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The quantum duality principle states that a quantization of a Lie bialgebra provides
also a quantisation of the dual formal Poisson group and, conversely, a quantisation of a
formal Poisson group yields a quantisation of the dual Lie bialgebra as well. We extend
this to a much more general result: namely, for any principal ideal domain R and for
each prime p ∈ R we establish an inner Galois’ correspondence on the category HA of
torsionless Hopf algebras over R, using two functors (from HA to itself) such that the
image of the first, resp. of the second, is the full subcategory of those Hopf algebras which
are commutative, resp. cocommutative, modulo p (i.e. they are quantum function algebras
(=QFA), resp. quantum universal enveloping algebras (=QUEA), at p ). In particular we
provide a machine to get two quantum groups — a QFA and a QUEA — out of any Hopf
algebra H over a field k : apply the functors to k[ν]⊗k H for p = ν .

A relevant example occurring in quantum electro-dynamics is studied in some detail.
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1 Introduction

The quantum duality principle is known in literature in several formulations.
One of these, due to Drinfeld ([1], §7, and [2]), states that any quantisation Fh[[G]]
of F [[G]] yields also a quantisation of U(g∗), and, conversely, any quantisation Uh(g)
of U(g) provides a quantisation of F [[G∗]]: here G∗, resp. g∗, is a Poisson group,
resp. a Lie bialgebra, dual to G, resp. to g ). Namely, Drinfeld defines two functors,
inverse to each other, from the category of quantum enveloping algebras to the
category of quantum formal series Hopf algebras and viceversa such that (roughly)
Uh(g) 7→ Fh[[G∗]] and Fh[[G]] 7→ Uh(g∗) . The global version of the above principle
is an improvement of Drinfeld’s result, which put it more in purely Hopf algebra
theoretical terms and make it much more manageable.

The general idea is the following. Quantisation of groups and Lie algebras is a
matter of dealing with suitable Hopf algebras. Roughly, the classical Hopf algebras
of interest are the commutative and the connected cocommutative ones: the first
are function algebras of affine algebraic groups, the second are universal enveloping
algebras of Lie algebras. A quantisation of such an object H0 will be a Hopf algebra
H depending on some parameter, say p, such that setting p = 0 , i.e. taking the
quotient H

/
pH , one gets back the original Hopf algebra H0 . When a quantisation

H is given the classical object H0 inherits an additional structure, that of a Poisson
algebra, if H0 = F [G] , or that of a co-Poisson algebra, if H0 = U(g) ; correspond-
ingly, G is an affine Poisson group, g is a Lie bialgebra, and then also its dual space
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g∗ is a Lie bialgebra; we’ll denote by G∗ any affine Poisson group with tangent Lie
bialgebra g∗, and we say G∗ is dual to G. In conclusion, one is lead to consider such
quantum groups, namely p–depending Hopf algebras which are either commutative
modulo p or cocommutative modulo p. In detail, I focus on the category HA of all
Hopf algebras which are torsion-free modules over a PID, say R ; the role of the
quantisation parameter will be played by any prime element p ∈ R . For any such
p , I introduce well-defined Drinfeld’s-like functors from HA to itself, I show that
their image is contained in a category of quantum groups — quantised function
algebras in one case, quantised enveloping algebras in the other — and that when
restricted to quantum groups these functors are inverse to each other and they
exchange the type of the quantum group — switching function to enveloping —
and the underlying group — switching G to G∗ . The global picture is much richer,
giving indeed — from the mathematical point of view — sort of a (inner) Galois’
correspondence on HA. I wish to stress the fact that, compared with Drinfeld’s
result, mine is global in several respects. First, I deal with functors applying to
general Hopf algebras (not only quantum groups, i.e. I do not require them to be
commutative up to specialisation or cocommutative up to specialisation). Second, I
work with more global objects, namely algebraic Poisson groups rather than formal
algebraic Poisson groups. Third, I do not require the geometric objects — Poisson
groups and Lie bialgebras — to be finite dimensional. Fourth, the ground ring R is
any PID, not necessarily k[[h]] as in Drinfeld’s approach: therefore one may have
several primes p ∈ R , and to each of them the machinery applies. In particular we
have a method to get, out of any Hopf algebra over a PID, several quantum groups,
namely two of them (of both types) for each prime p ∈ R . As an application, one
can start from any Hopf algebra H over a field k and then take Hx := k[x]⊗k H ,
(x being an indeterminate): this is a Hopf algebra over the PID k[x], to which Drin-
feld’s functors at any prime p ∈ k[x] may be applied to give quantum groups. In
this note, I state the result and illustrate an application to a nice example occurring
in the study of renormalisation of quantum electrodynamics.

