict our attention to a particular class of chaotic
systems which roughly speaking corresponds to the case in which the in-
crements towards the future of the random forces (martingales) are kine-
matically independent from (i.e. commute with) the past. For this class
of systems, the quantum Langevin equation assumes a particularly simple
form and it produces a closed system of equations on certain Lie algebras of
observables.

Finally, in Sections (12.) and (13.) we investigate the form of these
equations for two particular choises of the above mentioned Lie algebra of
observables, namely :
i) The position-momentum Lie algebra.
ii) The angular momentum Lie algebra.

In case (i) we recover a generalization of the Senitzky-Lax equations for
the damped harmonic oscillator [22] and we use this to prove that, on the
assumption that the forward increments of the noise commute with the past,
the Lax-Haken definition of the quantum white noise [16] is the only possible
one compatible with the conservation at all times of the Heisenberg relations.

In case (ii) we deduce a generalization of the Bloch equations [13], [30].
The corrections to the Bloch equations , predicted by the present approach,
have been discussed, from a numerical point of view, in [6/a]. A preliminary
version of this paper has appeared in [4].

5 Notations

Let a quantum system be specified by a pair {H, (V o
t )} where H is a com-

plex separable Hilbert space, the state space of the system, and V o
t is a

1-parameter unitary group on H, called the free evolution. An additional
notion is that of past filtration. By this we mean a family Ht] (t ∈ R) of
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Hilbert subspaces of H satisfying

s ≤ t⇒ Hs] ⊆ Ht] ⊆ H (70)

V o
s Ht] = Hs+t] (71)

Notice that, if et] : H → Ht] denotes the orthogonal projection, then condi-
tion (71) is equivalent to

V o
s · et] = et+s] · V o

s (72)

This condition is called covariance (V o
t -covariance). Ht] represents the set

of all states of the system up to time t and is called the past space with
respect to t.

The spaceHt] will be called the past space with respect to t. A stochastic
process on H is a family (X(t)) of operators on H (for more sophisticated
definitions cf. [2] [6/b]). Such a process will be called adapted to the past
filtration if for each t and for each vector ξt] ∈ Ht] (in the domain of X(t))
one has

X(t)ξt] ∈ Ht] (73)

Here we shall use (73) as definition of adaptedeness, but for a more precise
development, a more sophisticated notion is needed (cf. [6/c]).

This means that the observables X(t) do not contain information on the
history of the system in times after t (causality). Of an observable, satisfying
condition (73), we shall say that it is localized in Ht].

Let et] : H → Ht] be the orthogonal projection onto the past space
(t ∈ R). A family of linear maps (Et]) (t ∈ R) from the linear operators on
H into themselves is called a family of conditional expectations compatible
with the filtration Ht] if:

Et](1) = 1 (74)

1 denoting the identity operator on H.

Es] · Et] = Es] if s ≤ t (75)

for each t in R and for each vector ξt] ∈ Ht] one has

Et](X) · ξt] = et] ·X · ξt] (76)

Notice that (2.6) with s = t yields

E2
t] = Et] (77)

19



In a certain sense Et](X) represents the projection of the operator X on the
subspace Ht].

Example (3) .
LetH,Ht] be as in Example (2) above and define, for each t and each operator
X on H

Et](X) = et]Xet] ⊗ 1[t (78)

where 1[t denotes the identity operator on Γ(L2((t,+∞))) and where we have
used the identification (78). Then the family (Et]) has the required properties
and is called the family of the Fock conditional expectations.

The fundamental property of the conditional expectation Et] is that for
any observable Xt, localized in Ht], and for any observable Y , one has

Et](XtY ) = XtEt](Y ) (79)

heuristically this means that Et] acts like a functional integral on the variables
localized on the future of t and therefore the variables localized in the past
of t behave like constants with respect to Et].

Notice that the covariance condition (3) implies that, for every ξt] ∈ Ht]

one has

V o
s Et](X)ξt] = V o

s et]Xξt] = et+s](V
o
s XV

o
s )V o

s ξt] = Et+s](u
o
s(X))V o

s ξt]

We shall assume that, more generally

uosEt] = Et+s]u
o
s (80)

which is the usual covariance condition for the conditional expectations of a
stationary stochastic process.

6 Local states and local algebras

A classical stochastic process is a family X(t) of random variables indexed by
a set T (i.e. t ∈ T ). In this paper we shall assume that T is an interval of R
(typically T = [0,+∞)) and the parameter t ∈ T will be interpreted as time.
Several qualitative properties of a stochastic process do not depend on the
random variables X(t) themselves, but only on some classes of functionals
of these random variables (e.g. the polynomials in the X(t), the exponen-
tials exp iλX(t), or exp i

∫ t
s
X(r)dr, if X(t) is self-adjoint. Without loss of
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generality the class of functionals of the process we are interested in can be
assumed to be an algebra closed under the involution X 7→ X∗ given by the
adjoint of an operator or the formal adjoint on a given dense domain. The
random variables of the process can be looked at as the generators of this al-
gebra. When there is a set of privileged random variables, it is convenient to
think of a quantum process as a family X(t) of quantum observables. When
such a privileged set does not exist, it is better to think of the process as a
family of local algebras. In this paper we shall only be interested in time
localization, so we are led to the following picture: to every interval I ⊆ R,
one associates a ∗-algebra AI which contains all the information that one
can extract from the system with measurements performed during the time
interval I. This interpretation requires that

I ⊆ J ⇒ AI ⊆ AJ (isotony) (81)

and we can assume that all the AI are contained in a single algebra A- the
algebra of all the functionals of the random variables of the process. A pair
{A, (AI)} with the above properties will be called a family of local algebras
in A. The notion of local algebra was introduced by Haag and Kastler as a
natural language for relativistic quantum field theory. In [1] it was recognized
that a generalization of this notion is in fact a natural language to discuss
several qualitative properties of the classical, as well as quantum, stochastic
process.

We will use the notations:

At] = A(−∞,t] (82)

for the past algebra of t
A[t = A[t,+∞) (83)

for the future algebra of t and

At = A[t,t] (84)

for the present algebra of t (t ∈ R). Because of (81), the family (At]), called
the past filtration enjoys the property

s ≤ t =⇒ As] ⊆ At] (85)

and the symmetric property:

s ≤ t =⇒ A[s ⊇ A[t (86)
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holds for the future filtration (A[t). The time evolution uot , also called the
time shift in the following, acts naturally on the local algebras and the in-
terpretation of AI suggests the property

uot (AI) = AI+t (time− covariance) (87)

The expectation values of observables of A will be taken with respect to a
state ϕ. It is useful to realize the algebras AI , A as algebras of operators
on a Hilbert space H, called the state space of the system and the state ϕ as
a vector state corresponding to a unit vector Φ, i.e.

ϕ(X) =< Φ, X · Φ > ; X ∈ A (88)

Corresponding to the local structure on A there will be a local structure on
H , i.e. a family of Hilbert sub-spaces

HI ⊆ H ; I ⊆ R

satisfying
I ⊆ J =⇒ HI ⊆ HJ (89)

The (unit) vectors in HI correspond to the preparations of the system that
can be obtained uniquely with operations performed during the time interval
I. This interpretation requires the compatibility condition

AI · HI ⊆ HI ; ∀I ⊆ R (90)

In analogy with the past and future filtration for algebras we have the past
(Ht]) and future (H[t) filtration for Hilbert spaces. With these notations
we are ready to formulate the hierarchy of chaotic properties for a general
quantum system.

7 A hierarchy of chaotic systems

In the notations of Section (3.) we consider a quantum system defined by:
– The local algebra {A, (AI)} of its local observables; in particular the past
filtration (At]). – The state space H, a complex separable Hilbert space, and
the corresponding localization (HI) which is compatible with {(AI)} in the
sense of (90). – A privileged vector state

ϕ =< Φ, ( · )Φ > ; Φ ∈ H ; ‖ Φ ‖= 1 (91)
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on A with respect to which all expectation values are going to be taken.
– A (free) dynamics, or time shift, (uot ) for which the algebraic localization
(A1) is covariant. We shall also assume the stationarity of ϕ under the free
dynamics uot , i.e.

ϕ ◦ uot = ϕ (92)

even if for several results in the following this assumption is not necessary.
The structure defined by the above listed objects will be called a quantum
system or a process and now we list a hierarchy of chaoticity conditions on
quantum systems (in decreasing order of chaoticity). The hierarchy is the
following:
(I.) Independent increment process.
(II.) Markov processes with an expected past filtration.
(III.) Processes with an expected past-filtration.
(IV.) Processes with non deterministic Hilbert space past-filtration.
(V.) Processes with non deterministic algebraic filtration.
(VI.) Processes with deterministic Hilbert space filtration.
(VII.) Processes with deterministic algebraic filtration.

Remark (1).
This list of properties is obviously not exhaustive: even in the classical case
there is a continuum of non equivalent chaoticity properties, and as we are
going to explain, in the quantum case there is an even richer spectrum of
possibilities. The criterion of choice for the above listed properties has been
their generality, i.e. their formulation is independent of the detailed structure
of the system: only the past filtration (algebraic or Hilbert space) and the
state ϕ is needed, and for the last four not even the state.

