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Class of Subject: Primary 81S25 ; Secondary 93E20 August 21, 2005
Abstract. We consider the problem of determining the noise coefficients of the Hamiltonian associated

with a Fermion flow so as to minimize a naturally associated quadratic performance functional. This extends
the results of [4] obtained for Boson flows to Fermion flows. We also provide a general formulation of Fermion
flows.

1. Quantum Stochastic Calculus

The Boson Fock space Γ := Γ(L2(R+,C)) over L2(R+,C) is the Hilbert space completion of the linear
span of the exponential vectors ψ(f) under the inner product

< ψ(f), ψ(g) >:= e<f,g>

where f, g ∈ L2(R+,C) and < f, g >=
∫ +∞
0

f̄(s) g(s) ds where, here and in what follows, z̄ denotes the
complex conjugate of z ∈ C. .

The annihilation, creation and conservation operator processes At, A
†
t and Λt respectively, are defined on

the exponential vectors ψ(g) of Γ by

Atψ(g) :=

∫ t

0

g(s) ds ψ(g)

A†tψ(g) :=
∂

∂ε
|ε=0 ψ(g + εχ[0,t])

Λtψ(g) :=
∂

∂ε
|ε=0 ψ(eεχ[0,t])g)

The basic quantum stochastic differentials dAt, dA
†
t , and dΛt are defined by

dAt := At+dt −At
dA†t := A†t+dt −A

†
t

dΛt := Λt+dt − Λt

Hudson and Parthasarathy defined in [13] stochastic integration with respect to the noise differentials

dAt, dA
†
t and dΛt and obtained the Itô multiplication table

· dA†t dΛt dAt dt

dA†t 0 0 0 0

dΛt dA†t dΛt 0 0
dAt dt dAt 0 0
dt 0 0 0 0

We couple Γ with a ”system” Hilbert space H and consider processes defined on H⊗Γ. The fundamental
theorems of the Hudson-Parthasarathy quantum stochastic calculus give formulas for expressing the matrix
elements of quantum stochastic integrals in terms of ordinary Riemann-Lebesgue integrals.

Theorem 1. Let

M(t) :=

∫ t

0

E(s) dΛs + F (s) dAs +G(s) dA†s +H(s) ds
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where E, F , G, H are (in general) time dependent adapted processes. Let also u⊗ ψ(f) and u⊗ ψ(g) be
in the ”exponential domain” of H⊗ Γ. Then{

< u⊗ ψ(f),M(t)u⊗ ψ(g) >=∫ t
0
< u⊗ ψ(f),

(
f̄(s) g(s)E(s) + g(s)F (s) + f̄(s)G(s) +H(s)

)
u⊗ ψ(g) > d

Proof. See Theorem 4.1 of [13].
�

Theorem 2. Let

M(t) :=
∫ t
0
E(s) dΛs + F (s) dAs +G(s) dA†s +H(s) ds

and

M ′(t) :=
∫ t
0
E′(s) dΛs + F ′(s) dAs +G′(s) dA†s +H ′(s) ds

where E, F , G, H, E′, F ′, G′, H ′ are (in general) time dependent adapted processes. Let also u⊗ ψ(f)
and u⊗ ψ(g) be in the exponential domain of H⊗ Γ. Then

< M(t)u⊗ ψ(f),M ′(t)u⊗ ψ(g) >=∫ t
0
{< M(s)u⊗ ψ(f),

(
f̄(s) g(s)E′(s) + g(s)F ′(s) + f̄(s)G′(s) +H ′(s)

)
u⊗ ψ(g) >

+ < (ḡ(s) f(s)E(s) + f(s)F (s) + ḡ(s)G(s) +H(s))u⊗ ψ(f),M ′(s)u⊗ ψ(g) >

+ < (f(s)E(s) +G(s))u⊗ ψ(f), (g(s)E′(s) +G′(s))u⊗ ψ(g) >} ds

Proof. See Theorem 4.3 of [13].
�

The connection between classical and quantum stochastic analysis is given in the following:

Theorem 3. The processes B = {Bt / t ≥ 0} and P = {Pt / t ≥ 0} defined by

Bt := At +A†t

and

Pt := Λt +
√
λ (At +A†t) + λ t

are identified with Brownian motion and Poisson process of intensity λ respectively, in the sense that their
vacuum characteristic functionals are given by

< ψ(0), ei sBt ψ(0) >= e−
s2

2 t

and

< ψ(0), ei s Pt ψ(0) >= eλ (ei s−1) t.

