Entangled Quantum Markov Chain satisyfying Entanglement Condition Luigi Accardi*, Takashi Matsuoka**, Masanori Ohya*** University of Roma Tor Vergata* Tokyo University of Science, Suwa** Tokyo University of Scinence*** May 30, 2009 #### Abstract The entropic criterion of entanglement is applied to prove that entangled Markov chain with unitarily implementable transition operator is indeed an entangled state on infinite multiple algebras. ### 1 Introduction and Preliminaries Accardi and Fidaleo [2] proposed a construction to relate, based on classical Markov chain with discrete state space, to a quantum Markov chain (in the sense of [1]) on infinite tensor products of type I factors. They called *entangled Markov chain* (EMC) the special class of quantum Markov chains obtained in this way. Using the PPT entanglement criterion [13, 8] (positivity of the partial transpose of the density matrix) Miyadera showed [9] that the finite volume restriction of a class of EMC on infinite tensor products of 2×2 matrix algebras is entangled. In our previous paper [3], using the entropic type of entanglement criterion for pure states [11, 3], which is based on the notion of degree of entanglement, we proved that the vector states defining the EMC's on infinite tensor products of $d \times d$ matrix algebras $(d \in \mathbb{N})$ "generically" are entangled (see Definition (3) below). Our result did not include Miyadear's one because, by restricting an EMC to some local algebra, one obtains a mixed state to which the above criterion for a pure state is not applicable. However our entanglement criterion gives the sufficient condition for entanglement in the case of mixtures (for pure states this condition is necessary and sufficient) [4]. Moreover our entanglement criterion, being based on a numerical inequality, is in many cases easier to verify than the positivity condition required by the PPT criterion. In this note we will show some results obtained in [4] with proof for the reader's convenience. Our entanglement condition is applied to the restriction of EMC's, generated by a unitarily implementable $d \times d$ stochastic matrix, to algebras localized which is obtained as a mixed state. This allows to prove that the above EMC induce an entangled state on infinite tensor products of $d \times d$ matrix algebras for any $d \in \mathbb{N}$. We consider a classical Markov chain (S_n) with state space $S = \{1, 2, \dots, d\}$, initial distribution $p = (p_j)$ and transition probability matrix $P = (p_{ij})$ $$p_{ij} \ge 0 \qquad ; \qquad \sum_{j} p_{ij} = 1$$ Let $\{e_i\}_{i\leq d}$ be an orthonormal basis (ONB) of $\mathbb{C}^{|S|}$. For a fixed vector e_0 in this basis, denote $$\mathcal{H}_{\mathbb{N}} := \bigotimes_{\mathbb{N}}^{(e_0)} \mathbb{C}^{|S|} \tag{1}$$ the infinite tensor product of N-copies of the Hilbert space $\mathbb{C}^{|S|}$ with respect to the constant sequence (e_0) . An orthonormal basis of \mathcal{H}_N is given by the vectors $$|e_{j_0}, \cdots, e_{j_n}\rangle := (\bigotimes_{\alpha \in [0, n]} e_{j_\alpha}) \otimes (\bigotimes_{\alpha \in [0, n]} e_{0}).