Remark (2).
The Properties (I.), (V.), (VII.) are a direct translation of the corresponding
properties of classical stochastic processes. In the classical case, Property
(IV.) coincides with property (V.); Property (VI) coincides with Property
(VII); Property (III) is trivial because every filtration is expected. This im-
plies in particular that the class defined by Property (II.) coincides with the
class of all Markov processes. So we see that even at this level of gener-
ality, the peculiar structure of quantum theory introduces some chaoticity
conditions which are new with respect to the classical case.

An independent increment process is one in which the algebraic structure,
the Hilbert space structure and all the expectations factorize over disjoint

23



intervals. More precisely:

Definition 3 A process is called Boson independent increment if: for
each natural integer n , for each set I1, · · · , In of intervals of R with mutually
disjoint interiors one has:

AI ∼= AI1 ⊗ . . .⊗AIn (93)

HI
∼= HI1 ⊗ . . .⊗HIn (94)

and for any aI ∼= aI1 ⊗ . . .⊗ aIn ∈ AI

ϕ(aI) = ϕI1(aI1) · . . . · ϕIn(aIn) (95)

where, for any interval I ⊆ R , ϕI denotes the restriction of ϕ on AI , i.e.

ϕI = ϕ
∣∣∣AI (96)

In the present paper Boson independent increment processes will be simply
called independent increment processes. A conditional expectation Et] on the
past algebra At] corresponds to a partial expectation over the variables local-
ized in the future of t. More precisely, such an expectation is characterized
by the property:

Et](at]a) = at]Et](a) ; at] ∈ At] , a ∈ A (97)

and the normalization condition

Et](1) = 1 (98)

Definition 4 An expected Markov process is a process such that for each
t there exists a conditional expectation Et] of A onto At] which is compatible
with the state ϕ, i.e.

ϕ(a) = ϕ(Et](a) (99)

and which enjoys the Markov property, i.e.

Et](A[t) ⊆ At (100)

The free Euclidean field provides several examples of expected Markov pro-
cesses which are not independent increments.
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Definition 5 A process satisfying all the conditions of Definition 4 except
at most the Markov property, is called an expected process .

Definition 6 A process is said to have a nondeterministic Hilbert space
filtration if for each s < t,

Hs] 6= Ht] (101)

This means that some information on the future is not contained in the past.
An extreme case of non deterministic Hilbert space filtrations are the K-
filtrations (or filtration with the Kolmogorov property also called regular,
or purely indeterministic) i.e. ⋂

t

Ht] = {0} (102)

(the knowledge of the state of a system at time t brings no information on
its remote past) or, equivalently, any memory of the past is eventually lost.

Definition 7 A system is said to have a nondeterministic algebraic fil-
tration if, for each s < t, one has

As] 6= At] (103)

An extreme case of these systems are the algebraic K-systems , charac-
terized by the property: ⋂

s

As] = C · 1 (104)

Definition 8 A process is said to have a deterministic (or singular)
Hilbert space (resp. algebraic ) filtration if, for each s < t, one
has

Hs] = Ht] = H ; resp. As] = At] = A (105)

respectively
As] = At] = A (106)

(the information on the states of the system up to time t is equivalent to
the full information). The cyclic representation, associated to an equilibrium
(or KMS) state at a given temperature has a deterministic Hilbert space
filtration, but it can have a completely indeterministic algebraic filtration.
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Example (1).
Let H denote the space L2(R, dt) and Ht] the space L2((−∞, t], ds), consid-
ered as a subspace of H by putting equal to zero a function on (t,+∞). Let
H = Γ(H) where, for any Hilbert space K, we denote Γ(K) the Fock space
over K. Let, for each t, Ht] denote the intersection of Γ(Ht]) with the orthog-
onal complement in Γ(H) of the vacuum state Φ. Then the filtration Ht] is
purely indeterministic. The space H = Γ(L2(R)) or (Γ(L2([0,+)))) emerged
from the works of Senitzky [33], Lax [22], Haken [16], and several others, as
a natural, and probably the simplest, model for the state space of quantum
noise in laser theory (and more generally in the theory of dissipative quantum
phenomena). It is canonically isomorphic to the L2-space of the increments
of the Wiener process (the white noise space) and its factorizing property

Γ(L2(R)) ∼= Γ(L2((−∞, t]))⊗ Γ(L2((t,+∞)))

corresponds to the independence of the increments of the Wiener process.
We shall call Γ(H) the state space of the Fock Brownian motion over
L2(R) or simply the Fock quantum Brownian motion .

Example (2) Let Ho be an Hilbert space and let H, Ht] be as in Example
(1). Define

H = Ho ⊗ Γ(H) ; Ht] = Ho ⊗ Γ(Ht])

then the filtrationHt] is nondeterministic but not completely indeterministic.
In fact ⋂

t

Ht] = Ho ⊗ Φ

where Φ is the vacuum state in Γ(H) Notice that, for each t, the space H
has the decomposition

H ∼= Ht] ⊗ Γ(L2([t,+∞)))

This decomposition will be often used in the following. If Ho is interpreted
as the state space of a system So , then H is interpreted as the state space of
the composite system made up by So and the noise, described by the Fock
quantum Brownian motion. An alternative, probabilistic, interpretation is
that Γ(H) is the space of the functions of the increments of an independent
increment process and Ho is the space of the functions of the initial values
of the process.
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8 The Kinematics of quantum stochastic mo-

tions

Definition 9 A stochastic process X(t) is said to admit a forward deriva-
tive with respect to the family (Et]) of conditional expectations, if the limit

lim
ε→0+

Et](
X(t+ ε)−X(t)

ε
) = D+X(t) (107)

exists.

Remark The notions of limit, continuity, integral, ... used in the present
paper will be referred to a topology which we leave unspecified. In many
interesting examples the operators X(t) are unbounded hence, in order to
introduce a natural topology on them, one must take into account some do-
main problems (cf. [4], [6/c], [6/d] for details on this point). In practice, all
the intersting topologies for these problems are given, in a quantum context,
by the strong or weak operator convergence on a certain set of vectors (co-
herent states, polynomials of the fields applied to the vacuum, or a mixture
of the two things, as in [6/d]). We shall also assume that the conditional
expectations Et] as well as operator multiplication and the involution ∗ are
continuous in the topology considered. Notice that, if the past filtration is
deterministic in the sense of Section (4.), then et] (and therefore also Et])
is the identity operator. Therefore for such systems, the forward derivative
coincides with the usual derivative. More generally one has:

Lemma 1 Suppose that X(t) is differentiable in the usual sense and adapted.
Then, D+X(t) exists. If moreover the filtration Ht], is right continuous in
the sense that

Ht] =
⋂
s≥0

Ht+s] (108)

then

D+X(t) =
d

dt
X(t) (109)

i.e. the forward derivative coincides with the usual derivative.

Proof. The continuity of Et] implies that, if dX(t)/dt exists, then

D+X(t) = Et]( lim
ε→0+

X(t+ ε)−X(t)

ε
) = Et](

dX(t)

dt
)
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Hence if (108) holds, then (1) follows from the property (72) of the conditional
expectation.

According to the fundamental theorem of calculus, if a function f has a
continuous derivative then f is the integral of its derivative up to an additive
constant. The analogue statement for stochastic calculus (both classical and
quantum) is that if a process X(t) has a continuous forward (stochastic)
derivative then X(t) is the integral of its derivative up to an additive term
which we call noise.

Theorem 1 Suppose that X(t) admits a forward derivative in the sense of
Definition (1) and that D+X(t) is continuous. Then there exists a process
Mt such that

Es](Mt) = Ms ; s ≤ t (110)

and

Xt = Xo +

∫ t

0

D+X(s)ds+Mt (111)

Proof. One shows that, if D+X(t) is continuous, then the fundamental
theorem of calculus holds under the expectation sign, i.e.

Es](Xt −Xs) = Es]

(∫ t

s

D+X(r)dr
)

(112)

(s ≤ t) (cf. [4], Section (3.), Corollary (2)and [6/c]). Given (112), the process
Mt defined by

Mt = Xt −Xo −
∫ t

0

D+X(s)ds (113)

satisfies (10) because of (112). It satisfies (111) by construction.

Definition 10 A stochastic process (Mt) which satisfies condition (10) is
called a martingale (more precisely: an Et]-martingale).

Remark In classical probability a martingale is the standard mathemat-
ical model for a noise. For this reason we shall use interchangeably the
terms noise and martingale. Example Let (Yn) be a sequence of mean zero

independent identically distributed classical random variables. led Es] denote
the conditional expectation relative to all the Yn with n ≤ s (s ∈ R) and let

Mt =
∑
n≤t

Yn
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Then if s ≤ t one has Es](Mt) = Ms +
∑

s<n≤tEs](Yn) = Ms since for n > s
one has

Es](Yn) = E(Yn) = 0

Remark Notice that if Xt and D+X(t) are strongly continuous then also

M(t) is strongly continuous.