Proof. See Theorem 5 of [11]. �
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The processes At, A
†
t satisfy the Boson Commutation Relations[

At, A
†
t

]
:= AtA

†
t −A

†
t At = t I

In [14] Hudson and Parthasarathy showed that the processes Ft and F †t defined on the Boson Fock space
by

Ft :=

∫ t

0

Js dAs

F †t :=

∫ t

0

Js dA
†
s

satisfy the Fermion anti-commutation relations

{Ft, F †t } := Ft F
†
t + F †t Ft = t I

It follows that

dFt = Jt dAt(1.1)

dF †t = Jt dA
†
t(1.2)

Here Jt is the self-adjoint, unitary-valued, adapted, so called ”reflection” process, acting on the noise part
of the Fock space and extended as the identity on the system part, defined by

Jt := γ(−P[0,t] + P(t,+∞)

where PS denotes the multiplication operator by χS and γ is the second quantization operator defined by

γ(U)ψ(f) := ψ(U f)

The reflection process Jt commutes with system space operators and satisfies the differential equation (cf.
Lemma 3.1 of [14])

dJt = −2 Jt dΛt(1.3)

J0 = 1.

2. Fermion Evolutions and Flows

As shown in [14], Fermion unitary evolution equations have the form

dUt = −
((

iH +
1

2
L∗L

)
dt+ L∗W dFt − LdF †t + (1−W ) dΛt

)
Ut(2.1)

U0 = 1

with adjoint

dU∗t = −U∗t ((−iH +
1

2
L∗L) dt− L∗dFt +W ∗ LdF †t + (1−W ∗) dΛt)(2.2)

U∗0 = 1
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where, for each t ≥ 0, Ut is a unitary operator defined on the tensor product H ⊗ Γ(L2(R+,C)) of the
system Hilbert space H and the noise Fock space Γ. Here H, L, W are in B(H), the space of bounded linear
operators on H, with W unitary and H self-adjoint. We identify time-independent, bounded, system space
operators X with their ampliation X ⊗ 1 to H⊗ Γ(L2(R+,C)).

Proposition 1. Let

φt(T, S) := V ∗t (T + S Jt)Vt

where T, S are bounded system space operators and Vt, V
∗
t satisfy the quantum stochastic differential equa-

tions

dVt =
(
αdt+ β dFt + γ dF †t + δ dΛt

)
Vt =

(
αdt+ β Jt dAt + γ Jt dA

†
t + δ dΛt

)
Vt

and

dV ∗t = V ∗t

(
α∗ dt+ β∗ dF †t + γ∗ dFt + δ∗ dΛt

)
= V ∗t

(
α∗ dt+ β∗ Jt dA

†
t + γ∗ Jt dAt + δ∗ dΛt

)
where α, β, γ, δ are bounded system space operators. Then

dφt(T, S) = φt(α
∗ T + T α+ γ∗ T γ, α∗ S + S α+ γ∗ S γ) dt(2.3)

+ φt(γ
∗ S + S β − γ∗ S (2 + δ), γ∗ T + T β + γ∗ T δ) dAt

+ φt(β
∗ S + S γ − δ∗ S γ, β∗ T + T γ + δ∗ T γ) dA†t

+ φt(δ
∗ T + T δ + δ∗ T δ,−(2S + S δ + δ∗ S + δ∗ S δ)) dΛt

with

φ0(T, S) = T + S(2.4)

Proof. Making use of the algebraic rule

d(x y) = dx y + x dy + dx dy

we find

dφt(T, S) = dV ∗t (T + S Jt)Vt + V ∗t d((T + S Jt)Vt) + dV ∗t d((T + S Jt)Vt)

= dV ∗t (T + S Jt)Vt + V ∗t T dVt + V ∗t S d(Jt Vt) + dV ∗t T dVt + dV ∗t S d(Jt Vt).

