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Abstract. We consider the problem of determining the noise coefficients of the Hamiltonian associated
with a Fermion flow so as to minimize a naturally associated quadratic performance functional. This extends

the results of [4] obtained for Boson flows to Fermion flows. We also provide a general formulation of Fermion
flows.

1. QUANTUM STOCHASTIC CALCULUS

The Boson Fock space T' := I'(L?(Ry,C)) over L?(R,,C) is the Hilbert space completion of the linear
span of the exponential vectors ¢(f) under the inner product

<P(f),0(g) >= 9>

where f,g € L?>(R;,C) and < f,g >= f0+°° f(s) g(s) ds where, here and in what follows, Z denotes the
complex conjugate of z € C. .

The annihilation, creation and conservation operator processes Ay, AI and A; respectively, are defined on
the exponential vectors 1(g) of T by

Ap(g) = /Og(S)ds ¥(9)

0

Al(g) = a|e=0¢(9+6><[o¢])
0

Ab(g) = 5 lemow(eX)g)

The basic quantum stochastic differentials dAy, dAI, and dA; are defined by

dA; = At+dt — A

dA] == Al — Al

dA; = At+dt - A

Hudson and Parthasarathy defined in [13] stochastic integration with respect to the noise differentials
dAsg, dAI and dA; and obtained the It6 multiplication table

- | aA] an, dA, at
Al o 0o 0 0
dA, | dAT dA, 0 0
dA, | dt dA, 0 0
a0 0 0 0

We couple I with a ”system” Hilbert space H and consider processes defined on H ®I'. The fundamental
theorems of the Hudson-Parthasarathy quantum stochastic calculus give formulas for expressing the matrix
elements of quantum stochastic integrals in terms of ordinary Riemann-Lebesgue integrals.

Theorem 1. Let

M(t) := /O t E(s)dAg + F(s)dAg + G(s) dAT + H(s) ds



where E, F, G, H are (in general) time dependent adapted processes. Let also u® ¥(f) and u @ (g) be
in the ”exponential domain” of H R I'. Then

{< u® (), M(t) u®P(g) >= i
fot <u@d(f), (f(s)g(s)E(s) +9g(s) F(s)+ f(s) G(s) +H(s)) u®(g) > d

Proof. See Theorem 4.1 of [13].
Theorem 2. Let

M(t) := [y E(s)dAs + F(s) dAs + G(s) dAL + H(s)ds

and

M'(t) := [y E'(s)dAs + F'(s) dA, + G'(s) dAL + H'(s) ds

where E, F, G, H, E', F', G', H' are (in general) time dependent adapted processes. Let also u ® ¥(f)
and u ® (g) be in the exponential domain of H®T'. Then

<M@B)uep(f), M'(t)u@P(g) >=
Jod< M(s)u@(f), (F(s) g(s)E'(s) + g(s) F'(s) + [(s) G'(s) + H'(s)) u @ 1b(g) >
+ < (g(s) f(s) E(s) + f(s) F(s) + g(s u@p(f), M'(s)u©P(g) >
+ <(f(9)E(s) + G(s) u@y(f +G'(s)uey(g) >}ds
Proof. See Theorem 4.3 of [13].

The connection between classical and quantum stochastic analysis is given in the following:

Theorem 3. The processes B ={By/t >0} and P ={P,/t > 0} defined by

Bt = At +AI

and

are identified with Brownian motion and Poisson process of intensity \ respectively, in the sense that their
vacuum characteristic functionals are given by

<(0),¢1 B (0) >= e

and

< (0), €2 Peap(0) >= (1)L
Proof. See Theorem 5 of [11]. O



The processes Ay, AI satisfy the Boson Commutation Relations

[At,AI] = A Al - Al A =t T

In [14] Hudson and Parthasarathy showed that the processes F; and F,;r defined on the Boson Fock space

by
t
/ Js dAs
0

t
Fl .= / J, dAl
0

satisfy the Fermion anti-commutation relations

F

{F,F)\:=F,F +F F,=tI
It follows that

(1.1) dFy = JydAy
(1.2) dF} = J,dAl

Here J; is the self-adjoint, unitary-valued, adapted, so called "reflection” process, acting on the noise part
of the Fock space and extended as the identity on the system part, defined by

Ji == v(=Pogy + P 4o0)

where Ps denotes the multiplication operator by xs and « is the second quantization operator defined by

YU)$(f) = ¢(U f)

The reflection process J; commutes with system space operators and satisfies the differential equation (cf.
Lemma 3.1 of [14])