$$ For any Hilbert space \mathcal{H} we denote \mathcal{H}^* its dual and $\xi \in \mathcal{H} \mapsto \xi^* \in \mathcal{H}^*$ the canonical embedding. Thus, if $\xi \in \mathcal{H}$ is a unit vector, $\xi \xi^*$ denotes the projection onto the subspace generated by ξ . Let M_d denote the algebra of complex $d \times d$ matrices and let $\mathcal{A} := \otimes_{\mathbb{N}} M_d = M_d \otimes M_d \otimes \cdots$ be the C*-infinite tensor product of N-copies of M_d . An element $A_{\Lambda} \in \mathcal{A}$ (observable) will be said to be *localized* in a finite region $\Lambda \subset \mathbb{N}$ if there exists an operator $\overline{A}_{\Lambda} \in \otimes_{\Lambda} M_d$ such that $$A_{\Lambda} = \overline{A}_{\Lambda} \otimes 1_{\Lambda^c}$$ In the following we will identify $A_{\Lambda} = \overline{A}_{\Lambda}$ and we denote \mathcal{A}_{Λ} the local algebra at Λ . Let $\sqrt{p_i}$ (resp. $\sqrt{p_{ij}}$) be any complex square root of p_i (resp. p_{ij}) (i.e. $\left|\sqrt{p_i}\right|^2 = p_i(\text{resp. }\left|\sqrt{p_{ij}}\right|^2 = p_{ij})$) and define the vector $$\Psi_n = \sum_{j_0, \dots, j_n} \sqrt{p_{j_0}} \prod_{\alpha=0}^{n-1} \sqrt{p_{j_\alpha j_{\alpha+1}}} | e_{j_0}, \dots, e_{j_n} \rangle$$ (2) Although the limit $\lim_{n\to\infty} \Psi_n$ will not exist, the basic property of Ψ_n is the following [2]. **Proposition 1** There exists a unique quantum Markov chain ψ on A such that, for every $k \in \mathbb{N}$ and for every $A \in A_{[0, k]}$, one has $$\langle \Psi_{k+1}, A\Psi_{k+1} \rangle = \lim_{n \to \infty} \langle \Psi_n, A\Psi_n \rangle =: \psi(A)$$ (3) Moreover ψ is stationary if and only if the associated classical Markov chain $\{p := (p_i), P = (p_{ij})\}$ is stationary, i.e. $$\sum_{i} p_i p_{ij} = p_j \qquad ; \qquad \forall j \tag{4}$$ #### 2 Notions of entanglement and degree of entanglement **Definition 2** Let A_j $(j \in \{1, 2, \dots, n\})$ with $n < \infty$ be C^* -algebras and let A $= \bigotimes_{j=1}^{n} \mathcal{A}_{j}$ be a tensor product of C^* -algebras. A state $\omega \in \mathcal{S}\left(\bigotimes_{j=1}^{n} \mathcal{A}_{j}\right)$ is called separable if $$\omega \in \overline{Conv} \left\{ egin{array}{l} ^{n} \bigotimes_{j=1} \omega_{j} \; ; \; \omega_{j} \in \mathcal{S}\left(\mathcal{A}_{j}\right), j \in \left\{1, 2, \cdots, n\right\} ight\}$$ where Conv denotes norm closure of the convex hull. A nonseparable state is called entangled. Notice that the notion of separability may depend on the choice of the tensor product of \mathbb{C}^* -algebras. Unless otherwise specified, one realizes the \mathbb{C}^* -algebras on Hilbert spaces and one considers the