But, by (1.3), the Itô table for the Boson stochastic differentials and the fact that J2
t = 1

d(Jt Vt) = dJt Vt + Jt dVt + dJt dVt

= −2 Jt dΛt Vt + Jt

(
αdt+ β Jt dAt + γ Jt dA

†
t + δ dΛt

)
Vt

− 2 Jt dΛt

(
αdt+ β Jt dAt + γ Jt dA

†
t + δ dΛt

)
Vt

=
(
αJt dt+ β dAt − γ dA†t − (2 + δ) Jt dΛt

)
Vt

Thus
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dφt(T, S) = V ∗t

(
α∗ dt+ β∗ Jt dA

†
t + γ∗ Jt dAt + δ∗ dΛt

)
(T + S Jt)Vt

+ V ∗t T
(
αdt+ β Jt dAt + γ Jt dA

†
t + δ dΛt

)
Vt

+ V ∗t S
(
αJt dt+ β dAt − γ dA†t − (2 + δ) Jt dΛt

)
Vt

+ V ∗t

(
α∗ dt+ β∗ Jt dA

†
t + γ∗ Jt dAt + δ∗ dΛt

)
T
(
αdt+ β Jt dAt + γ Jt dA

†
t + δ dΛt

)
Vt

+ V ∗t

(
α∗ dt+ β∗ Jt dA

†
t + γ∗ Jt dAt + δ∗ dΛt

)
S
(
αJt dt+ β dAt − γ dA†t − (2 + δ) Jt dΛt

)
Vt

= φt(α
∗ T + T α+ γ∗ T γ, α∗ S + S α+ γ∗ S γ) dt+ φt(γ

∗ S + S β − γ∗ S (2 + δ), γ∗ T + T β + γ∗ T δ) dAt

+ φt(β
∗ S + S γ − δ∗ S γ, β∗ T + T γ + δ∗ T γ) dA†t + φt(δ

∗ T + T δ + δ∗ T δ,−(2S + S δ + δ∗ S + δ∗ S δ)) dΛt

�

With the processes Ut and U∗t of (2.1) and (2.2) we associate the Fermion flow

jt(X) := U∗t X Ut = φ(X, 0)(2.5)

and the reflected flow

rt(X) := jt(X Jt) = φ(0, X)(2.6)

where X is a bounded system space operator.

Corollary 1. The Fermion flow jt(X) and the reflected flow rt(X) defined in (2.5) and (2.6) satisfy the
system of quantum stochastic differential equations

djt(X) = jt

(
i [H,X]− 1

2
(L∗LX +XL∗L− 2L∗XL)

)
dt(2.7)

+ rt ([L∗, X] W ) dAt + rt (W ∗ [X,L]) dA†t + jt (W ∗XW −X) dΛt

and

drt(X) = rt

(
i [H,X]− 1

2
(L∗LX +XL∗L− 2L∗XL)

)
dt(2.8)

− jt ({L∗, X}W ) dAt − jt (W ∗{X,L} − 2X L) dA†t − rt (W ∗XW +X) dΛt

with

j0(X) = r0(X) = X.

Here, as usual, [x, y] := x y − y x and {x, y} := x y + y x.