(1.3) dJ; —2Jy dAy
Jo = L

2. FERMION EVOLUTIONS AND FLOWS

As shown in [14], Fermion unitary evolution equations have the form

1
(2.1) au; = — ((zH + 3 L*L) dt + L* W dF; — LdFtT +(1-wW) dAt> U
Uh =1
with adjoint

1
(2.2) dUf = —U;((~iH + 5 L*L)dt = L*dF, + W* LdF] 4+ (1 —W*)dA,)
ur = 1



where, for each t > 0, U; is a unitary operator defined on the tensor product H ® I'(L?(R,,C)) of the
system Hilbert space H and the noise Fock space I'. Here H, L, W are in B(H), the space of bounded linear
operators on ‘H, with W unitary and H self-adjoint. We identify time-independent, bounded, system space
operators X with their ampliation X ® 1 to H ® ['(L3(R, C)).

Proposition 1. Let

o (T,8) =V (T+ S J) Vi

where T, S are bounded system space operators and Vi, Vi* satisfy the quantum stochastic differential equa-
tions

av, = (adt—i—ﬁdFt + A dE] +6dAt) vV, = (adt+BJtdAt+7Jt dA] +6dAt) v,

vy =V (atdb+ BT dF] " dF 4 8" dN) = V(o b+ BT AT 4" i dA + 8 dA )

where o, 3,7, are bounded system space operators. Then

(2.3) doe(T,S) = (" T+Ta+~y"Tvy,a"S+Sa++"S~)dt
+ (V' SH+SB - S22+, T+TB+~*T5)dA;
+ GBS+ Sy —6°Sy, B T+T~+ 06 Tr)dA]l
+ ST HTS+0"T6,—(25+S6+8*S+06*56))dA,
with
(2.4) $o(T,S) =T+ S

Proof. Making use of the algebraic rule

dlzy) =dry+xdy + dedy
we find

doe(T,S) = dVi (T+SJ) Vi + Vi d(T + S5 J) Vi) +dVy d((T + S Ji) Vi)
= dVy (T+ST)Vi+ VT dV, +VSd(Je Vi) +dV, T dVy +dV,* S d(J: V).
But, by (1.3), the It6 table for the Boson stochastic differentials and the fact that J? =1

A, V) = dJVi+ JydVi +dJ, dV;
= —2J,dA Vi + J; (adt+6JtdAt+7JtdAI+5dAt> v,

2 J, dA, (adt+ﬂJtdAt+7JtdAI +6dAt) v,

(aJtdt—i—ﬁdAt — v dA] — (24 0) JtdAt) v,

Thus



déy (T, S) = Vi (a* dt + B J, dAL +~* J, dA, + 5" dAt> (T +SJ,)V,;
VT (adt+5JtdAt+wtdAI+5dAt) v,
A (aJtdt—kﬁdAt—vdAI—(2+5)JtdAt> v,

v (a*dt+B*JtdAI+7*JtdAt+5*dAt) T (adt+ﬂJtdAt+7JtdAI+5dAt) v,

+ + + o+

A (a*dt—i—B*JtdAI—i—v*JtdAt—&-cS*dAt) S (aJtdt—i—ﬁdAt—fydAI—(2+6)JtdAt) v,
o TH+Ta+~y"Ty,a*S+Sa+y*Svy)dt+ (v S+SB—7"S2+8),vT+TB+~"T3)dA;
+ (BT SH+ Sy~ 88y, BT +Ty+8"Ty)dA] + ¢ (6" T+ T+ 8" T3, (25 + S5+ 6 S+35*S6))dA,

O

With the processes Uy and Uy of (2.1) and (2.2) we associate the Fermion flow

(2.5) Ji(X) = Ui X U; = ¢(X,0)

and the reflected flow

(2.6) r4(X) = jo (X Jp) = ¢(0, X)
where X is a bounded system space operator.

Corollary 1. The Fermion flow j:(X) and the reflected flow ri(X) defined in (2.5) and (2.6) satisfy the
system of quantum stochastic differential equations
1
(2.7) dGi(X) = Jj. <z [H.X] 5 (L"LX + XL'L - 2L*XL)> dt
o (L5, X] W) dA, + 1 (WF [X, L) dAT + 5 (W* X W — X) dA,

and

2.8)  dri(X) = n <z [H, X] — % (L'LX + XL*L — 2L*XL)> dt
— G {L* XYW) dA, — j, WH{X,L} —2X L) dA} — r, (W* X W + X) dA,

with

Jo(X) =ro(X) = X.
Here, as usual, [x,y] =2y —yx and {z,y} =2y +yz.