9 The dynamics of quantum stochastic mo-

tions

Now we apply Theorem 1 above to the program formulated in Section (1.),
i.e. to deduce an equation for the irregular unitary multiplicative functionals
i.e. for those wave operators with respect to a fixed free quantum dynamics
U o
t ( · ) = V o

t · ( · ) · V o
−t, which are not differentiable in the usual sense but

only in the sense of amitting a forward derivative.

Lemma 2 Let U[s,t] be a left (resp. right) multiplicative functional. Then
the process U[0,t] = Ut admits a forward derivative if and only if for each t
the limit

lim
ε→0+

Et](
U(t, t+ ε)− 1

ε
) = b(t) (114)

exists in the sense that for some operator function b(t) the limit (114) exists
and the equality holds. In this case the forward derivative is

D+Ut = Utb(t) (115)

for a right multiplicative functional and

D+Ut = b(t)Ut (116)

for a left multiplicative functional.

Proof. If U[s,t] is a left multiplicative functional then, by the property (??)
of Et], for each t and ε > 0

Et](
U[0,t+ε] − U[0,t]

ε
) = Et](

U[t,t+ε] − 1

ε
) · U[0,t] (117)
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from this (115) follows. A similar argument proves (116). Remark Notice

that, if the covariance conditions (68) and (??) are fulfilled then, in the right
hand side of (117) becomes

uotE0](
U[0,ε] − 1

ε
) · U[0,t] (118)

Therefore, if b denotes the forward derivative of Ut at zero, i.e.

b = D+Ut

∣∣∣
t=0

(119)

the operator b(t) in the equation (11) becomes

bt = uot (b) (120)

Comparing (11) and (120) with (21) and (22), i.e. the Schrödinger equation
in interaction representation, one finds that the operator b(t) plays the role
of the interaction Hamiltonian HI(t), in the interaction representation and,
because of Lemma 114 above, it reduces exactly to it if Ut is differentiable in
the ordinary sense. In Theorem (2) below, we shall see that b(t) is exactly
equal to HI(t) plus an additive (damping) term, due to the noise.

By Theorem 1 and 116, if U[0,t] admits a continuous forward derivative
then we can write

Ut − Us =

∫ t

s

b(r)Urdr +Mo(s, t) (121)

where M0(t) is a martingale and M0(s, t) = M0(t) −M0(s). Now let us fix
two positive numbers t and dt and, for any operator valued function F (t),
let us introduce the notation

dF (t) = dFt = F (t+ dt)− F (t) (122)

With this notation, (121) implies that:

dUt =

∫ t+dt

t

bsUsds+ dMo(t) (123)

For any bounded interval (s, t) we denote P (s, t) the family of all finite par-
titions of (s, t). Any such partition P is determined by a natural integer n
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and by an ordered n-tuple (t1, . . . , tn) of numbers in [s, t], with t1 = s, tn = t
and tj < tj−1. We shall denote

|P | = max
1≤j≤n

(tj+1 − tj) (124)

|P | is called the width of the partition.

Definition 11 A two parameter operator valued function (s, t) is said to be
of order o(dt) (small o of dt) if

lim
|P |→0

n∑
j=1

G(tj, tj+1 − tj) = 0 (125)

Two operator valued functions F,G are called equivalent if the 2-parameter
operator valued function

[F (t)− F (s)]− [G(t)−G(s)]

is o(dt). In this case wh shall use the shorthand notation:

dF ≡ dG (126)

In particular
dF ≡ 0

means that F (t+ dt)− F (t) is o(dt).

Example On the Fock space Γ(L2(R)), considered in Example (1) of Section
(4.) , consider the creation and annihilation operators

A(χ[s,t]) ; A+(χ[s,t])

where χ[s,t] denotes the characteristic function of the interval [s, t] ⊆ R i.e.

χ[s,t] = 0 if r /∈ [s, t] ; = 1 otherwise

Then the two-parameter families

A2(χ[s,t]) , A+2(χ[s,t]) , A+(χ[s,t]) · A(χ[s,t])

are of order o(dt) for the topology of weak convergence on the exponential
vectors

ψ(f) = Φ +
f√
1!

+
f ⊗ f√

2!
+ · · ·+ (⊗f)n√

n!
+ . . . (127)
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with f continuous and square integrable. In fact, for any pair ψ(f), ψ(g) of
such vectors one has,

< ψ(f), A2(χ[t,t+dt])ψ(g) >=
(∫ t+dt

t

gds
)2
< ψ(f), ψ(g) > (128)

< ψ(f), A+2(χ[t,t+dt])ψ(g) >=
(∫ t+dt

t

dsf̄
)2
< ψ(f), ψ(g) > (129)

< ψ(f), A+(χ[t,t+dt]) · A(χ[t,t+dt])ψ(g) >=
(∫ t+dt

t
fds
)
·
(∫ t+dt

t
gds
)
(130)

< ψ(f), ψ(g) > (131)

However A(χ[s,t]) ·A+(χ[s,t]) is not of order o(dt) in the same topology since,
from the Heisenberg commutation relation

[A(f), A+(g)] =< f, g > (132)

and from (130), one deduces that

< ψ(f), A(χ[t,t+dt]) · A+(χ[t,t+dt])ψ(g) >=

= dt < ψ(f), ψ(g) > +
(∫ t+dt

t

fds
)
·
(∫ t+dt

t

gds
)
< ψ(f), ψ(g) >

Remark (3). Throughout the rest of the paper we shall use the fact that if

dG(t) is or order dt strongly on a domain D, for example

dG(t) =

∫ t+dt

t

F (s)ds

with F (s) strongly continuous on D, and if M∗(t) is strongly continuous on
D, then the product dM(t)dG(t) is of order o(dt) weakly on D. In fact for
any ξ, η in D;

|< ξ, dM(t)dG(g)η >| ≤ const.
∥∥∥dM∗(t)

∥∥∥·∥∥∥dG(t)η
∥∥∥

≤
(

sups∈[t,t+dt]

∥∥∥(Ms −Mt)ξ
∥∥∥)dt
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With the same arguments one shows that, if F(t) is strongly continuous then∫ t+dt

t

F (s)ds ≡ F (t)dt (133)

in the sense of (126).
Theorem 2 below and the remarks following it suggest a natural way to

construct unitary cocycles with respect to a given free evolution (uot ) namely:
to solve a quantum stochastic differential equation.

Theorem 2 Let U(s, t) be a strongly continuous left multiplicative functional
with a continuous forward derivative. Then there exists a 2-parameter oper-
ator valued function M(s, t) such that, in the notation (126)

dUt ≡ (b(t)dt+M(t, t+ dt)) · Ut (134)

M(r, t) = M(r, s) +M(s, t) · U(r, s) (135)

Es](M(s, t)) = 0 (136)

Moreover the limits

limdt→0+ Et](
M∗(t,t+dt)·M(t,t+dt)

dt
) = (137)

= limdt→0+ Et](
M(t,t+dt)·M∗(t,t+dt)

dt
) = σ(t) (138)

exist for each t and one has:

b(t) = −1

2
σ(t)− iHI(t) (139)

where HI(t) is an Hermitean operator and

dM(t) =
1

2
dP (t) + idN (140)

where

dN(t) = dN(t)∗ ; dP (t) ≡ dM∗dM − σ(t)dt ≡ dMdM∗ − σ(t)dt
(141)

Conversely, suppose that the 1-parameter family U(s, t) satisfies equation
(134) with b(t) and M satisfying (135), (136), (137), (139), (140). Then for
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each t, Ut = U[0,t] is a unitary operator whose forward derivative exists and
satisfies

D+Ut = b(t)Ut (142)

Moreover the martingale associated to Ut according to Theorem (142) is

Mo(t) = M(0, t) (143)

Proof. Using the definition 69 of left multiplicative functional and the con-
tinuity of multiplication, (121) becomes(

U[t,t+dt] − 1−
∫ t+dt

t

b(r)U[t,r]dr
)
· Ut = Mo(t+ dt)−Mo(t) (144)

Hence, defining for each s < t

M(s, t) = [Mo(t)−Mo(s)]U
∗
s (145)

one has

M(r, s) +M(s, t)U(r, s) = [Mo(s)−Mo(r)]U
∗
r + [Mo(t)−Mo(s)]U

∗
s = M(r, t)

and since Mo(t) is a martingale:

Es](M(s, t)) = Es][Mo(t)−Mo(s)]U
∗
s = 0

Using the definition (145) of M(s, t), (123) becomes

dUt = [

∫ t+dt

t

brU[t,r]dr +M(t, t+ dt)] · Ut (146)

now let us substitute (146) in the algebraic identity

O = d(U∗U)(t) = dU∗t Ut + U∗t dUt + dU∗t dUt (147)

(here dUt has the meaning specified in (122), i.e. it is a finite difference
operator). Using the unitarity of Ut, (147) becomes equivalent to

0 = [

∫ t+dt

t

U∗[t,r]b
∗
rdr +M∗(t, t+ dt)] + [

∫ t+dt

t

brU[t,r]dr +M(t, t+ dt)]+

+[

∫ t+dt

t

U∗[t,r]b
∗
rdr +M∗(t, t+ dt)] · [

∫ t+dt

t

brU[t,r]dr +M(t, t+ dt)]
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Now, using Remark (3) above we have that all the products