Proof. We replace Vt and V ∗t in Proposition 1 by Ut and U∗t . Then, equation (2.7) is a special case of (2.3)
for T = X, S = 0 and
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α = −(iH +
1

2
L∗L)

β = −L∗W
γ = L

δ = W − 1

while equation (2.8) is a special case of (2.3) for T = 0, S = X and α, β, γ, δ as above.
�

3. Generalized Fermion Flows

Fermion flows can be formulated and studied in a manner similar to Boson (also called Evans-Hudson)
flows (cf. [12] and [15]). Let B(H) denote the space of bounded system operators. We define B(H)-valued
operations 5 and 4 on B(H)× B(H) by

(T1, S1)5 (T2, S2) : = T1 T2 + S1 S2(3.1)

(T1, S1)4 (T2, S2) : = T1 S2 + S1 T2(3.2)

Notice that if

ρ(x, y) := (y, x)

is the reflection map, then

(T1, S1)4 (T2, S2) = (T1, S1)5 ρ(T2, S2).

We also define the B(H)× B(H)-valued product map ◦ on (B(H)× B(H))
2

by

x ◦ y := (x5 y, x4 y) = (T1 T2 + S1 S2, T1 S2 + S1 T2)(3.3)

where x = (T1, S1) and y = (T2, S2).

Lemma 1. The ◦-product is associative with unit id := (1, 0) where 1 and 0 are the identity and zero
operators in B(H).

Proof. Let x = (T1, S1), y = (T2, S2) and z = (T3, S3). Then

(x ◦ y) ◦ z = (T1 T2 + S1 S2, T1 S2 + S1 T2) ◦ (T3, S3)

= ((T1 T2 + S1 S2, T1 S2 + S1 T2)5 (T3, S3), (T1 T2 + S1 S2, T1 S2 + S1 T2)4 (T3, S3))

= ((T1 T2 + S1 S2)T3 + (T1 S2 + S1 T2)S3, (T1 T2 + S1 S2)S3 + (T1 S2 + S1 T2)T3)

= (T1 T2 T3 + S1 S2 T3 + T1 S2 S3 + S1 T2 S3, T1 T2 S3 + S1 S2 S3 + T1 S2 T3 + S1 T2 T3)

and

x ◦ (y ◦ z) = (T1, S1) ◦ (T2 T3 + S2 S3, T2 S3 + S2 T3)

= ((T1, S1)5 (T2 T3 + S2 S3, T2 S3 + S2 T3), (T1, S1)4 (T2 T3 + S2 S3, T2 S3 + S2 T3))

= (T1 (T2 T3 + S2 S3) + S1 (T2 S3 + S2 T3), T1 (T2 S3 + S2 T3) + S1 (T2 T3 + S2 S3))

= (T1 T2 T3 + T1 S2 S2 + S1 T2 S3 + S1 S2 T3, T1 T2 S3 + T1 S2 T3 + S1 T2 T3 + S1 S2 S3)
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Thus

(x ◦ y) ◦ z = x ◦ (y ◦ z).
Finally

x ◦ id = (T1, S1) ◦ (1, 0) = (T1 1 + S1 0, T1 0 + S1 1) = (T1, S1) = x

and

id ◦ x = (1, 0) ◦ (T1, S1) = (1T1 + 0S1, 1S1 + 0T1) = (T1, S1) = x

�

Let the flow φt(T, S) := V ∗t (T + S Jt)Vt be as in Proposition 1 and let x = (T1, S1) and y = (T2, S2).
Then

φt(x)φt(y) = φt(T1, S1)φt(T2, S2)

= V ∗t (T1 + S1 Jt)Vt V
∗
t (T2 + S2 Jt)Vt

= V ∗t (T1 + S1 Jt) (T2 + S2 Jt)Vt

= V ∗t (T1 T2 + S1 S2 + (T1 S2 + S1 T2) Jt)Vt

= φt(T1 T2 + S1 S2, T1 S2 + S1 T2)

= φt(x ◦ y)

i.e φt is a homomorphism with respect to the ◦-product. Since φt is the solution of (2.3), (2.4) this
suggests considering flows satisfying quantum stochastic differential equations of the form

dφt(x) = φt(θ1(x)) dt+ φt(θ2(x)) dAt + φt(θ3(x)) dA†t + φt(θ4(x)) dΛt(3.4)

with

φ0(x) = x5 id+ x4 id

where x = (T, S) ∈ B(H) × B(H) and for i = 1, 2, 3, 4, θi : B(H) × B(H) −→ B(H) × B(H) are the
”structure maps”. In the case of (2.3), (2.4)