Proof. We replace V; and V;* in Proposition 1 by U; and Uyf. Then, equation (2.7) is a special case of (2.3)
for T'=X, S =0 and



= —(iH+ %L*L)

LW

L

= W-1

23) for T=0,5=X and a, 8,7,0 as above.

—~ o =2 ™ 9
Il

while equation (2.8) is a special case of

3. GENERALIZED FERMION FLOWS

Fermion flows can be formulated and studied in a manner similar to Boson (also called Evans-Hudson)
flows (cf. [12] and [15]). Let B(#) denote the space of bounded system operators. We define B(H)-valued
operations 57 and A on B(H) x B(H) by

(3.1) (Th,51) v (T2, 52): = TiTo+ 515,
(32) (Tl, Sl) A (ij7 SQ) . = T1 SQ + Sl T2
Notice that if

p(z,y) = (y,2)

is the reflection map, then

(T1, S1) A (T3, S2) = (11, 51) v p(12, S2).
We also define the B(#) x B(#)-valued product map o on (B(H) x B(H))? by

(3.3) roy:=(xvVy,vAy)=(T1T2+ 51 S2,T1 So + S1 T2)
where x = (T, 51) and y = (T3, S2).

Lemma 1. The o-product is associative with unit id := (1,0) where 1 and O are the identity and zero
operators in B(H).

Proof. Let © = (T1,51), y = (T2, 52) and z = (T3, 53). Then

(xoy)oz (Th Ty + S1 52,11 So + 51 T) o (T3, S3)
= (TyTo+ 8182, T Sa+ S1T2) v (T3,53), (Ty Ty + S1 .82, Ty Sa + S1T2) A (T3, S3))
= ((T' Ty + Sy S2) T + (T1 Sa + S1 Ty) Ss, (T Ty + Sy S2) S3 + (Th Sa + S1 To) T)
= (I1ToT5+ 518275+ T 5255+ 81 TS5, T1 To S5+ 515253+ Ty SoTs + 51 TeTs)
and
ro(yoz) = (T1,81)0(ToT3+ 5283, T2 S5+ S2T3)

(Th,51) v (T2 T3 4 So S3,T5 Sz + So T3), (T1,81) A (To T5 + So S3, T S3 + S2 T3))
T (Tg T3+ S Sg) + 5 (TQ S3 + 55 T3), T (TQ S3 + 55 T3) + 5 (Tg T3+ So Sg))
T1T2T3+T15252+SlT253+5152T3,T1T253+T152T3+51T2T3+515253)

~~



Thus

(xoy)oz=wmzo(yoz).

Finally

.Q?Oid:(Tl,Sl)O(l,O):(T11+510,T10+Sl 1) = (T1,51)2$

and

idox = (1,0)0(T1,S1) = (1T1 +051,151+0T1) = (Tl,Sl) =
O

Let the flow ¢:(T,S) := V* (T + S J;) Vi be as in Proposition 1 and let = (71,51) and y = (T3, 52).
Then

de(x) pe(y) = &e(T1,51)9:(T2, S2)

= Vi (Ti+S1J) Vi Vi (Te + S2 i) Vi

= V(T +S1d) (Te+S2Jy) Vi

= Vi (I T+ 81 S+ (T1 So + S1To) Jy) Vs
¢e(T1 T + S1 52,11 So + S113)
¢(z 0 y)

i.e ¢¢ is a homomorphism with respect to the o-product. Since ¢; is the solution of (2.3), (2.4) this
suggests considering flows satisfying quantum stochastic differential equations of the form

(3.4) doe(z) = ¢u(01(x))dt + ¢y (02(x)) dAy + ¢y (05(x)) dAT + ¢y (04(2)) dA,
with

do(x) =x7id+x Aid

where z = (T,S) € B(H) x B(H) and for i = 1,2,3,4, 6; : B(H) x B(H) — B(H) x B(H) are the
”structure maps”. In the case of (2.3), (2.4)

0(T,S) = (THTa+~+"Ty,a*S+Sa++*57)
0:(T,S) = (YS+SB8—"S2+0),y*"T+TL+~"T9)
0(T,S) = (B"S+8y—8"S7,8" T+Ty+6T)

04(T, S) (T+T6+6T6—(254+4S6+6S+6"56))

where

1
= —(H+5L'L)
LW
= I
= W-1

o =2 ™ R
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The general conditions on the 6; in order for ¢; to be an identity preserving o-product homomorphism
are given in the following.

