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Abstract

The entropic criterion of entanglement is applied to prove that en-
tangled Markov chain with unitarily implementable transition operator is
indeed an entangled state on infinite multiple algebras.

1 Introduction and Preliminaries

Accardi and Fidaleo [2] proposed a construction to relate, based on classical
Markov chain with discrete state space, to a quantum Markov chain (in the
sense of [1]) on infinite tensor products of type I factors. They called entangled
Markov chain (EMC) the special class of quantum Markov chains obtained in
this way.

Using the PPT entanglement criterion [13, 8] (positivity of the partial trans-
pose of the density matrix) Miyadera showed [9] that the finite volume restric-
tion of a class of EMC on infinite tensor products of 2 x 2 matrix algebras is
entangled.

In our previous paper [3], using the entropic type of entanglement criterion
for pure states [11, 3|, which is based on the notion of degree of entanglement,
we proved that the vector states defining the EMC’s on infinite tensor products
of d x d matrix algebras (d € N) "generically" are entangled (see Definition (3)
below).

Our result did not include Miyadear’s one because, by restricting an EMC
to some local algebra, one obtains a mixed state to which the above criterion
for a pure state is not applicable. However our entanglement criterion gives the
sufficient condition for entanglement in the case of mixtures (for pure states this
condition is necessary and sufficient) [4]. Moreover our entanglement criterion,
being based on a numerical inequality, is in many cases easier to verify than the
positivity condition required by the PPT criterion.



In this note we will show some results obtained in [4] with proof for the
reader’s convenience. Our entanglement condition is applied to the restriction
of EMC’s, generated by a unitarily implementable d x d stochastic matrix, to
algebras localized which is obtained as a mixed state. This allows to prove that
the above EMC induce an entangled state on infinite tensor products of d x d
matrix algebras for any d € N.

We consider a classical Markov chain (S, ) with state space S = {1,2,--- ,d},
initial distribution p = (p;) and transition probability matrix P = (p;;)
pij 20 ; Zpij =1
J

Let {e;},4 be an orthonormal basis (ONB) of C!SI. For a fixed vector e in
this basis, denote

Hy = §(50)C|5| (1)

the infinite tensor product of N-copies of the Hilbert space C!°! with respect to
the constant sequence (ep). An orthonormal basis of Hy is given by the vectors

Iejo’ Tt ejn> = (®°‘E[O’ 'n,]eja) ® (®O‘€[0’ n]ceo) :

For any Hilbert space 7 we denote H* its dual and £ € H +— £* € H* the
canonical embedding. Thus, if £ € H is a unit vector, ££* denotes the projection
onto the subspace generated by £.

Let M, denote the algebra of complex d x d matrices and let A := QnMy =
Mg Q® Mg ® --- be the C*—~infinite tensor product of N—copies of M.
An element A € A (observable) will be said to be localized in a finite region
A C N if there exists an operator Ay € @M, such that
Ap = ZA ® 1ac
In the following we will identify Ay = Aj and we denote A the local algebra
at A. Let ./p; (tesp. ./Ps;; ) be any complex square root of p; (resp. pi; ) (i.e.
|\/f);|2 = p,(resp. l\[ijlz = p,;)) and define the vector
n—1 )
Vo= Y Pi I VPiadars [€Gos " 1 €5n) (2)
jO,"' ’ jn
Although the limit lim ¥,, will not exist, the basic property of ¥, is the
— 00
following [2].

Proposition 1 There erists a unigue quantum Markov chain v on A such that,
for every k € N and for every A € A, x), one has

<‘Ifk+1, A\Dk+1> = nl-l—{r;o (‘Pn, A\I’n> =i ’¢’ (A) (3)

Moreover v is stationary if and only if the associated classical Markov chain
{p:= (p;) , P = (pi;)} is stationary, i.e.

S pipii=p; i Vi (4)
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2 Notions of entanglement and degree of entan-
glement

Definition 2 Let A4; (j € {1,2,--- ,n}) with n < co be C*-algebras and let A

=_(%>1Aj be a tensor product of C*-algebras. A state w € S ( 2 Aj) is called
J= =1

separable if

J

w € Con'v{_t%le ; wi € S(A;),7€{1,2,--- ,n}}
J=

where Conv denotes norm closure of the convexr hull.
A nonseparable state is called entangled.

Notice that the notion of separability may depend on the choice of the tensor
product of C*-algebras. Unless otherwise specified, one realizes the C*-algebras
on Hilbert spaces and one considers the induced tensor product. In any case a
separable pure state must be a product of pure states.