θ1(T, S) = (α∗ T + T α+ γ∗ T γ, α∗ S + S α+ γ∗ S γ)

θ2(T, S) = (γ∗ S + S β − γ∗ S (2 + δ), γ∗ T + T β + γ∗ T δ)

θ3(T, S) = (β∗ S + S γ − δ∗ S γ, β∗ T + T γ + δ∗ T γ)

θ4(T, S) = (δ∗ T + T δ + δ∗ T δ,−(2S + S δ + δ∗ S + δ∗ S δ))

where

α = −(iH +
1

2
L∗L)

β = −L∗W
γ = L

δ = W − 1
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The general conditions on the θi in order for φt to be an identity preserving ◦-product homomorphism
are given in the following.

Proposition 2. Let φt be the solution of (3.4). Then

φt(x)φt(y) = φt(x ◦ y)

φt(x)∗ = φt(x
∗)

φt(id) = 1

if and only if the θi satisfy the structure equations

θ1(x) ◦ y + x ◦ θ1(y) + θ2(x) ◦ θ3(y) = θ1(x ◦ y)(3.5)

θ2(x) ◦ y + x ◦ θ2(y) + θ2(x) ◦ θ4(y) = θ2(x ◦ y)(3.6)

θ3(x) ◦ y + x ◦ θ3(y) + θ3(x) ◦ θ4(y) = θ3(x ◦ y)(3.7)

θ4(x) ◦ y + x ◦ θ4(y) + θ4(x) ◦ θ4(y) = θ4(x ◦ y)(3.8)

and, with ∗ denoting ”adjoint” and x = (T1, S1)⇔ x∗ = (T ∗1 , S
∗
1 ),

θ1(x∗) = (θ1(x))∗(3.9)

θ2(x∗) = (θ3(x))∗(3.10)

θ3(x∗) = (θ2(x))∗(3.11)

θ4(x∗) = (θ4(x))∗(3.12)

with

θ1(id) = θ2(id) = θ3(id) = θ4(id) = (0, 0).(3.13)

Proof.

φt(x ◦ y) = φt(x)φt(y)⇔ dφt(x ◦ y) = dφt(x)φt(y) + φt(x) dφt(y) + dφt(x) dφt(y)⇔

φt(θ1(x ◦ y)) dt+ φt(θ2(x ◦ y)) dAt + φt(θ3(x ◦ y)) dA†t + φt(θ4(x ◦ y)) dΛt =

φt(θ1(x))φt(y) dt+ φt(θ2(x))φt(y) dAt + φt(θ3(x))φt(y) dA†t + φt(θ4(x))φt(y) dΛt+

φt(x)φt(θ1(y)) dt+ φt(x)φt(θ2(y)) dAt + φt(x)φt(θ3(y)) dA†t + φt(x)φt(θ4(y)) dΛt+

φt(θ2(x))φt(θ3(y)) dt+ φt(θ2(x))φt(θ4(y)) dAt + φt(θ3(x))φt(θ4(y)) dA†t + φt(θ4(x))φt(θ4(y)) dΛt

from which collecting the dt, dAt, dA
†
t and dΛt terms on each side, using the homomorphism property and

then equating the coefficients of dt, dAt, dA
†
t and dΛt on both sides we obtain (3.5)-(3.8). Similarly

φt(x)∗ = φt(x
∗)⇔ dφt(x)∗ = dφt(x

∗)

i.e

φt(θ1(x)∗) dt+ φt(θ2(x)∗) dA†t + φt(θ3(x)∗) dAt + φt(θ4(x)∗) dΛt =

φt(θ1(x∗)) dt+ φt(θ2(x∗)) dAt + φt(θ3(x∗)) dA†t + φt(θ4(x∗)) dΛt

and (3.9)-(3.12) follow by equating the coefficients of dt, dAt, dA
†
t and dΛt on both sides. Finally
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φt(id) = 1⇔ dφt(id) = 0

which by the linear independence of dt and the stochastic differentials implies (3.13).
�

.