(

∫ t+dt

t

U∗[t,r]b
∗
rdr) ·M∗(t, t+ dt)M∗(t, t+ dt) · (

∫ t+dt

t

brU[t,r]dr)

(

∫ t+dt

t

U∗[t,r]b
∗
rdr) · (

∫ t+dt

t

brU[t,r]dr)

are of order o(dt) and therefore, using (133) the notation (126), and the fact
that, for each t, U[t,t] = 1, we obtain

0 =

∫ t+dt

t

(U∗[t,r]b
∗
r + brU[t,r])dr+ M∗(t, t+ dt) ·M(t, t+ dt) (148)

+ M(t, t+ dt) +M(t, t+ dt)∗ (149)

taking Et]-expectations of both sides of (148) and using (10) and (136) we
find

Et](M
∗(t, t+ dt) ·M(t, t+ dt)) ≡ −Et](

∫ t+dt

t

(
brU[t,r] + U∗[t,r]b

∗
rdr
)

(150)

From (146) and Lemma 114 we conclude that the first of the limits (137)
exists and is equal to

σ(t) = −(bt + b∗t ) = −2Re(bt)

Hence, denoting

HI(t) =
1

2i
(bt − b∗t ) = Im(bt)

we obtain (139). Exchanging the roles of U and U∗, in the identity (147), the
roles of M and M∗ are exchanged hence the same arguments as above yield
the second identity in (137). From (146) and (133) we obtain (134). Due to
U[t,t] = 1, the relation (148) is equivalent to

0 ≡ (b(t) + b∗(t))dt+ |dM(t)|2 + dM(t) + dM∗(t) (151)

Adding and subtracting to (151) the term Et](|dM(t)|2), and using (150) in
the form:

Et](|dM(t)|2) ≡ σ(t)dt

we obtain:
|dM(t)|2 − σ(t)dt ≡ −(dM(t) + dM∗(t)) (152)
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which is the first equality in (140). By considering UtU
∗
t rather than U∗t Ut

we obtain the symmetric equation

0 ≡ dMdM∗ − σ(t)dt+ dM∗ + dM (153)

and this completes the proof of (140). Conversely, let (Ut) satisfy equation

(134) with M and b(t) satisfying (135),...,(140). Then taking Et]-expectations
of both sides of (134) and using (136) we see that Ut has a forward derivative
and (141) holds. Therefore by Theorem 1 we have

dU(t) ≡ b(t)U(t)dt+N(t, t+ dt)

By (134) this implies that

N(t, t+ dt) = M(t, t+ dt)Ut + o(t, dt) (154)

Therefore, if 0 = t1 < . . . < tn we obtain

N(t) =
n∑
j=1

N(tj, tj+1) =
n∑
j=1

M(tj, tj+1)Ut +
n∑
j=1

o(tj, tj+1 − tj) (155)

Using induction on (135), we see that (155) is equivalent to

N(t) = M(0, t)Uo = M(0, t) +
n∑
j=1

o(tj, tj+1 − tj)

This, in the limit maxj(tj+1 − tj)→ 0, yields (143). Finally,

d(U∗t Ut) = dU∗t Ut + U∗t dUt + dU∗t dUt (156)

which, using (137), (139) and condition (153) becomes

d(U∗t Ut) ≡ U∗t (dM∗dM − σdt+ dM∗ + dM)Ut ≡ 0 (157)

Again summing the identity (157) over a partition P of (0, t) and going
to the limit |P | → 0, this yields

U∗t Ut = U∗oUo = 1

In a similar way one checks
UtU

∗
t = 1
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and this proves unitarity. Remark Notice that, in the proof of the unitarity

condition only (134), (139), (153) have been used, in particular we did not
use the existence of Et]. Remark We want to interpret the relation (134) as

a true equation. To this goal notice that the precise meaning of (134) is:

U(t+ dt)− U(t) = b(t)U(t)dt+M(t, t+ dt)Ut + o(dt) (158)

with o(t, t+ dt) satisfying

lim
|P |→0

n∑
j=1

o(tj, tj+1 − tj) = 0 (159)

with P = {0 = t1 < ... < tn = T <∞} and

|P | = max
j

(tj+1 − tj)

Now consider a fixed t > 0 and a fixed partition 0 = t1 < t2 < · · · < tn = t
of the interval (0, t], and summing the identity (37) over the increments
dtj = tj+1 − tj, we obtain, using U(0) = 1:

Ut−1 =
n∑
j=1

b(tj)U(tj)(tj+1− tj)++
n∑
j=1

M(tj, tj+1)U(tj)+
n∑
j=1

o(tj, tj+1− tj)

(160)
Using the fact that

lim
maxj|tj+1−tj|→0

n∑
j=1

b(tj)U(tj)(tj+1 − tj) =

∫ t

0

b(s)U(s)ds

and (160) we obtain that the limit

lim
maxj|tj+1−tj|→0

n∑
j=1

M(tj, tj+1)Utj =

∫ t

0

dM(s)Us

must exist. In fact from (135) and (143) we know that this limit exists
trivially and is equal to Mo(0, t). Therefore the relation (134) is equivalent
to the integral equation.

Ut = Us +

∫ t

s

b(r)U(r)dr +

∫ t

s

dM(r)U(r) (161)
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Theorem 3 If Ut satisfies the cocycle equation (26), then b(t) must have the
form

b(t) = iuot (HI)−
1

2
uot (σ) (162)

for some time independent operators HI and σ such that HI is self-adjoint
and σ is positive. Moreover

M(t, t+ dt) = uot (M(0, dt)) (163)

for each t, dt > 0. Conversely, if b(t) and M satisfy the conditions (162),
(163) beyond the conditions of Theorem 2, then the 1–parameter family (Ut)
is a uot -cocycle.

Proof. Necessity: Equation (162) follows from the remark after Lemma
114. Using equations (121), (162) and the cocycle property we find

Ut − Us = uos(Ut−s − 1)Us = uos(

∫ t−s

0

b(r)Urdr +Mo(0, t− s))Us =

=
∫ t−s
0

b(s+ r)uos(Ur)Usdr + uos(Mo(0, t− s))Us
=

∫ t
s
b(r)U(r)dr + uos(Mo(0, t− s))Us

comparing this with (121), yields Mo(s, t) = uos(Mo(0, t− s))Us this identity,
together with (145) yields (163).

Sufficiency. The conditions of Theorem 2 assure that Ut exists and is
unitary. We have to show that, under the additional conditions (162), (163),
Ut is a U o

t -cocycle. i.e. that it satisfies the identity

Ut+s = uos(Ut)Us

Now let
Xt = Ut+sU

∗
s ; Yt = uos(Ut)

Then from (134), (162) and (163) we obtain

dXt ≡ (b(t+ s)dt+M(s+ t, s+ t+ dt))Ut+sU
∗
s = uos(b(t)dt+M(t, t+ dt))Xt

dYt ≡ uos((b(t)dt+M(t, t+ dt))Ut) = uos(b(t)dt+M(t, t+ dt))Yt

Hence Zt = Xt − Yt satisfies dZ(t) ≡ 0. Summing over the intervals of a
partition P , letting |P | → 0 and using (125), we find Z(t) = constant. Since
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Z(0) = 0, it follows that X(t) = Y (t) for each t, and this ends the proof.
Remark. The relation (137) means that

Et](M
∗(t, t+ dt)M(t, t+ dt)) = Et](M(t, t+ dt)M∗(t, t+ dt)) ≡ σ(t)dt

which suggests the order of magnitude estimate

M(t, t+ dt) ∼=
√
dt

Thus equation (134) or, equivalently (161) should be interpreted as a sepa-
ration of two time scales in the evolution of Ut: a slow, regular one,
due to the term b(t)dt, (drift) and an irregular one of order

√
dt due to the

term M(t, t+ dt) the noise, or martingale, term. It should be underlined
that up to now we have considered a single quantum system: nothing in
our assumptions indicates a separation of the system into two subsystems to
be identified respectively with the system and the noise (or resevoir, or heat
bath,...). Thus, even if in all models constructed up to now, of the equation
(134), this separation (system–reservoir) is postulated ab initio, we should
interpret the general, model independent, equation (6.17), as an indication
of the existence of quantum systems which ”are their own noise,” in
the sense that, for the state space, a kinematical decomposition into a tensor
product of two spaces (one related to the regular motion and the other to the
noise) is impossible and yet, inside the single system, the separation between
slow and fast scales of motion takes place.

Now let us assume that Ut satisfies the cocycle equation (26) and let us
form the quantum dynamics according to the prescription (27), i.e.