induced tensor product. In any case a separable pure state must be a product of pure states. **Definition 3** [3] In the notations of Definition (2) a state $\omega \in \mathcal{S}(A)$ is called 2-separable if $$\omega \in \overline{Conv}\left\{\omega_{k]} \otimes \omega_{(k} : \omega_{k]} \in \mathcal{S}\left(\mathcal{A}_{k]}\right), \ \omega_{(k} \in \mathcal{S}\left(\mathcal{A}_{(k)}\right), \ \forall k \in \{1, 2, \cdots, n\}\right\}$$ where $A = A_{k} \otimes A_{(k)} := A_{[1,k]} \otimes A_{(k,n]}$. A non-2-separable state is called 2-entangled. **Remark** Notice that, for n = 2, 2-entanglement is equivalent to usual entanglement. For n > 2, 2-entanglement is a strictly stronger property than usual entanglement. **Definition 4** Let \mathcal{H}_1 , \mathcal{H}_2 be separable Hilbert spaces and let θ be density matrices in $\mathcal{B}(\mathcal{H}_1 \otimes \mathcal{H}_2)$ with its marginal densities denoted by ρ and σ in $\mathcal{B}(\mathcal{H}_1)$, $\mathcal{B}(\mathcal{H}_2)$ respectively. The quasi mutual entropy of ρ and σ w.r.t θ is defined by [10] $$I_{\theta}(\rho, \sigma) \equiv tr\theta \left(\log \theta - \log \rho \otimes \sigma\right) \tag{5}$$ The degree of entanglement of θ , denoted by $D_{EN}(\theta)$, is defined by [11] $$D_{EN}(\theta) \equiv \frac{1}{2} \left\{ S(\rho) + S(\sigma) \right\} - I_{\theta}(\rho, \sigma) \tag{6}$$ where $S(\cdot)$ is the von-Neumann entropy. In the following we identify normal states on $\mathcal{B}(\mathcal{H})$ (\mathcal{H} some separable Hilbert space) with their density matrices and, if θ is such a state, we will use indifferently the notations $$\theta(x) = tr(\theta x) \quad ; \quad x \in \mathcal{B}(\mathcal{H})$$ (7) Recalling that, for density operators θ , δ in $\mathcal{B}(\mathcal{H})$, the relative entropy of δ with respect to θ is defined by: $$R(\theta|\delta) := tr\theta \left(\log\theta - \log\delta\right) \tag{8}$$ (see [5, 12] for a more general discussion) we see that $I_{\theta}(\rho, \sigma)$ is the relative entropy of the tensor product of its marginal densities with respect to θ itself. Since it is known that the relative entropy is a kind of distance between states, it is clear why the degree of entanglement of θ by (6) is a measure of how far θ is from being a product state. Moreover we see also that D_{EN} is a kind of symmetrized quantum conditional entropy. In the classical case the conditional entropy always takes non-negative value, however our new criterion can be negative according to the strength of quantum correlation between ρ and σ [4]. **Theorem 5** A necessary condition for a (normal) state θ on $\mathcal{B}(\mathcal{H}_1 \otimes \mathcal{H}_2)$ to be separable is that $$D_{EN}\left(\theta\right) \ge 0\tag{9}$$ Equivalently: a sufficient condition for θ to be entangled is that $$D_{EN}\left(\theta\right) < 0. \tag{10}$$ **Proof.