Definition 3 [3/ In the notations of Definition (2) a state w € S (A) is called
2-separable if

w € Conv {wk] ®w(k D W eS (.Ak]) y Wk € S (.A(k) , Vk € {1,2,-- . ,TL}}

where A = .Ak] ® .A(k = A[l,k] =Y A(k,n].
A non-2-separable state is called 2—-entangled.

Remark Notice that, for n = 2, 2—entanglement is equivalent to usual
entanglement. For n > 2, 2—entanglement is a strictly stronger property than
usual entanglement.

Definition 4 Let ‘H,, Ho be separable Hilbert spaces and let 6 be density ma-
trices in B (H;, ® Hz) with its marginal densities denoted by p and o in B(H1),
B (Hz) respectively.

The quasi mutual entropy of p and o w.r.t 6 is defined by [10]

Iy (p,0) =tr6 (logh — log p ® o) (5)
The degree of entanglement of 6, denoted by Dgy (6), is defined by [11]

1
Dgy (6) = 5{5(p) + 5 ()} = Io (p, 0) (6)
where S () ts the von-Neumann entropy.

In the following we identify normal states on B(H) (H some separable
Hilbert space) with their density matrices and, if 8 is such a state, we will
use indifferently the notations

f(z) = tr(bx) ; x € B(H) (7



Recalling that, for density operators 6, § in B (H), the relative entropy of §
with respect to 8 is defined by:

R (6|6) := tr6 (log 8 — log b) (8)

(see [5, 12] for a more general discussion) we see that Iy (p,c) is the relative
entropy of the tensor product of its marginal densities with respect to @ itself.
Since it is known that the relative entropy is a kind of distance between states,
it is clear why the degree of entanglement of 8 by (6) is a measure of how far
0 is from being a product state. Moreover we see also that Dgn is a kind
of symmetrized quantum conditional entropy. In the classical case the condi-
tional entropy always takes non-negative value, however our new criterion can
be negative according to the strength of quantum correlation between p and o

[4].

Theorem 5 A necessary condition for a (normal) state @ on B(H; @ Hs) to
be separable is that
Dgpy (0) 20 9)

Equivalently: a sufficient condition for 0 to be entangled is that
Dgn (9) < 0. (10)

Proof. Let 0 be a state on B(H1 ® Hz). If 8 is separable, there exist density
matrices p,, 0 respectively in B(H1), B (Hz2) such that

6= anpn ® R
n

with
P20,V > pn=1

Let {zn} be an ONB in H; and define the completely positive unital (CP1) map
Ao . B(Hl) — B(Hl) by

Ao (A) =) tr(Ap,)znz;, ; A€ B(Hi) (11)

Then its dual is

A5 (8) = (n,bzn)p, ; b€ B(H), (12)

so that defining the CP1 map
A=Ag®id : B(H1®H2) — B(H1®H2)

and the density matriz
6y := anmnw;'; R 0on
n
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one easily verifies that
A" (0;) =0

Moreover, denoting

P= Pupn and o= pao,
n n

the marginal densities of 6 and py = 3 pn, |Tn) {Tn| the first marginal density of
| n

84, one has:
A (pg®0)=p®0c

Recall now that the monotonicity property of the relative entropy (see [12] for
proof and history) that for any pair of von Neumann algebras M, MO, for any
normal CP1 map A : M — MO and for any pair of normal states wo, Pg on
MO one has

R (A*(wo)|A™(#0)) < R (woleg) (13)
Using this property one finds:

Io (py0) = R(0lp®0) = R(A*(84)|A*(py ® 7)) < R (balpy ® o) = I, (pg, )
so that

S(0) —Io(p,0) 2 S (a) = Ip, (P4, ) = — D pntr(oploga,) >0  (14)
Introducing the density operator

82 =" Pnpn @ yny},
n

where {y,} is an ONB in Haz, and using a variant of the above argument (in
which the density 64 is replaced by 64) one proves the analogue inequality

S(p) = Is (p,0) 2 S (p) — I, (p,04) = = Y _patr(p,logp,) > 0 (15)
Combining (14) and (15) one obtains:

Den (6:,0) = 5 (5(0) = o (1,0)) + (S (0) = Io (p,0))) = (16)

2 % ('_ ant'r’(pn log p,,) — T,Z pntr(on log Un)) 20

n

which is (9). ®

Remark For pure (normal) states @ on B(H; ® H2) condition (10) is also
necessary for entanglement (see [11, 3]).
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3 The localized EMC and its marginal states

We discuss the entanglement of the finite volume restrictions of a class of EMC
on infinite tensor products of d x d matrix algebras. By restricting an EMC
to some local algebra one obtains a mixed state to which our entanglement
criterion Dgy is applicable because of theorem 5. In the following arguments
we will denote u;; = ,/p;; any (fixed) complex square root of p;; so that

2 ..
[uis|“ = pi; ; Vi, j

and we assume that U = (u;;) is a unitary matrix.