Vt = U∗t · V o
t (164)

the increment of Vt in the interval [t, t+ dt] is

dVt = (dU∗t )V o
t + U∗t dV

o
t = dU∗t · dV o

t (165)

but V o
t is a usual quantum dynamics with generator Ho, hence

dV o
t ≡ iV o

t Hodt (166)

is of order dt and U∗t is strongly continuous hence, by Remark (3) above
the product (dU∗t )(dV o

t ) is of order o(dt). Using (134) in (165) we obtain
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therefore

dVt ≡ U∗t (b∗tdt+ dM∗)V o
t + +U o

t V
o
t (iHo)dt =

= Vt

([
(V o
−tbtV

o
t )∗ + iHo

]
dt+ (V o

−tdMV o
t )∗
)

so that, using equation (139) for bt and denoting

dM o(t) = uo−t(dM(t)) (167)

we obtain

dVt ≡ Vt

(
i(Ho +HI)dt−

1

2
σdt+ dM o(t)

)
(168)

On the other hand we have already seen in Section (1.) that , for any strongly
continuous Ut , Vt satisfies a Scrödinger equation of usual type, i.e.

dVt ≡ Vt(iK)dt (169)

for some self-adjoint K. At first sight the two relations (168) and (169) might
seem in contradiction: the right hand side of (169) is of order dt while, in
the right hand side of (168), the dominating order is

√
dt in view of the

Remark above. However since we are dealing with operators both relations
have a meaning only on certain domains of H and therefore what the appar-
ent contradiction means is simply that only the zero vector can lay in the
intersection of the domains of validity of the two equations. Moreover, while
the equation (169) is certainly mathematically correct, but does not give any
insight on the relation between the free Hamiltonian and the interacting one,
equation (168) is quite explicit on the relations between the generators (in
the stochastic sense) of the free and the interacting evolution It is difficult
to give a precise mathematical meaning to (168), even as a stochastic differ-
ential equation, since while the cocycle Ut is adapted, the unitary evolution
Vt, defined by (164), usually is not. Remark It is intuitively clear that the

operator σ is related to a damping process and that the operator dM o(t)
plays the role of a quantum random force. To make this intuition rig-
orous, we have first to deduce the generalized Langevin and the generalized
master equation canonically associated to the dynamics (Vt).
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10 Quantum diffusions

In the classical case not all the stochastic differential equations describe dif-
fusions (also jump processes can arise). In this Section we want to carry this
distinction into the quantum domain. To this goal, let us first consider the
identities (151) of Theorem 2. Using the explicit form (145) of M , these can
be written

dMo(t)U
∗
t + UtdM

∗
o (t)− σ(t)dt ≡ dM(t)dM∗(t) ≡ dM∗(t)dM(t) (170)

Therefore the limits

lim
|P |→0

∑
dt∈P

dMo(t)U
∗
t ; lim

|P |→0

∑
dt∈P

UtdM
∗
o (t) (171)

(P as usual denotes a partition of (0, t) of width dt) exist if and only if the
limits

lim
|P |→0

∑
dt∈P

dM(t)dM∗(t) ; lim
|P |→0

∑
dt∈P

dM∗(t)dM(t) (172)

exist and in this case the limits (172) are equal. The limits (171) are denoted
respectively ∫ s

0

dMo(s)U
∗
s ;

∫ s

0

UsdM
∗
o (s) (173)

and called the left (resp. right) stochastic integral of U∗s (resp. Us) with
respect ot Mo (resp. M∗

o ). While the limits (172) are denoted respectively

[[M,M∗]](0, t) ; [[M∗,M ]](0, t) (174)

and called the brackets (or the Ito product) of M with M∗ (resp. of M∗

with M) [6/d].
For example, if dM = dM∗ = dW (t) with W (t) the Wiener process

then we know that
dM∗dM = dW 2 ≡ dt

On the other hand for the Wiener process one has also

Et](dM
∗(t)dM(t)) = Et](dW

2(t)) = dt

and therefore for the classical Wiener process one has

dM∗dM − σ(t)dt = dM2 − dt ≡ 0 (175)
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It turns out (cf. [6/d]) that the relation (175) is characteristic of the classical
processes with continuous trajectories. For this reason, even if in quan-
tum theory it makes no sense to speak of trajectories of a process, we shall
call a continuous trajectory quantum process, any process satisfying
condition (175) above. Since the continuity of the trajectories is a basic
characteristic of the classical diffusions, we shall say that an equation of the
form

dU ≡ (b(t)dt+ dM(t))Ut

is of diffusion type if its coefficients satisfy the conditions of Theorem
2 and dM(t) is a continuous trajectory quantum process in the sense just
defined. Notice that, if dM(t) has continuous trajectories then (140), (141)
become equivalent to:

dM(t) = −dM∗(t) (176)

11 The Forward Langevin equation

In this Section we study the quantum stochastic analogue of the procedure
which leads to the forward Heisenberg equation (35). Let H, (V o

t ) and the
conditional expectations (Et]) be given as in Section (2). If Ut satisfies the
cocycle equation (26) and is adapted to the past filtration then we can define
the quantum dynamics

Vt = U∗t V
o
t (177)

as in (27) and introduce the forward Heisenberg dynamics as in (31)
i.e.

X(t) = VtXV
∗
t = U∗t V

o
t XV

o
−tUt (178)

(X an observable quantity or, more generally any operator). If Ut is differ-
entiable, the equation satisfied by X(t) is the usual Schrödinger equation in
Heisenberg form (34). If Vt admits only a forward derivative, the equation
satisfied by X(t) will be called a (generalized) forward Langevin equa-
tion. The term ”generalized” refers here to the fact that, up to this moment
no markovianity assumption has been made (cf. Definition 4). Fixing t
and dt > 0, and starting from the algebraic identity:

dX(t) = dVtXV
∗
t + VtXdV

∗
t + dVtXdV

∗
t (179)
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we see using equation (168) for Vt, that the right hand side of (179) is equiv-
alent to

dX(t) ≡ Vt ·
(
i(Ho +HI)dt−

1

2
σ(t)dt+ dM o(t)

)
·X · V ∗t +

+Vt ·X ·(−i(Ho+HI)dt−
1

2
σ(t)dt+dM o∗(t))·V ∗t +Vt ·dM o(t)·X ·dM o∗(t)·V ∗t

(180)
Now, in analogy with the deduction of equation (36) in Section (1.), we
introduce the quantities:

H̃o(t) = VtHoV
∗
t ; H̃I(t) = VtHIV

∗
t ; σ̃(t) = VtσV

∗
t (181)

dM̃ o(t) = VtdM
o(t)V ∗t = VtM

o(t, t+ dt)V ∗t (182)

With these notations, equation (8.4) becomes

dX(t) ≡ i[H̃o(t) + H̃I(t), X(t)]dt− 1

2
{σ̃(t), X(t)}dt+

+dM̃ o(t)X(t)dM̃ o∗(t) + dM̃ o(t)X(t) +X(t)dM̃∗(t) (183)

Using further the decomposition (140), (141) of dM , we obtain the equation:

dX(t) ≡ i[H̃o(t) + H̃I(t), X(t)]dt+ i[dÑ o(t), X(t)]−

−1/2{σ̃(t), X(t)}dt− 1/2{dP̃ (t), X(t)}+ dM̃ o(t)X(t)dM̃ o∗(t) (184)

Where we recognize an Hamiltonian piece with quantum random force dÑ(t),
a damping piece with quantum random force dP̃ (t) and the Ito correction
term dM̃ o(t)X(t)dM̃ o∗(t). Notice that, if Ut satisfies an equation of diffusion
type, then dP̃ (t) ≡ 0, i.e. the quantum random damping force is present
only if the quantum noise of M has not continuous trajectories in the sense
of Section (7.). Equation (184) will be called the (generalized) forward
quantum Langevin equation.
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12 The forward master equation and the quan-

tum Feynman-Kac formula

Let X be an observable and let the quantum dynamics Vt be given by (177).
In Section (8.) we have introduced the forward quantum Langevin equation
as the equation describing the forward Heisenberg evolved of X, i.e.

X(t) = VtXV
∗
t (185)

The equation which describes the conditional expectation (or conditional
mean value) of X(t) given the past with respect to a given time origin denoted
0, i.e.

X̄(t) = Eo](VtXV
∗
t ) (186)

is called the forward master (or Fokker-Planck) equation. One would
expect that, being X̄(t) the Eo] expectation of X(t), its equation could be
simply deduced by taking the Eo]-expectation of the corresponding equation
for X(t), i.e. (184). By doing so however, some difficulties arise because
it is not clear a priori why by taking the Eo]-expectation of the right hand
side of (184), one gets something which is a function of X̄(t). To clarify this
point we have to recall briefly the basic idea of the quantum Feynman
Kac formula as originally introduced in [1].