4. Optimal Noise Coefficients

As in [2] and [4], motivated by classical linear system control theory, we think of the self-adjoint operator
H appearing in (2.1) as fixed and we consider the problem of determining the coefficients L and W of
the noise part of the Hamiltonian of the evolution equation (2.1) that minimize the ”evolution perfomance
functional”

Qξ,T (u) =

∫ T

0

[‖X Ut ξ‖2 +
1

4
‖L∗ LUt ξ‖2] dt+

1

2
‖LUT ξ‖2(4.1)

where T ∈ [0,+∞), ξ is an arbitrary vector in the exponential domain of H ⊗ Γ and X is a bounded
self-adjoint system operator. By the unitarity of Ut, UT ,Jt, and JT , (4.1) is the same as the ”Fermion flow
performance functional”

(4.2) Jξ,T (L,W ) =

∫ T

0

[ ‖jt(X) ξ‖2 +
1

4
‖jt(L∗L) ξ‖2 ] dt+

1

2
‖jT (L) ξ‖2

and the ”reflected flow performance functional”

(4.3) Rξ,T (L,W ) =

∫ T

0

[ ‖rt(X) ξ‖2 +
1

4
‖rt(L∗L) ξ‖2 ] dt+

1

2
‖rT (L) ξ‖2

We consider the problem of minimizing the functionals Jξ,T (L,W ) and Rξ,T (L,W ) over all system oper-
ators L,W where L is bounded and W is unitary. The motivation behind the definition of the performance
functionals (4.1), (4.2) and (4.3) can be found in the following theorem which is the quantum stochastic
analogue of the classical linear regulator theorem.

Theorem 4. Let U = {Ut / t ≥ 0} be a process satisfying the quantum stochastic differential equation

(4.4) dUt = (F Ut + ut) dt+ ΨUt dFt + ΦUt dF
†
t + Z Ut dΛt, U0 = 1, t ∈ [0, T ]

with adjoint

(4.5) dU∗t = (U∗t F
∗ + u∗t ) dt+ U∗t Ψ∗ dF †t + U∗t Φ∗dFt + U∗t Z

∗ dΛt, U
∗
0 = 1

where 0 < T < +∞, the coefficients F, Ψ, Φ, Z are bounded operators on the system space H and
ut := −ΠUt for some positive bounded system operator Π. Then the functional

Qξ,T (u) =

∫ T

0

[< Ut ξ,X
2 Ut ξ > + < ut ξ, ut ξ >] dt− < uT ξ, UT ξ >(4.6)

where X is a system space observable, identified with its ampliation X⊗ I to H⊗Γ, is minimized over the
set of feedback control processes of the form ut = −ΠUt, by choosing Π to be a bounded, positive, self-adjoint
system operator satisfying
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ΠF + F ∗Π + Φ∗ΠΦ−Π2 +X2 = 0(4.7)

Π Ψ + Φ∗Π + Φ∗ΠZ = 0(4.8)

ΠZ + Z∗Π + Z∗ΠZ = 0(4.9)

The minimum value is < ξ,Πξ >. We recognize (4.7) as the algebraic Riccati equation.

Proof. Let

θt =< ξ,U∗t ΠUt ξ >(4.10)

Then

dθt =< ξ, d(U∗t ΠUt) ξ >=< ξ, (dU∗t ΠUt + U∗t Π dUt + dU∗t Π dUt) ξ >(4.11)

which, after replacing dUt and dU∗t by (4.4) and (4.5) respectively, and using (1.1), (1.2) and the Itô table,
becomes

dθt =< ξ,U∗t ((F ∗Π + ΠF + Φ∗Π Φ) dt+ (Φ∗Π + Π Ψ + Φ∗ΠZ) Jt dAt(4.12)