Let denote the unitarily implementable EMC state restricted to a finite re-
gion [0, V] by Plo,)> then for every local observable A € A, one has Pl (A4) =
(Uyy1,(A®I)¥,.1). Hence the density operator Plo,v] 18 given by:

POy = M, [Pyt1) (Pori]
v
= Z vpio*vpjo Hu:(xiu.;.lujaja-i-l
";Os""iv+1,j0,"' )jU+1,lll+1 a=0
<elu+1 = > <eiu+1 ’ ely+1> Iejcn tet 7eju) <e‘ioa Tty €4,

v—1
. * . * . .
V p'LO vV pJO uia’ia+1u.7u.7a+l

jo,-n,ju,l,io,---,i., a=0

u:;ulujul lej09 ot ,e:i,,> <6io7 Tt aei,,!

It

= §;,,,. Using

Juvte

From the unitarity of U = (u;;) one has Z up uj,0 = (UU¥)
!

this unitarity one has

v—2
Py = Z Vpio*vpjo Hu;ui,,+1ujaja+1

jOvjl"" 1jv;7.'0)7:1y"' ’iuqk a=0
u:u_lkuju—lk |ej0’ej1 1 €5, 1,6 (k)> <e‘io’ei1’ €5, 160 (k)l
= D preoy) (k) e (k)" (17)
k
where
| v—2

1
elo,V](k) = \/17; . Z Vp.'io(Hujnja-c»l)uju-xk ‘ejoa cr €5, 1€y (k)> .
20,

..,j“_l a=0
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The vectors {ejg, (k)}k are normalized and orthogonal each other. In fact

v—2

2 1
He[o”j] (k)H = —-I: Z pju-{-l H pjuju+1pju~1k
jl-b+11j11"')ju—l C31:!-14']-
1 Pk
= - Pjo_1Pjo1k = — =1,
pkjuz_l Jv—-1FJv—1 Dk

and the orthogonality of {ep . (k)} . is clear because of the orthogonality of
{ev (k)},. We see that the decomposition (17) gives a Schatten decomposition.

Let us consider the marginal states of density Plo, for each p € 0,v—1]
given by
Pu) = TTHGu PO Plu = T Hpo,y Plo.y] (18)
Since, by Proposition (1), the family (P[o,u])v is projective, for each u €
[0, — 1] the restriction of pjg . to the algebra localized on [0, 1] is pyg . This
implies
Pu) =T HG PO = Ploul- (19)
On the other hand the marginal state P(u 1s given by

Plu = TrHp, P00

p—1
*>
= § : Djo Hpjaja+1 U i Windur
9iv—1,k

jOi""jl.l’j‘.&+l""ajl/—l!ip-f-ls“' a=0

v—2
* . 3 * u R
uig"l:a.‘.lujtx.?u-f-l uiu_lk Jv—1k

a=u+1

|eju+1a Tt y€5, 106 (k)> <e1;p.+1’ M2 S -7 (k)l

v—2
— * . * . .
- pnuniu+1un.7yv+l uia ia+lzl‘.7a.7u+l

n;ju—{—l» """ )ju—laiy.'i-ly"'yiu—l,k (2=[.L+1

u;‘,_lkujuulk Ieju-f—l’ s €5,_ 16 (k)> <ei“+1’ Tt a€4, 156 (k)l

= > Pnefun (k) e, (B) (20)
n,k
where

v—2
e?[,L,V] (k) = Z Unguiq ( H ujaja+1> Uj, -1k |eju,+1a Tt 5ej,/_1,eu(k)> .

jp+1y“',ju—l O‘.=[.l.+1

Remark If we put

P(p,v) (n) = Ze?p,u] (k) e?p.,u] (k)* s (21)
k
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then it is shown that (21) can be recognized as an orthogonal decompositions

of a c%ensity operator. In fact we can show the following properties of Plu) (M) .
(i) Orthogonality: ’

<67(1'#’y] <k) ’881.,1/] (l)> = 6k,la

(ii) Density:

2 v—2
e?li,v] (k)“ = Z Pnjuta ( H pjo:ja+1)pju—1k

Ju+1s 3 Jo—1 a=p+2

(pl’—(u+1))

i

nk.