2 The global quantum duality principle

2.1 The classical setting.

Let k be a field of zero characteristic. We call (affine) algebraic group the maximal
spectrum G := Homk-Alg(H, k) of any commutative Hopf k–algebra H; then H is
called the algebra of regular function on G, denoted with F [G]. We say that G is
connected if F [G] has no non-trivial idempotents. We denote by me the defining
ideal of the unit element e ∈ G , and by me

2 the closure of me
2 w.r.t. the weak

topology; the cotangent space of G at e is g× := me

/
me

2 , endowed with its weak
topology; by g we mean the tangent space of G at e, realized as the topological
dual g :=

(
g×

)? of g× : this is the tangent Lie algebra of G. By U(g) we mean the
universal enveloping algebra of g: this is a connected cocommutative Hopf algebra,
and there is a natural Hopf pairing between F [G] and U(g). Now assume G is a
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Poisson algebraic group: then g is a Lie bialgebra, U(g) is a co-Poisson Hopf algebra,
F [G] is a Poisson Hopf algebra. Then g× and g? (the topological dual of g w.r.t. the
weak topology) are (topological) Lie bialgebras too: in both cases, the Lie bracket
is induced by the Poisson bracket of F [G], and the non-degenerate natural pairings
g× g×−→ k and g× g?−→ k are compatible with these Lie bialgebra structures:
so g and g× or g? are Lie bialgebras dual to each other. We let G? be any connected
algebraic Poisson group with tangent Lie bialgebra g?, and say it is dual to G.

2.2 The quantum setting.

Let R be a principal ideal domain, let Q(R) be its quotient field, let p ∈ R be a
fixed prime element and kp := R

/
(p) be the residue field, that we assume have

zero characteristic. Let A the category of torsion-free R–modules, and HA the
subcategory of all Hopf algebras in A. Let AF the category of Q(R)–vector spaces,
and HAF be the subcategory of all Hopf algebras in AF . For M ∈ A , set
MF := Q(R)⊗RM , Mp := M

/
pM = kp⊗RM (the specialisation of M at p = 0 ).

For any H ∈ HA , let IH := εH
−1(pR) : set IH

∞ :=
⋂+∞

n=0 IH
n , H∞ :=

⋂+∞
n=0 pnH .

Given H in HAF , a subset H of H is called an R–integer form of H if:
(a) H is an R–Hopf subalgebra of H ; (b) H is torsion-free as an R–module

(hence H ∈ HA ); (c) HF := Q(R)⊗R H = H .

Definition 2.1. (Global quantum groups [or algebras]) Fix a prime p ∈ R .
(a) We call quantized universal enveloping algebra (in short, QUEA) any

pair
(
U, U

)
such that U ∈ HA, U ∈ HAF , U is an R–integer form of U, and

Up := U
/
pU is (isomorphic to) the universal enveloping algebra of a Lie algebra.

We denote by QUEA the subcategory of HA whose objects are all the QUEA’s.
(b) We call quantized function algebra (in short, QFA) any pair

(
F, F

)
such

that F ∈ HA, F ∈ HAF , F is an R–integer form of F, F∞ = IF
∞ (notation

of §2.2) and Fp := F
/
pF is (isomorphic to) the algebra of regular functions of a

connected algebraic group. We call QFA the subcategory of HA of all QFA’s.

If
(
U, U

)
is a QUEA (at p ), then Up is a co-Poisson Hopf algebra, so Up

∼= U(g)
for g a Lie bialgebra; in this situation we shall write U = Up(g) , U = Up(g) .
Similarly, if

(
F, F

)
is a QFA then Fp is a Poisson Hopf algebra, so Fp

∼= F [G] for
G a Poisson algebraic group: thus we shall write F = Fp[G] , F = Fp[G] .

2.3 Drinfeld’s functors ([1], x7).

Let H ∈ HA . Define ∆n : H −→ H⊗n by ∆0 := ε , ∆1 := idH , and ∆n :=
(
∆⊗

id⊗(n−2)
H

)◦∆n−1 for every n > 2. Then set δn := (idH − ε)⊗n◦∆n , for all n ∈ N .
Set H ′ :=

{
a ∈ H

∣∣ δn(a) ∈ pnH⊗n ∀n ∈ N}
(⊆ H ), H∨ :=

∑
n≥0 p−nIH

n (⊆ HF ).