** Let θ be a state on $\mathcal{B}(\mathcal{H}_1 \otimes \mathcal{H}_2)$. If θ is separable, there exist density matrices ρ_n , σ_n respectively in $\mathcal{B}(\mathcal{H}_1)$, $\mathcal{B}(\mathcal{H}_2)$ such that $$\theta = \sum_{n} p_n \rho_n \otimes \sigma_n$$ with $$p_n \ge 0$$, $\forall n$; $\sum_{n} p_n = 1$ Let $\{x_n\}$ be an ONB in \mathcal{H}_1 and define the completely positive unital (CP1) map $\Lambda_0: \mathcal{B}(\mathcal{H}_1) \to \mathcal{B}(\mathcal{H}_1)$ by $$\Lambda_0(A) = \sum_n tr(A\rho_n) x_n x_n^* \quad ; \quad A \in \mathcal{B}(\mathcal{H}_1)$$ (11) Then its dual is $$\Lambda_0^* (\delta) = \sum_n \langle x_n, \delta x_n \rangle \rho_n \quad ; \quad \delta \in \mathcal{B} (\mathcal{H}_1)_*$$ (12) so that defining the CP1 map $$\Lambda := \Lambda_0 \otimes id : \mathcal{B}(\mathcal{H}_1 \otimes \mathcal{H}_2) \to \mathcal{B}(\mathcal{H}_1 \otimes \mathcal{H}_2)$$ and the density matrix $$heta_d := \sum_n p_n x_n x_n^* \otimes \sigma_n$$ one easily verifies that $$\Lambda^*(\theta_d) = \theta$$ Moreover, denoting $$\rho = \sum_{n} p_{n} \rho_{n} \quad and \quad \sigma = \sum_{n} p_{n} \sigma_{n}$$ the marginal densities of θ and $\rho_d = \sum_n p_n |x_n\rangle \langle x_n|$ the first marginal density of θ_d , one has: $$\Lambda^*(\rho_d \otimes \sigma) = \rho \otimes \sigma$$ Recall now that the monotonicity property of the relative entropy (see [12] for proof and history) that for any pair of von Neumann algebras \mathcal{M} , \mathcal{M}^0 , for any normal CP1 map $\Lambda: \mathcal{M} \to \mathcal{M}^0$ and for any pair of normal states ω_0 , φ_0 on \mathcal{M}^0 one has $$R\left(\Lambda^*(\omega_0)|\Lambda^*(\varphi_0)\right) \le R\left(\omega_0|\varphi_0\right) \tag{13}$$ Using this property one finds: $$I_{\theta}\left(\rho,\sigma\right) = R\left(\theta|\rho\otimes\sigma\right) = R\left(\Lambda^{*}(\theta_{d})|\Lambda^{*}(\rho_{d}\otimes\sigma)\right) \leq R\left(\theta_{d}|\rho_{d}\otimes\sigma\right) = I_{\theta_{d}}\left(\rho_{d},\sigma\right)$$ so that $$S(\sigma) - I_{\theta}(\rho, \sigma) \ge S(\sigma) - I_{\theta_d}(\rho_d, \sigma) = -\sum_n p_n tr(\sigma_n \log \sigma_n) \ge 0$$ (14) Introducing the density operator $$\hat{\theta}_d = \sum_n p_n \rho_n \otimes y_n y_n^*$$ where $\{y_n\}$ is an ONB in \mathcal{H}_2 , and using a variant of the above argument (in which the density θ_d is replaced by $\hat{\theta}_d$) one proves the analogue inequality $$S(\rho) - I_{\theta}(\rho, \sigma) \ge S(\rho) - I_{\hat{\theta}_d}(\rho, \sigma_d) = -\sum_n p_n tr(\rho_n \log \rho_n) \ge 0$$ (15) Combining (14) and (15) one obtains: $$D_{EN}\left(\theta;\rho,\sigma\right) = \frac{1}{2}\left(\left(S\left(\sigma\right) - I_{\theta}\left(\rho,\sigma\right)\right) + \left(S\left(\rho\right) - I_{\theta}\left(\rho,\sigma\right)\right)\right) \ge$$ (16) $$\geq \frac{1}{2} \left(-\sum_n p_n tr(\rho_n \log \rho_n) - \sum_n