Proposition 2. Let ¢; be the solution of (3.4). Then

() Pe(y) = ¢u(zoy)
¢e(x)" = u(a”)
oi(id) = 1
if and only if the 0; satisfy the structure equations

(3.5) 01(x) oy + 061 (y) + b2(x) o O5(y) f1(zoy)
(3.6) O2(z) oy +x0ba(y) +62(x) 0 Os(y) = Oa(zoy)
(3.7) O3(x) oy +xo03(y) +0s(x) 0 baly) = Os(zoy)
(3.8) 04(z) 0y + x 0 04(y) + 0a(x) 0 O4(y) O4(z 0 y)
and, with * denoting ”adjoint” and x = (11, S1) < «* = (17, S7)
(3.9) 01(z%) = (61(x))"
(3.10) O2(z") = (63(2))"
(3.11) O5(z*) = (02(x))*
(3.12) 04(x) = (Oa(z))"
with
(3.13) 61 (id) = 02(id) = 03(id) = 04(id) = (0,0).
Proof.

Pe(zoy) = ¢e(x) ¢e(y) & dor(x 0 y) = doe(z) di(y) + ¢(x) de(y) + de(x) doe(y) <

d1(01(zoy))dt + ¢(02(z 0 y)) dAs + ¢ (03(x 0 y)) dA:tr + ¢i(0s(z 0 y))dAy =
Ge(01(2)) de(y) dt + G(02(x)) G (y) dAr + ¢r(05(2)) de(y) dA] + (0a(2)) P (y) dAL+
() Pe (01 () dt + du(x) de(02(y)) dAr + D () De(03(y)) dAI + () e (04(y)) dA+

1(02(2)) 6:(03()) dt + 6:(02(x)) d¢(04(y)) dAs + 6¢(0(x)) & (04(y)) dAL + $1(04(2)) 4(0a(y)) dA,

from which collecting the dt, d Ay, dAI and dA; terms on each side, using the homomorphism property and
then equating the coefficients of dt,dA;, dA} and dA; on both sides we obtain (3.5)-(3.8). Similarly

$i(2)" = ¢u(27) & doy(2)" = dpe(x7)

e

Ge(01(2)") dt + ¢4(02(x)") dA] + $1(03(2)*) dA¢ + $1(0a(w)*) dA, =
u(01(x)) dt + ¢o(02(27)) dA; + $1(03(2)) dAT + $i(0a(a)) dA,
and (3.9)-(3.12) follow by equating the coefficients of dt,dA;, dA] and dA, on both sides. Finally
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Pi(id) =1« dgy(id) =0
which by the linear independence of dt and the stochastic differentials implies (3.13).

4. OPTIMAL NOISE COEFFICIENTS

As in [2] and [4], motivated by classical linear system control theory, we think of the self-adjoint operator
H appearing in (2.1) as fixed and we consider the problem of determining the coefficients L and W of
the noise part of the Hamiltonian of the evolution equation (2.1) that minimize the ”evolution perfomance
functional”

T 2 1 * 2 1 2
(4.1) Qs,T(U):/O X Uell” + 7 L LUE["] dt + 5 ||L Uz €]

where T € [0,+00), £ is an arbitrary vector in the exponential domain of H ® I' and X is a bounded
self-adjoint system operator. By the unitarity of U;, Ur,J;, and Jr, (4.1) is the same as the ”Fermion flow
performance functional”

T o Ly 2 1. 2
(42) Ter(LW) = [ GOEE + 1 L)€ dr+ 5lin(E) |

and the ”reflected flow performance functional”

T 2 1 * 2 1 2
(4.3) R&,T(L,W):/O [lire (X)€" + Zlire(L7L) €] dt + Sllrr (L) €]l

We consider the problem of minimizing the functionals Je 7(L, W) and Re v(L, W) over all system oper-
ators L, W where L is bounded and W is unitary. The motivation behind the definition of the performance
functionals (4.1), (4.2) and (4.3) can be found in the following theorem which is the quantum stochastic
analogue of the classical linear regulator theorem.