A remarkable consequence of the covariance property (??), the Markovian
cocycle property and the adaptedness property of Definition 2, is that the
1–parameter family

X̄(t) = P t(X) = Eo](X(t)) = Eo](VtXV
∗
t ) (187)

enjoys the semigroup property

P sP t(X) = P s+t(X) ; s, t ≥ 0 (188)

In fact one has:

P sP t(X) = Eo](VsP
t(x)V ∗s ) = Eo](U

∗
s V

o
s Eo](U

∗
t V

o
t XV

o
−tUt)V

o
−sUs) (189)

in view of the covariance of Et], the right hand side of (189) is equal to

Eo]

(
U∗sEs][u

o
s(U

∗
t )V o

s+tXV
o
−(s+t)u

o
s(Ut)]

)
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by the property of conditional expectations and the adaptedness of Ut this
is equal to

Eo]Es](U
∗
s u

o
s(U

∗
t )V o

s+tXV
o
−(s+t)u

o
s(Ut))

and, by the cocycle property (26) and the projectivity condition (80), this is
equal to

Eo](U
∗
s+tV

o
s+tXV

o
−(s+t)Us+t) = P s+t(X)

which proves the semigroup property. The semigroup P t has two important
properties:
(i) It is positivity preserving in the sense that, if X has positive spectrum
then, for each t ≥ 0 also P t(X) = X̄(t) has. (In fact P t has the stronger
property of being completely positive (cf. below for a further discussion of
this notion).
(ii) It preserves the identity, in the sense that for each t ≥ 0

P t(1) = 1 (190)

Any semigroup satisfying conditions (i), (ii) above is called a quantum dy-
namical semigroup (a quantum Markovian semigroup, in the math-
ematical literature). Being a semigroup P t has the form

P t = etL (191)

where L is the infinitesimal generator of P t. Therefore the quantity X̄(t),
defined by (187) satisfies the linear equation

d

dt
X̄(t) = L(X̄(t)) (192)

In the classical case the quantity X̄(t) represents the expected value of the
observable X at time t given the knowledge of the past of the system (with
respect to the time 0). In the quantum case this interpretation is possible
only in the case in which the range of the conditional expectation Et] is
abelian, in fact one cannot obtain a complete information on a non abelian
algebra. In the general case X̄(t) represents the partial expectation of X(t)
with respect to the noisy degrees of freedom. In many important examples
one has to do with a system interacting with a noise in such a way that the
corresponding state spaces are kinematically independent, i.e. the state space
of the composite system is the tensor product of the state space of the system
and the state space of the noise (cf. the example). In these cases, if X is an
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observable of the small system, then X̄(t) represents the reduced evolution
of the observable X averaged over the noise space. In any case the equation
(192) is called a generalized master equation. The term generalized here
is referred to the fact that up to now no Markovianity assumption has been
made in the deduction of that equation so that the operator L can in principle
depend on the whole past of the system, from −∞ to 0.

The results of Section (8.) allow to deduce the explicit form of the oper-
ator L on the right hand side of the master equation (192). In fact, in order
to determine L it will be sufficient, by the semigroup property to evaluate
the derivative of X(t) at zero. To this goal consider, for a fixed finite dt the
increment

dX̄(t) = X̄(t+ dt)− X̄(t) = dEo](X(t)) = Eo](dX(t)) =

= Eo](dVtXV
∗
t ) + Eo](VtXdV

∗
t ) + Eo](dVtXdV

∗
t ) (193)

Using (184) and the martingale property, equation (192) becomes

dX̄(t) ≡ Eo](Vt[i(Ho +HI)dt−
1

2
σdt+ dM o]XV ∗t )+

+Eo](VtX[−(iHo+HI)dt−
1

2
σdt+dM o∗]V ∗t )+Eo](VtdM

oXdM o∗V ∗t ) (194)

Now we assume that the observableX is localized inHo]. On this assumption,
equation (194) evaluated at t = 0, gives, using the fundamental property (97)
of Eo] and the fact that X,Ho, HI , are all localized in Ho]:

X̄(dt)− X̄(0) = i(Ho +HI)Xdt−
1

2
σXdt+ Eo](dM

o)X−

−iX(Ho +HI)dt−
1

2
Xσdt+XEo](dM

o)∗ + Eo](dM
oXdM o∗)

Since Eo](dM
o) = 0 we obtain

X̄(dt)− X̄(0)

dt
≡ i[Ho+HI , X̄(0)]− 1

2
{σX̄(0)+σX̄(0)σ}+Eo](

dM oXdM o∗

dt
)

(195)
From (195) we deduce that the limit

lim
dt→0+

Eo](
dM oXdM o∗

dt
) = Lo(X) (196)
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exists and satisfies:
Lo(1) = σ (197)

The relation (196) also implies that the map Lo is completely positive. This
is a strong restriction on Lo. For example, if Lo : B(H)→ B(H) is a bounded
map, then it must have the form

Lo(X) =
∞∑
j=1

K∗jXKj (198)

for some bounded operators Kj ∈ B(H). From (195) and (196) we conclude
that

d

dt
|t=0 X̄(t) =

d

dt
|t=0 P

t(X) =
d

dt
|t=0 e

tL(X) =

= L(X) = i[Ho +HI , X]− 1

2
{σX +Xσ}+ Lo(X) (199)

From the general theory of semigroups the relation (199) implies that for
each t

d

dt
X̄(t) = L(X̄(t)) = LP t(X) = P t(L(X)) (200)

From (199) and (200) we conclude that for each t one has:

d

dt
X̄(t) = i[Ho +HI), X̄(t)]− 1

2
{σX̄(t) + X̄(t)σ}+ Lo(X̄(t)) (201)

or equivalently

d

dt
P t(X) = P t(i[Ho +HI , X]− 1

2
{σ,X}+ Lo(X)) (202)

Remark (9.1).

The equivalence of (201) and (202) is non trivial because, while (202) is
easily deduced from (194), (201) cannot be directly deduced from (194). The
situation here is exactly similar to the one met in the elementary deduction
of the forward Heisenberg equation in Section (1.) namely: the identity (199)
means that the whole operator

L( · ) = i[Ho +HI , · ]− 1

2
{ σ , · }+ Lo( · ) (203)

Commutes with P t. However this is not true for the individual pieces of
the right hand side of (202). We sum up the results of this Section in the
following
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Theorem 4 Let Ut be a strongly continuous wave operator (cocycle ) with
respect to the free evolution uot ( · ) = V o

t ( · )V o
−t (with V o

t = exp itHo ,
adapted to the past filtration Ht] and admitting a strongly continuous forward
derivative. Then there exist a positive operator σ, a self-adjoint operator HI

and a completely positive map Lo : B(H)→ B(H) satisfying

Lo(1) = σ (204)

such that, for any observable X localized in Ho], the conditional mean

P t(X) =: X(t) = Eo](U
∗
t V

o
t XV

o
t Ut)

satisfies the (generalized) forward master equation (201). Moreover the equa-
tions (201) and (202) are equivalent.

It is not known if also in the unbounded case the map Lo must have the
form (198) for some unbounded operators (Kj). However, given a sequence
of operators (Kj) such that the expression (198) makes sense on a dense do-
main, one can define a completely positive map by (198). Such a map will be
called in standard form. In the next two sections we show how the Langevin
and the master equation look like if the map Lo is in standard form. NOTES

If the quantum dynamical semigroup Tt is norm continuous, then a theo-
rem of Gorini Kossakowski and Sudarshan [23], and Lindblad [26] shows that
its infinitesimal generator G must have the form

G(x) = K+x+ xK +
n∑
j=1

L+
j xLj ; x ∈ AS

with Lj, K ∈ AS satisfying

K+ +K +
n∑
j=1

L+
j Lj = 0

Therefore all the (norm continuous) Markovian semigroups can be obtained
from the weak or the singular coupling limit by an appropriate choice of the
free and interaction Hamiltonians and of the reservoir state.
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There are examples of linear, trace and positivity preserving evolution
equations for density operators which are not completely positive.

Complete positivity implies inequalities among the relaxation parame-
ters which are stronger (in general) than the inequalities implied by simple
positivity.

The fact that at the moment no experimental violation of the inequalities
implied by complete positivity is known and the natural way in which this
property arises in the stochastic limit, are good physical reasons to believe
that the physical evolutions are completely positive.

Two examples.
1) Two-level systems.

See Section 4 of the paper ”Properties of quantum Markovian master
equations”.

The result is originally due to A. Kossakowski [ref. 51]. Evolutions which
are positive but not completely positive might actually arise as semigroup
approximations to physical evolutions which are not of semigroup type; see
Theorem 7 in the enclosed paper ”The averaging method ... ”

2) Spin relaxation. See the following papers:

[1] W. Happer: Rev. Mod. Phys. 44 (1972) 169
[2] A. Omont: Progr. Quantum Electronics 5 (1977) 69
[3] M. Verri and V. Gorini: J. Math. Phys. 19 (1978) 1083
[4] V. Gorini, M. Verri and E.C.G. Sudarshan: in Springer Lecture Notes in
Physics vol. 135 (1980) 95

The structure of completely positive evolutions for spin relaxation has
been studied in [1] and [2] on the basis of models, and in [3] and [4] from a
general standpoint. In [3] it was incorrectly concluded that for isotropic spin
relaxation there is no distinction between positivity and complete positiv-
ity. This has been corrected in [4]. As a simple example, consider isotropic
relaxation of a spin J = 1. Let

TKQ : Q = −K, ...K,K = 0, ..., 2J(= 2)

be the irreducible spherical tensors occurring in the reduction of the repre-
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sentation D(J)⊗D(J). By rotational invariance,

(d/dt)Tr[ρtTKQ] = −KTr[ρtTKQ]

In general, 0 = 0. The condition for positivity is 0 < 2 < 31 , whereas the
condition for complete positivity is (3/5)1 < 2 < 31 .