p_n tr(\sigma_n \log \sigma_n) \right) \geq 0$$ which is (9). **Remark** For pure (normal) states θ on $\mathcal{B}(\mathcal{H}_1 \otimes \mathcal{H}_2)$ condition (10) is also necessary for entanglement (see [11, 3]). ## 3 The localized EMC and its marginal states We discuss the entanglement of the finite volume restrictions of a class of EMC on infinite tensor products of $d \times d$ matrix algebras. By restricting an EMC to some local algebra one obtains a mixed state to which our entanglement criterion $D_{\rm EN}$ is applicable because of theorem 5. In the following arguments we will denote $u_{ij} = \sqrt{p_{ij}}$ any (fixed) complex square root of p_{ij} so that $$|u_{ij}|^2 = p_{ij} \qquad ; \qquad \forall i, j$$ and we assume that $U = (u_{ij})$ is a unitary matrix. Let denote the unitarily implementable EMC state restricted to a finite region $[0,\nu]$ by $\rho_{[0,\nu]}$, then for every local observable $A\in\mathcal{A}_{[0,\nu]}$ one has $\rho_{[0,\nu]}\left(A\right)=\langle\Psi_{\nu+1},(A\otimes I)\Psi_{\nu+1}\rangle$. Hence the density operator $\rho_{[0,\nu]}$ is given by: $$\begin{split} \rho_{[0,\nu]} &= tr_{\mathcal{H}_{\nu+1}} \left| \Psi_{\nu+1} \right\rangle \left\langle \Psi_{\nu+1} \right| \\ &= \sum_{i_0,\cdots,i_{\nu+1},j_0,\cdots,j_{\nu+1},l_{\nu+1}} \sqrt{p_{i_0}}^* \sqrt{p_{j_0}} \prod_{\alpha=0}^{\nu} u_{i_{\alpha}i_{\alpha+1}}^* u_{j_{\alpha}j_{\alpha+1}} \\ & \left\langle e_{l_{\nu+1}}, e_{j_{\nu+1}} \right\rangle \left\langle e_{i_{\nu+1}}, e_{l_{\nu+1}} \right\rangle \left| e_{j_0}, \cdots, e_{j_{\nu}} \right\rangle \left\langle e_{i_0}, \cdots, e_{i_{\nu}} \right| \\ &= \sum_{j_0,\cdots,j_{\nu},l,i_0,\cdots,i_{\nu}} \sqrt{p_{i_0}}^* \sqrt{p_{j_0}} \prod_{\alpha=0}^{\nu-1} u_{i_{\alpha}i_{\alpha+1}}^* u_{j_{\alpha}j_{\alpha+1}} \\ & u_{i_{\nu}l}^* u_{j_{\nu}l} \left| e_{j_0}, \cdots, e_{j_{\nu}} \right\rangle \left\langle e_{i_0}, \cdots, e_{i_{\nu}} \right| \end{split}$$ From the unitarity of $U=(u_{ij})$ one has $\sum_l u_{i_\nu l}^* u_{j_\nu l}=(UU^*)_{j_\nu i_\nu}=\delta_{i_\nu,j_\nu}$. Using this unitarity one has $$\rho_{[0,\nu]} = \sum_{j_{0},j_{1},\cdots,j_{\nu},i_{0},i_{1},\cdots,i_{\nu},k} \sqrt{p_{i_{0}}} \prod_{\alpha=0}^{\nu-2} u_{i_{\alpha}i_{\alpha+1}}^{*} u_{j_{\alpha}j_{\alpha+1}} u_{i_{\nu-1}k}^{*} u_{j_{\nu-1}k} \left| e_{j_{0}}, e_{j_{1}}, \cdots, e_{j_{\nu-1}}, e_{\nu}(k) \right\rangle \left\langle e_{i_{0}}, e_{i_{1}}, \cdots, e_{j_{\nu-1}}, e_{\nu}(k) \right| = \sum_{k} p_{k} e_{[0,\nu]}(k) e_{[0,\nu]}(k)^{*},$$ $$(17)$$ where $$e_{[0,\nu]}(k) := rac{1}{\sqrt{p_k}} \sum_{j_0,\cdots,j_{\mu-1}} \sqrt{p_{j_0}} (\prod_{\alpha=0}^{\nu-2} u_{j_{\alpha}j_{\alpha+1}}) u_{j_{\mu-1}k} \left| e_{j_0},\cdots,e_{j_{\nu-1}},e_{ u}\left(k ight) ight>.