Theorem 4. Let U = {U; /t > 0} be a process satisfying the quantum stochastic differential equation

(4.4) AUy = (FU; +w)dt + VU dF; + O U, alFtJr + ZUpdN, Uy =1,t€[0,T]
with adjoint

(4.5) AU} = (U} F* +uy)dt+ U U dFtJr + U} ®"dF, + U Z*dAy, Uj =1
where 0 < T < 4o00, the coefficients F, U, ® Z are bounded operators on the system space H and
uy := —I1U; for some positive bounded system operator II. Then the functional
T
(4.6) Qer(u) = / [<U:&XPU € >+ <u & up & >]dt— <up&,Uré >
0

where X is a system space observable, identified with its ampliation X @ I to H® T, is minimized over the
set of feedback control processes of the form uy = —I1 Uy, by choosing I1 to be a bounded, positive, self-adjoint
system operator satisfying
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(4.7) IIF 4 FI+ & e - 112+ X2 = 0
(4.8) MU+ M+ M7 = 0
(4.9) NZ+2z2*U+2*0Z = 0

The minimum value is < &, TIE >. We recognize (4.7) as the algebraic Riccati equation.

Proof. Let

(410) et =< §, Ut*HUtf >
Then
(4.11) db, =< €,d(U; TLU,) € >=< &, (dU; LU, + U; dU, + dU; ILdU,) € >

which, after replacing dU; and dU;* by (4.4) and (4.5) respectively, and using (1.1), (1.2) and the Ito table,
becomes

(4.12) doy =< U (F*TII+TTF +9* T ®)dt + (* I+ 1P + P* 11 Z) J; dA;
(VI + 11 + Z*11D) J; dA] + (Z* T+ 11 Z + Z* 1 Z) dA) U € >
+ <& (uf U + U Hug) dt € >
and by (4.7)-(4.9)

(4.13) dy =< &, U (M2 — X Updt € >+ < & (uf MUy + U Muy) dt € >
By (4.10)
(4.14) Or — 00 =< & UFTIIUT € > — < & T1E >

while by (4.13)

(4.15) Or — 00 = [i (<&EUF (U2 = XU & > + < &, (uf LU, + Uy Tuy) € >) dt
By (4.14) and (4.15)

(4.16) <&UNUrE > — <& 1€ >=
foT(< U (I = X2) Ui € > + < &, (uf MU, + Uy M) € >) dt
Thus
(4.17) Q&T(U) = (< EURNIUrE > — < ¢, 11¢ >) + Qg,T(u)

—(<&UIUPE > — < IE>)

Replacing the first parenthesis on the right hand side of (4.17) by (4.16), and Q¢ 7(u) by (4.6) we obtain
after cancellations

(418) Qg,T(’U/) = fOT << f, (Ut* H2 Ut +’U/:HUt + Ut*HUt +U: ’U,t>f > dt+ < §,H£ >
= [ (e + U €2 dt+ < €11 >
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which is clearly minimized by u; = —IIU; and the minimum is < &,I1& >.
O

Theorem 5. Let X be a bounded self-adjoint system operator such that the pair (i H, X ) is stabilizable i.e
there exists a bounded system operator K such that i H + KX is the generator of an asymptotically stable
semigroup. Then, the quadratic performance functionals (4.2) and (4.3) associated with the Fermion flow
{§+(X) :=Ur XUy /t > 0} and the reflected flow {ry(X) := ji1(X Ji) /t > 0}, where U = {U; /t > 0} is the
solution of (2.1), are minimized by

(4.19) L=+212W,
and
(4.20) W =W,

where 11 is a positive self-adjoint solution of the “algebraic Riccati equation”

(4.21) i[H, 1+ 1%+ X%2=0

and Wy, Wy are bounded unitary system operators commuting with I1. It is known (see [16]) that if the
pair (i H, X ) is stabilizable, then (4.21) has a positive self-adjoint solution II. Moreover

(422) minL,W J&T(L, W) = minL7W R&T(L, W) =< & I0E >
independently of T.

Proof. Looking at (2.1) as (4.4) with u, = —3L* LU, F = —iH, ¥ = —L*W, & = L, and Z = W — 1,
(4.6) is identical to (4.1). Moreover, equations (4.7)-(4.9) become

(4.23) i[H, )+ L*IL -T2+ X%2=0
(4.24) LTI-OL*W+L*IT(W-1)=0
(4.25) W*—1I+IO(W—-1)+(W*=1)II(W-1)=0

By the self-adjointness of II, (4.24) implies that

(4.26) [L,II) =[L*1I] =0
while (4.25) implies that

(4.27) W, II] = [W*,1I] =0
i.e (4.20). By (4.24) and the fact that in this case

(4.28) M=1L*LiecLl*[ =21
equation (4.23) implies (4.21). Equations (4.26) and (4.28) also imply that

(4.29) [L,L*] =0
which implies (4.19). O
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