This matrix (P?~(#+1) can be recognized as a transition probability matrix
generated by P = (p;;) (i.e. a classical ergodic Markov chain). This implies

t’l“p(“’u] (TL) = Z (PU—(“—HL)) =1.
k

nk
Let denote €7, ,; (k) the normalized vector i.e.

1

\/ (Pr=(utv)

) (k) = € (K) -

Then p(,, | (n) is represented by

p(p,,l/] (TL) = Z (Pv*(#_'—l))nk ’é?“’u] (k) é?u,u] (k)* (22)
k

which is a Schatten decomposition.

4 The DEN of EMC generated by unitarily im-
plementable channel

We can define the entanglement criterion of EMC ¢ via the DEN of a localized
EMC pyg,,;- According to the definition of DEN one can compute the DEN of

. {5(pu) + 8 (p0) } = Ty (Prpi)
{8 () +5 (p0u) } = {5 (pua) +5 (P) = 5 (pr0u) }
S (pour) = 3{5 (o) +5 (p0r) }- |

1
Dpn (P{o,u];PM]aP(,L) = 3
1
2
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Definition 6 For a fized ;1 € N we define the 2-entangled DEN of EMC ¢ by

Den (w; Pl p(u) = lim Dgy (p[O,V];pu]’ p(u) : (23)

where v > pu. The Dpn of EMC ¢ is defined by the infimum of the 2-entangled
DEN.

Den (p) = ;i‘T-ElgDEN (SO;PM],P(;‘) . (24)

Then we have the following result [4].

Theorem 7 1
Den (p) =-5H(P) <0 (25)
where H (P) is a Shannon entropy of a initial distribution of P.

Proof. The localized state Plo,w] i decomposed to (17) and its marginal state
py) has a similar decomposition because of (19) which implies

S (p[o,ul) =S (py]) = - ipn logpn = H (P). (26)
n=1

On the other hand the another marginal state p(,, is decomposed to (20)
which can not be recognized as a orthogonal decomposition in general. However
we can estimate the orthogonality of the vectors e, , (k) and efl, ; (k) (n # m)
asymptotically as follows:

v—-2
<e?ﬂ,l/] () -’e?:m/] (k)> = Z u:lju+1umj#+l ( H pjajﬂ*-l) Pju-1k

j#+17"'vjl/—1 a=pu+1
v—2
* . .

= E ;unju+1umju+1 § , Pju+i1du+e II Pjicjati | Pin-rk

jy+1 ju+2v"'1jv—1 a=l“'+2
— * . v-u—2
- E :unJy+1umJu+l (P )J'u+1k

Jut+1

From the ergodic property of (P"'”"2) we have

. v—pu—2 _
ul-}»nc}o (P )ju+1k = Pk
Therefore
ull»nc}o e?l-*,v] (k) se?:w] (k)> = pkzu;ju+lum-j“+1
Ju+1

= pk(sn,m. (27)



In large v > 0 we can estimate the orthogonality of { Plu,] (n)} approximately
n

Pluy) (M) Pl (M) =0 (n#m). (28)

It is known (see [12]) that, if a density operator p is a convex combination of

densities p,,
p= ZAnPn s An 20 Z/\n =1
n n

then the following inequality holds:

S(P) <D MnS(pn) = > Anloghs (29)

and tﬁe equality holds if p, L p,, for n # m. Thanks to (28) we can apply the
equalzty Of (29) to Plu = Zn PrnPp,v (n)

) - (o)
- .
= =) Pn) prlogpk— > pnlogpn

n=1 k=1 n=1

= 2H(P). (30)

From the above arguments we have

Jim Dpy (P[o,u];Pu],P(u)v = H(P)- %{H (P) +2H (P)}
- ~%H(P). (31)

It is clear that the equation (31) holds for any p € N. This fact shows that
the equation (25) holds. m

This theorem says that the unitary implementable EMC is entangled state
in the sense of definition 6. On the base of theorem 7 we can compute another
entropic criteria, introduced in [6, 7], for EMC. As a result of such computations
we can conclude that EMC gives an example of maximal entangled state on
infinite multiple algebras. The detailed discussion will appear in a forthcoming

paper [4].
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