Theorem 2.1. (The global quantum duality principle)
(a) H 7→ H ′ and H 7→ H∨ defines functors ( )′ : HA −→ HA and ( )∨ : HA −→

HA , respectively, whose images lie in QFA and QUEA, respectively.
(b) For all H ∈ HA , we have H ⊆ (

H∨)′ and H ⊇ (
H ′)∨. Moreover
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H =
(
H∨)′ ⇐⇒ (

HF ,H
) ∈ QFA and H =

(H′)∨ ⇐⇒ (HF ,H) ∈ QUEA ,

thus we have induced functors ( )′ : QUEA −−→ QFA ,
(
H, H

) 7→ (
H,H ′) and

( )∨ : QFA −→ QUEA ,
(
H,H

) 7→ (
H,H∨)

which are inverse to each other.
(c) With notation of § 1, we have

Up(g)′
/

pUp(g)′ = F
[
G?

]
, Fp[G]∨

/
pFp[G]∨ = U(g×)

where the choice of the group G? (among all the connected algebraic Poisson groups
with tangent Lie bialgebra g?) depends on the choice of the QUEA

(
Up(g), Up(g)

)
.

In short, if
(
Up(g), Up(g)

)
is a QUEA for the Lie bialgebra g, then

(
Up(g), Up(g)′

)

is a QFA for the Poisson group G?, and if
(
Fp[G], Fp[G]

)
is a QFA for the Poisson

group G, then
(
Fp[G], Fp[G]∨

)
is a QUEA for the Lie bialgebra g×. ¤

In particular, part (c) of the claim above shows that Up(g) may be thought of —
roughly — as a quantum function algebra, as well as a quantum universal enveloping
algebra, for at the same time it has an integer form which is a quantisation of a
universal enveloping algebra and also an integer form which is a quantisation of a
function algebra. Similarly, Fp[G] may be seen as a quantum function algebra and
as a quantum universal enveloping algebra.

3 Example: the global quantum duality principle in massless QED

3.1 Classical data.

Let L = L(N+) be the free Lie algebra over C with countably many generators
{xn}n∈N+

, and U = U(L) its universal enveloping algebra; let V = V (N+) be the
C–vector space with basis {xn}n∈N+

, and T = T (V ) the tensor algebra of V . We
shall use the canonical identifications U(L) = T (V ) = C〈x1, x2, . . . , xn, . . .〉 (the
unital C–algebra of non-commutative polynomials in the xn’s), L being the Lie
subalgebra of U = T generated by {xn}n∈N+

. Note also that U(L) has a standard
Hopf algebra structure given by ∆(x) = x⊗ 1 + 1⊗ x , ε(x) = 0 , S(x) = −x for
all x ∈ L , which is also determined by the same formulæ for x ∈ {xn}n∈N+

only.

3.2 The Hopf algebra of Brouder-Frabetti and its deformations.

Let Hdif be the complex Hopf algebra defined in [4], §5.1: as a C–algebra it is
simply Hdif := C〈a1,a2, . . . ,an, . . .〉 , and its Hopf algebra structure is given by

∆(an) = an ⊗ 1 + 1⊗ an +
n−1∑
m=1

Qn−m
m (a∗)⊗ an−m , ε(an) = 0 (1)

S(an) = −an −
n−1∑
m=1

S
(
Qn−m

m (a∗)
)
an−m = −an −

n−1∑
m=1

Qn−m
m (a∗) S(an−m) (2)
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(for all n ∈ N+ ) where the latter formula gives the antipode by recursion. Hereafter
P

(k)
m (a∗):=

∑
j1,...,jk>0

j1+···+jk=m
aj1 · · · ajk

, Q`
m(a∗):=

∑m
k=1

(
`+1
k

)
P

(k)
m (a∗) (m, k, ` ∈ N+ ).

The very definitions imply that mapping an 7→ xn (for all n ) yields an isomor-
phism Hdif

∼=−−→U(L) of unital associative C–algebras, but not of Hopf algebras.
Now we build up quantum groups. Pick an indeterminate ν, and consider

Hdif[ν] := C[ν] ⊗C Hdif = C[ν]
〈
a1, . . . ,an, . . .

〉
: this is a Hopf C[ν]–algebra, with

Hopf structure given by (1–2) again; by construction, Hdif[ν] ∈ HA . Set also
Hdif(ν) := C(ν) ⊗C[ν] Hdif[ν] = C(ν) ⊗C Hdif = C(ν)

〈
a1, . . . ,an, . . .

〉
, a Hopf

algebra over C(ν).

We consider Hν :=
(
Hdif[ν]

)∨
at p = ν and describe it explicitly. For all

n ∈ N+ , set xn := ν−1an : then Hν is the C[ν]–subalgebra of Hdif(ν) generated
by the xn’s, so Hν = C[ν]

〈
x1,x2, . . . ,xn, . . .