13 Standard forms of the quantum Langevin

equation

In the previous Section no assumptions on the noise dM(t) were introduced.
In this section we study the following problem: Under which conditions on
the noise dM(t) will the master equation be in the standard form , i.e. its
generator will have the form (198), (199)? The conditions (205), (207) below
are sufficient for this to happen. Namely, we require that the noise dM has
the form

dM(t) =
n∑
j=1

uot (Fj)
∗dMj(t) (205)

with the Fj localized in Ho] and the

dMj(t) = Mj(t, t+ dt) (206)

localized in Ht+dt] and commuting with the past i.e., satisfying

[Y (t),Mj(t, t+ dt)] = 0 (207)

for all j, t, all dt > 0, and any Y (t) localized in Ht]. Under these conditions
and with the notation

F̃j(t) = VtFjV
∗
t (208)

we have, using (167), (207), (208) and the unitarity of Ut:

dM̃ o(t) = Vt(u
o
−t(dM(t)))V ∗t = F̃j(t)

∗U∗t dMj(t)Ut = F̃j(t)
∗dMj(t) (209)

Therefore, writing the forward Langevin equation (184) in the form:

dX(t) ≡ i[H̃o(t) + H̃I(t), X(t)]dt+ dM̃ oX(t) +X(t)dM̃ o∗−
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−1

2
{dM̃ odM̃ o∗, X(t)}+ dM̃ o(t)X(t)dM̃ o∗(t) (210)

and using (205), (207), (208), (209) and (210), one easily finds:

dX(t) ≡ i[H̃o(t)+H̃I(t), X(t)]dt+
n∑
j=1

{F̃j(t)∗X(t)dMj(t)+X(t)F̃j(t)dM
∗
j (t)}+

+
1

2

n∑
j,k=1

{[F̃ ∗j (t), X(t)]F̃k(t)− F̃ ∗j (t)[F̃k(t), X(t)]}dMj(t)dM
∗
k (t) (211)

From this equation, taking Eo]-expectations of both sides and using the prop-
erty Eo]Et] = Eo], the fact that the Fj(t), X(t) are localized in Ht], the defi-
nition of σ(t) i.e.

Et](dMj(t)dM
∗
k (t)) ≡ σjk(t)dt (212)

and the fact that Et](dMj(t)) = 0, we finally obtain

dX̄(t) ≡ Eo](i[H̃o(t) + H̃I(t), X(t)]dt+ 1
2

(213)

Eo]{[F̃ ∗j (t), X(t)]F̃k(t)− F̃j(t)∗[F̃k(t), X(t)]}σjkdt (214)

From the definition (187) of the semigroup P t we see that equation (213) is
equivalent to

d

dt
P t(X) = P t(L(X)) (215)

with L of the form (203), i.e. this is the generator of the forward master
equation in standard form obtained in Section (9.). Remark In the diffusion

case, characterized by the condition

dMj(t)dM
∗
k (t) ≡ σjk(t)dt (216)

we know from Section (7.) that

dM(t) ≡ −dM(t)∗

which, in view of (205), is equivalent to

n∑
j=1

uot (F
∗
j )dMj(t) ≡ −

n∑
j=1

uot (Fj)dM
∗
j (t) (217)
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Assuming that the set of dMj(t) is self-adjoint in the sense that for each
index j there exists an index, denoted j+ such that

dM∗
j (t) = dMj+(t) ; ∀t, dt (218)

then condition (217) is equivalent to

n∑
j=1

uot (F
∗
j + Fj)dMj(t) ≡ 0 (219)

which, on the further assumption of independence of the dMj(t) over the
past, implies

F ∗j = −Fj+ ; j = 1, . . . , n (220)

Therefore in this case the Langevin equation (211) takes the form

dX(t) ≡ i[H̃o(t) + H̃I(t), X(t)]dt+
1

2
{[F̃j(t)∗, X(t)]F̃k(t)+

+F̃j(t)
∗[F̃k(t), X(t)]}σjkdt+ [F̃j(t)

∗, X(t)]dMj(t) (221)

Remark. Notice that, by separating the self-adjoint and the skew-adjoint

part of the dMj, i.e. by introducing the new noises

dQj =
1

2
(dMj + dM∗

j ) ; dPj =
1

2i
(dMj − dM∗

j )

i.e. we can always assume that the noises dMj are self-adjoint

dMj = dM∗
j ; ∀i = 1, . . . , n (222)

and in this case, on the diffusion assumption (216), the coefficients Fj have
the form

−iKj = Fj ; j = 1, . . . , n (223)

for some self-adjoint operators Kj. In this case the Langevin equation (183)
takes the form

dX(t) ≡ i[H̃o(t) + H̃I(t), X(t)]dt+
1

2
[[K̃j(t), X(t)], K̃k(t)]Reσjkdt+

+
i

2
{[K̃j(t), X(t)], K̃k(t)}Imσjkdt+ i[K̃j(t), X(t)]dMj (224)
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Or, denoting

L(X) = i[Ho +HI , X] +
1

2
[[Kj, X], Kk]Reσjk +

i

2
{[Kj, X], Kk}Imσjk (225)

the generator of the Fokker-Plank semigroup one eventually obtains:

dX(t) ≡ Vt(L(X)V ∗t dt+ iVt[Kj, X]V ∗t dMj (226)

which, together with (225), makes evident the separation between the linear
(double commutator) and the nonlinear (anticommutator) terms. The ex-
amples we are going to discuss in the next Sections will take the equations
(225), (226) as their starting point.

Two important things have to be remarked concerning the Langevin equa-
tion (221): (I.) It is not a single equation, but a system of equations in
the unknowns

X̃(t), H̃o(t), H̃I(t), F̃j(t), F̃
∗
j (t) ; (j = 1, . . . , n) (227)

with initial conditions
X,Ho, HI , Fj, F

∗
j (228)

This is clear from the definition (208), (209) of the unknown variables. (II.)
It is a nonlinear system, since the products of pairs and even triples of
unknowns enter in it. Moreover, given the connections, explained above,
between the Langevin equation (221) and the master equation (215), the
two remarks above hold also for the associated master equation.

With the change of variables

Gk =
n∑
j=1

ukjFj (229)

dNj =
n∑
j=1

ujkdMk (230)

where U = (uij) is a unitary matrix diagonalizing Σ = (σij), equation (211)
becomes

dX(t) ≡ i[H̃o(t) + H̃I(t), X(t)]dt+ (231)

+
1

2
γj{[ G̃j(t)

∗, X(t)]G̃j(t)− G̃j(t)
∗[G̃j(t), X(t)]}dt+

+ G̃j(t)
∗X(t)dNj(t) +X(t)G̃j(t)dNj(t)

∗
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where the γj are the (positive ) eigenvalues of Σ. If the G̃j = G̃j(0) = −iKj

are skew-adjoint then equation (231) becomes

dX(t) ≡ i[H̃o(t) + H̃I(t), X(t)]dt+
1

2
[ [G̃j(t), X(t)], G̃j(t)]γjdt+ (232)

+ [X(t), G̃j(t)]dNj(t) (233)

which shows that at least when the Gj and X or equivalently, the Fj and X,
are in a finite dimensional Lie algebra, then the nonlinearity depends only on
the commutator [H̃o(t) + H̃I(t), X(t)] and therefore, for some special choices
of Ho and HI , might disappear in the new variables Gj. In Sections (12.)
and (13.) we produce two interesting examples where this happens.

14 Standard forms of the quantum master

equation

In Section (9.) we have deduced the generalized forward master equation
(201), i.e.

d

dt
X̄(t) = i[Ho +HI , X̄(t)]− 1

2
{ σ, X̄(t)}+ Lo(X̄(t)) = L(X̄(t)) (234)

where Ho, HI are self-adjoint operators, σ is a positive operator and Lo is a
completely positive map. In this case the evolution of X̄(t) is described by
the quantum dynamical semigroup whose generator is given by (203). The
remarkable feature of this equation is that it is independent of the mathe-
matical model of the noise, in the sense that the noise appears in it only
through its infinitesimal characteristics σ and Lo. The operators Ho, HI , act
on the past space Ho] (no Markovianity assumption has been used up to
now) and Lo is a linear operator mapping the past observables into them-
selves. If Lo has the further property of mapping bounded observables of Ho]

into themselves, then it is known that it must have the form

Lo(Y ) =
n∑
j=1

G∗jY Gj (235)

where n is a natural integer or +∞ and the Gj are bounded operators acting
on Ho]. This result shows that the form (2) of Lo is a generic one and in this
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section we shall study how the forward master equation (234) looks like if
the map Lo(Y ) has the form (235). In fact we shall assume that Lo has the
slightly more general form.