+(Ψ Π∗ + Π Φ + Z∗Π Φ)Jt dA
†
t + (Z∗Π + ΠZ + Z∗ΠZ) dΛt)Ut ξ >

+ < ξ, (u∗t ΠUt + U∗t Πut) dt ξ >

and by (4.7)-(4.9)

dθt =< ξ,U∗t (Π2 −X2)Ut dt ξ > + < ξ, (u∗t ΠUt + U∗t Πut) dt ξ >(4.13)

By (4.10)

θT − θ0 =< ξ,U∗T ΠUT ξ > − < ξ,Π ξ >(4.14)

while by (4.13)

θT − θ0 =
∫ T
0

(< ξ,U∗t (Π2 −X2)Ut ξ > + < ξ, (u∗t ΠUt + U∗t Πut) ξ >) dt(4.15)

By (4.14) and (4.15)

< ξ,U∗T ΠUT ξ > − < ξ,Π ξ >=(4.16) ∫ T
0

(< ξ,U∗t (Π2 −X2)Ut ξ > + < ξ, (u∗t ΠUt + U∗t Πut) ξ >) dt

Thus

Qξ,T (u) = (< ξ,U∗T ΠUT ξ > − < ξ,Π ξ >) +Qξ,T (u)(4.17)

−(< ξ,U∗T ΠUT ξ > − < ξ,Π ξ >)

Replacing the first parenthesis on the right hand side of (4.17) by (4.16), and Qξ,T (u) by (4.6) we obtain
after cancellations

Qξ,T (u) =
∫ T
0

(< ξ, (U∗t Π2 Ut + u∗t ΠUt + U∗t Πut + u∗t ut) ξ > dt+ < ξ,Π ξ >(4.18)

=
∫ T
0
||(ut + ΠUt) ξ||2 dt+ < ξ,Π ξ >
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which is clearly minimized by ut = −ΠUt and the minimum is < ξ,Π ξ >.
�

Theorem 5. Let X be a bounded self-adjoint system operator such that the pair (iH, X) is stabilizable i.e
there exists a bounded system operator K such that iH + KX is the generator of an asymptotically stable
semigroup. Then, the quadratic performance functionals (4.2) and (4.3) associated with the Fermion flow
{jt(X) := U∗t X Ut / t ≥ 0} and the reflected flow {rt(X) := jt(X Jt) / t ≥ 0}, where U = {Ut / t ≥ 0} is the
solution of (2.1), are minimized by

L =
√

2 Π1/2W1(4.19)

and

W = W2(4.20)

where Π is a positive self-adjoint solution of the “algebraic Riccati equation”

i [H,Π] + Π2 +X2 = 0(4.21)

and W1, W2 are bounded unitary system operators commuting with Π. It is known (see [16]) that if the
pair (iH, X) is stabilizable, then (4.21) has a positive self-adjoint solution Π. Moreover

minL,W Jξ,T (L,W ) = minL,W Rξ,T (L,W ) =< ξ,Π ξ >(4.22)

independently of T .

Proof. Looking at (2.1) as (4.4) with ut = − 1
2 L
∗ LUt, F = −iH, Ψ = −L∗W , Φ = L, and Z = W − 1,

(4.6) is identical to (4.1). Moreover, equations (4.7)-(4.9) become

i [H,Π] + L∗ΠL−Π2 +X2 = 0(4.23)

L∗Π−ΠL∗W + L∗Π (W − 1) = 0(4.24)

(W ∗ − 1) Π + Π (W − 1) + (W ∗ − 1) Π (W − 1) = 0(4.25)

By the self-adjointness of Π, (4.24) implies that

[L,Π] = [L∗,Π] = 0(4.26)

while (4.25) implies that

[W,Π] = [W ∗,Π] = 0(4.27)

i.e (4.20). By (4.24) and the fact that in this case

Π = 1
2 L
∗ L i.e L∗ L = 2 Π(4.28)

equation (4.23) implies (4.21). Equations (4.26) and (4.28) also imply that

(4.29) [L,L∗] = 0

which implies (4.19). �
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