〉
. Moreover, formulæ (1–2) give

∆(xn) = xn⊗1+1⊗xn +
n−1∑
m=1

m∑

k=1

νk

(
n−m + 1

k

)
P (k)

m (x∗)⊗xn−m , ε(xn) = 0

S(xn) = −xn −
∑n−1

m=1

∑m

k=1
νk

(
n−m + 1

k

)
S

(
P (k)

m (x∗)
)
xn−m =

= −xn −
∑n−1

m=1

∑m

k=1
νk

(
n−m + 1

k

)
P (k)

m (x∗) S(xn−m)

(for all n ∈ N+) whence we see by hands that the following holds:

Lemma 3.1. Formulæ above make Hν = C[ν]
〈
x1,x2, . . . ,xn, . . .

〉
into a Hopf

C[ν]–subalgebra, embedded into Hdif(ν) := C(ν) ⊗C Hdif as a Hopf subalgebra.
Moreover, Hν is a quantisation of Hdif at (ν−1) , for its specialisation at ν = 1 is
isomorphic to Hdif, i.e. H1 := Hν

/
(ν−1)Hν

∼= Hdif via xn mod (ν−1)Hν 7→ an

(∀ n ∈ N+ ) as Hopf algebras over C . ¤

The previous result shows that Hν is a deformation of Hdif, which is recovered
as specialisation limit (of Hν) at ν = 1 . The next result shows that Hν is also a
deformation of U(L), which is recovered as specialisation limit at ν = 0 .

Lemma 3.2. Hν is a quantized universal enveloping algebra at ν = 0 . More
precisely, the specialisation limit of Hν at ν = 0 is H0 := Hν

/
νHν

∼= U(L)
via xn mod νHν 7→ xn ∀ n ∈ N+ , thus inducing on U(L) the structure of co-
Poisson Hopf algebra uniquely provided by the Lie bialgebra structure on L given by
δ(xn) =

∑n−1
`=1 (` + 1) xn−` ∧ x` (for all n ∈ N+ ), where a ∧ b := a⊗ b− b⊗ a . ¤

Next, we can consider Hν
′, again at p = ν . By direct computation one finds

Theorem 3.3. (a) Let x̃ := ν x for all x ∈ Hν , and let [a, c] := a c− c a . Then

Hν
′ =

〈
L̃

〉
= C[ν]

〈{
b̃b

}
b∈B

〉/({ [
b̃b1 , b̃b2

]− ν ˜[bb1 ,bb2 ]
∣∣∣ ∀ b1, b2 ∈ B

})
.
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(b) Hν
′ is a Hopf C[ν]–subalgebra of Hν , and Hdif is naturally embedded into

Hν
′ as a Hopf subalgebra via an 7→ x̃n (for all n ∈ N+).
(c) H0

′ := Hν
′
/

νHν
′ = F

[
GL

?] , where GL
? is an infinite dimensional con-

nected Poisson algebraic group with cotangent Lie bialgebra (isomorphic to) L. ¤

3.3 Specialisation limits.

So far, I have already pointed out (by Lemmas 3.1–2 and Theorem 3.3(c)) the
following specialisation limits: Hν

ν→1−−−→Hdif, Hν
ν→0−−−→U(L), Hν

′ ν→0−−−→F
[
GL

?] .

In addition, Theorem 3.3(a) implies that Hν
′ ν→1−−−→ Hdif as well.

To summarize, Hdif can be thought of as a deformation of U(L) , because we
can see Hν as a one-parameter family of Hopf algebras linking U(L) = H0 to
H1 = Hdif . Similarly, Hdif can also be seen as a deformation of F

[
GL

?] , in that
Hν

′ acts as a one-parameter family of Hopf algebras linking F
[
GL

?] = H0
′ to

H1
′ = Hdif . The two families match at the value ν = 1 , corresponding (in both

families) to the common element Hdif . At a glance, we have

U(L) = H0
0←ν→1←−−−−−−→ H1 = Hdif = H1

′ 1←ν→0←−−−−−−→ H0
′ = F

[
GL

?]
.

Note that the leftmost and the rightmost term above are Hopf algebras of clas-
sical type, having a very precise geometrical meaning: in particular, they both have
a Poisson structure, arising as semiclassical limit of their deformation. Since Hdif

is intermediate between them, their geometrical meaning should shed some light on
it. In turn, the physical meaning of Hdif should have some reflect on the meaning
of the semiclassical (geometrical) objects U(L) and F

[
GL

?]
.

Finally, I wish to stress that the discussion about this example applies to a much
more general framework, namely to every Hopf C–algebraH (instead ofHdif ) which
is graded and is generated by a set of generators of positive degree.

The author thanks the organizers of the X International Colloquium Quantum Groups

and Integrable Systems for their kind invitation.
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