Lo(Y ) =
n∑

j,k=1

F ∗j Y Fkσjk (236)

where the Fj are operators acting on Ho] and (σjk) = Σ is a complex matrix of
positive type. If n < +∞, then the two forms (235) and (236) are equivalent
because in this case Σ has the form

Σ = U∗ΛU ⇔ σij =
n∑
k=1

ūkiγkukj (237)

for some unitary matrix U = (uij) on some diagonal matrix Λ = (γk) with
positive elements. Therefore with the change of variables

Gk =
n∑
j=1

√
λkukjFj ; k = 1, . . . , n (238)

(236) becomes (235). However, even if mathematically equivalent, the two
forms (235) and (236) are not physically equivalent because in several exam-
ples the Fj might have a simple direct physical interpretation but not the
Gk. Assuming that Lo has the form (236), the generator L of the quantum
dynamical semigroup, describing the evolution of X(t), is given by

L(X) = i[Ho +HI , X]− 1

2

n∑
j,k=1

{F ∗j Fk, X}σjk +
n∑

j,k=1

F ∗j XFkσjk (239)

where, as usual, [ · , · ] denotes the commutator and { · , · } the anticom-
mutator. Using the identity

−1

2
{F ∗j Fk, X}+ F ∗j XFk =

1

2
[F ∗j , X]Fk −

1

2
F ∗j [Fk, X] (240)

and separating the real and the imaginary part of σjk, one finds (since σ̄jk =
σkj):

L(X) = i[Ho +HI , X] +
1

2

∑
j,k

{[F ∗j , X]Fk − F ∗k [Fj, X]}σjk =
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= i[Ho +HI , X] +
1

2

∑
j≤k{[F ∗j , X]Fk − F ∗k [Fj, X]}Reσjk + (241)

+ i
2

∑
j≤k{[F ∗j , X]Fk + F ∗k [Fj, X]}Imσjk (242)

A better insight into the meaning of the generator is given by considering
some particular cases: if all the Fj are self-adjoint, then

F ∗j = Fj ; j = 1, . . . , n (243)

then L takes the form

L(X) = i[Ho +HI , X] +
1

2
[[Fj, X], Fk]Reσjk +

i

2
{[Fj, X], Fk}Imσjk (244)

The same result, i.e. (11.10), is obtained if all the Fj are skew-adjoint

F ∗j = −Fj (245)

If moreover the covariance Σ is diagonal, i.e.

σij = γjδij

then the generator takes the form

L(X) = i[Ho +HI , X] +
1

2

∑
j

γj[ [Fj, X], Fj] (246)

and, when X is taken to be one of the Fj and the Fj are the generators of
a Lie algebra, we obtain the standard form of a quantum diffusion which
corresponds to a linear Langevin equation. It is not true however that, with
the change of variables (229), (230) any master equation can be brought to
the form (246). In fact such a change of variables will bring to an equation
of the form

L(X) = i[Ho +HI , X] +
1

2

∑
j

γj( [G∗j , X] ·Gj −G∗j · [Gj, X]) (247)

which reduces to (246) only if the Gj are self-adjoint.
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15 The damped harmonic oscillator

Consider the Langevin equation (??) in the case of two independent self-
adjoint noises M1,M2 with coefficients

K1 = aq ; K2 = bp (248)

where q, p are the position and momentum operators of a representation of
the Heisenberg commutation relation

[q, p] = i (249)

and a, b are real constants. Suppose moreover that

[Ho, p] = [Ho, q] = 0 (250)

i.e. the free evolution acts trivially on p and q, and choose HI to be the usual
harmonic oscillator hamiltonian

HI =
1

2
(p2 + q2) (251)

Assuming that the noises M1,M2 have a conditional covariance of the form

Eo](
dMi(t)dMj(t)

dt
) = σij

where the σij are complex numbers, one easily derives the action of the
generator of the master equation on p, q:

L(p) = −q − pabImσ12 ; L(q) = p− qabImσ12 (252)

with L given by (239). Denoting

γ = abImσ12 ∈ R (253)

the forward master equation for p̄(t), q̄(t) (defined by (187)) becomes

d

dt
q̄(t) = p̄(t)− γq̄(t) (254)

d

dt
p̄(t) = −q̄(t)− γp̄(t) (255)

57



Notice that the present theory predicts that, even introducing an asymmetry
in the interaction of p and q with the noise (cf. (248) above) the damping
constant for p̄(t) and q̄(t) will be the same.

The forward Langevin equation (??) becomes in our case

dq(t) ≡ (p(t)− γq(t))dt+ bdM2 (256)

dp(t) ≡ (−q(t)− γp(t))dt− adM1 (257)

And one recognizes the Senitzky-Lax [33], [22] linear quantum Langevin equa-
tions for the position and momentum observables of a damped harmonic os-
cillator except for the fact that we have not yet specified the form of the
noises dM1, dM2. However, the unitarity of the evolution imposes that, for
all times t one has

0 = d[q(t), p(t)] = [dq(t), p(t)] + [q(t), dp(t)] + [dq(t), dp(t)]

which, in view of (12.9), (12.10) (and with a = b = 1) is equivalent to

0 ≡ [(p(t)−γq(t))dt+dM2, p(t)]+[q(t), (−q(t)−γp(t)dt−dM1]+[dM2, dM1]

and, since according to (207) the increments dMj commute with the past i.e.

[dM2, p(t)] = [q(t), dM1] = 0

this is equivalent to
[dM1, dM2] ≡ 2iγdt (258)

Because of the commutativity with the past, one has [dM1, dM2] = d[M1,M2].
Therefore the identity (258) can be integrated yielding

[M1(t),M2(t)] ≡ 2iγt (259)

Using again the commutativity with the past one finds that (259) is equivalent
to

[M1(s),M2(t)] ≡ 2iγs ∧ t (260)

This shows that, on the assumption that the increments of the noise commute
with the past, the commutation relations, postulated by Lax [22] for the
quantum Brownian motion, are not only a sufficient, but also a necessary
condition for the preservation of the Heisenberg commutation relations.
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16 The angular momentum Lie algebra

We now consider the Langevin equation (221) in the case of three inde-
pendent noises M1,M2,M3 whose coefficients satisfy the angular momentum
commutation relations

[Jα, Jβ] = iεαβγJγ ; α, β, γ = 1, 2, 3 (261)

where εαβγ (α, β, γ = 1, 2, 3) denotes the completely antisymmetric symbol
with ε123 = 1. In order to write down the quantum Langevin system for the
observables J1(t), J2(t), J3(t) , we have to substitute these observables for the
unknown X(t) in the general Langevin equation (221). Evaluating, on these
assumptions, the commutators and the anticommutators and again in the
assumption that the free Hamiltonian Ho commutes with the coefficients of
the noises, i.e.

[Ho, Jk] = 0 ; k = 1, 2, 3

we obtain

dJ1 = i[J1, H]dt+ i(J ∧ dM)1 +
1

2

(
−J1(σ22 + σ33) + J2Reσ12 + J3Reσ13

)
dt+

+
(1

2
(Imσ13){J1, J2} −

1

2
(Imσ12){J1, J3}+ (Imσ23)(J

2
2 + J2

3 )
)
dt (262)

dJ2 = i[J2, H]dt+ i(J ∧ dM)2 +
1

2

(
−J2(σ11 + σ33) + J1Reσ12 + J3Reσ23

)
dt+

+
(
−1

2
(Imσ12){J2, J3} −

1

2
(Imσ23){J2, J1} − (Imσ13)(J

2
1 + J2

3 )
)
dt (263)

dJ3 = i[J3, H]dt+ i(J ∧ dM)3 +
1

2

(
−J3(σ11 + σ22) + J2Reσ23 + J1Reσ13

)
dt+

+
(1

2
(Imσ13){J3, J2} −

1

2
(Imσ23){J3, J1} − (Imσ12)(J

2
1 + J2

2 )
)
dt (264)

where J = (J1, J2, J3) , dM = (dM1, dM2, dM3 and (J ∧ dM)1 = (J2dM3 −
J3dM2) and similarly for the ther consequents. Thus, if we choose for H1 the
Hamiltonian of the free rotator:

HI = J2
1 + J2

2 + J2
3

the Hamiltonian terms in the above equations are reduced to the only con-
tribution of the random force.
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This Langevin system is in general nonlinear in the unknowns J1(t), J2(t), J3(t)
. Only in the case in which the imaginary part of the covariance of the noise
vanishes we obtain some linear equations. The meaning of these equations is
best understood in terms of the (conditionally ) averaged observables

J̄k(t) = E0](Jk(t))

In fact, by taking E0]-expectations of both sides of the equations (262), (263),
(264), one obtains:

d

dt
J̄1 =

1

2

(
−J̄1(σ22 + σ33) + J̄2Reσ12 + J̄3Reσ13

)
d

dt
J̄2 =

1

2

(
−J̄2(σ11 + σ33) + J̄1Reσ12 + J̄3Reσ23

)
d

dt
J̄3 =

1

2

(
−J̄3(σ11 + σ22) + J̄2Reσ23 + J̄1Reσ13

)
Which are precisely the Bloch equation in standard form [13]. Notice that
our deduction provides a microscopic interpretation of the constants in the
Bloch equations in terms of the covariance of the noises.

Recalling the definition 224 of the σjk, we see that the fact that the
imaginary part of the σjk are nonzero is due to the fact that terms of the
form dM∗

j dMk are of order dt. If we have a single noise dM (and its adjoint
), this reduces to the nonvanishing (up to o(dt) ) of the terms of the form
dMdM . If, as in most known examples, M is an annihilation process, then
this event corresponds to a nonzero probability of creating (or annihilating
) two quanta of the noise field in an infinitesimal time interval dt. This
phenomenon is due to the non gauge invariance of the noise M hence it is
justified to call it a squeezing effect (for the experimental differences, induced
on the solutions of the master equation by these squeezing effects, cf. [6/a]).
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