$$ The vectors $\left\{ e_{\left[0,\nu\right]}\left(k\right)\right\} _{k}$ are normalized and orthogonal each other. In fact $$\begin{aligned} \left\| e_{[0,\nu]} \left(k \right) \right\|^2 &= \frac{1}{p_k} \sum_{j_{\nu-1}} p_{j_{\nu-1}} p_{j_{\nu-1}} \prod_{\alpha=\mu+1}^{\nu-2} p_{j_{\alpha}j_{\alpha+1}} p_{j_{\nu-1}k} \\ &= \frac{1}{p_k} \sum_{j_{\nu-1}} p_{j_{\nu-1}} p_{j_{\nu-1}k} = \frac{p_k}{p_k} = 1, \end{aligned}$$ and the orthogonality of $\left\{e_{\left[0,\nu\right]}\left(k\right)\right\}_{k}$ is clear because of the orthogonality of $\left\{e_{\nu}\left(k\right)\right\}_{k}$. We see that the decomposition (17) gives a Schatten decomposition. Let us consider the marginal states of density $\rho_{[0,\nu]}$ for each $\mu \in [0,\nu-1]$ given by $$\rho_{\mu} \equiv tr_{H_{(\mu,\nu)}} \rho_{[0,\nu]}, \quad \rho_{(\mu} \equiv tr_{H_{[0,\mu]}} \rho_{[0,\nu]}$$ (18) Since, by Proposition (1), the family $(\rho_{[0,\nu]})_{\nu}$ is projective, for each $\mu \in [0,\nu-1]$ the restriction of $\rho_{[0,\nu]}$ to the algebra localized on $[0,\mu]$ is $\rho_{[0,\mu]}$. This implies $$\rho_{\mu} \equiv tr_{H_{(\mu,\nu)}} \rho_{[0,\nu]} = \rho_{[0,\mu]}. \tag{19}$$ On the other hand the marginal state $\rho_{(\mu}$ is given by $$\rho_{(\mu} = tr_{\mathcal{H}_{[0,\mu]}} \rho_{[0,\nu]} = \sum_{j_{0}, \dots, j_{\mu}, j_{\mu+1}, \dots, j_{\nu-1}, i_{\mu+1}, \dots, i_{\nu-1}, k} p_{j_{0}} \left(\prod_{\alpha=0}^{\mu-1} p_{j_{\alpha}j_{\alpha+1}} \right) u_{j_{\mu}i_{\mu+1}}^{*} u_{j_{\mu}j_{\mu+1}} \left(\prod_{\alpha=\mu+1}^{\nu-2} u_{i_{\alpha}i_{\alpha+1}}^{*} u_{j_{\alpha}j_{\alpha+1}} \right) u_{i_{\nu-1}k}^{*} u_{j_{\nu-1}k} |e_{j_{\mu+1}}, \dots, e_{j_{\nu-1}}, e_{\nu}(k) \rangle \langle e_{i_{\nu+1}}, \dots, e_{i_{\nu-1}}, e_{\nu}(k) |$$ $$= \sum_{n,j_{\mu+1},\dots,j_{\nu-1},i_{\mu+1},\dots,i_{\nu-1},k} p_n u_{ni_{\mu+1}}^* u_{nj_{\mu+1}} \prod_{\alpha=\mu+1}^{\nu-2} u_{i_{\alpha}i_{\alpha+1}}^* u_{j_{\alpha}j_{\alpha+1}} u_{i_{\alpha}j_{\alpha+1}} u_{i_{\alpha}i_{\alpha+1}}^* u_{j_{\alpha}j_{\alpha+1}} u_{i_{\nu-1}k} u_{i_{\nu-1}k} |e_{j_{\mu+1}},\dots,e_{j_{\nu-1}},e_{\nu}(k)\rangle \langle e_{i_{\mu+1}},\dots,e_{i_{\nu-1}},e_{\nu}(k)|$$ $$= \sum_{n,k} p_n e_{(\mu,\nu]}^n(k) e_{(\mu,\nu]}^n(k)^* \qquad (20)$$ where $$e_{(\mu, u]}^{n}\left(k ight) = \sum_{j_{\mu+1},\cdots,j_{ u-1}} u_{nj_{\mu+1}}\left(\prod_{lpha=\mu+1}^{ u-2} u_{j_{lpha}j_{lpha+1}}\right) u_{j_{ u-1}k}\left|e_{j_{\mu+1}},\cdots,e_{j_{ u-1}},e_{ u}(k) ight>.$$ Remark If we put $$\rho_{(\mu,\nu]}(n) := \sum_{k} e_{(\mu,\nu]}^{n}(k) e_{(\mu,\nu]}^{n}(k)^{*}, \qquad (21)$$ then it is shown that (21) can be recognized as an orthogonal decompositions of a density operator. In fact we can show the following properties of $\rho_{(\mu,\nu]}(n)$. (i) Orthogonality: $$\left\langle e_{\left(\mu,\nu\right]}^{n}\left(k\right),e_{\left(\mu,\nu\right]}^{n}\left(l\right)\right\rangle =\delta_{k,l},$$ (ii) Density: $$\left\| e_{(\mu,\nu]}^{n} (k) \right\|^{2} = \sum_{j_{\mu+1},\cdots,j_{\nu-1}} p_{nj_{\mu+1}} \left(\prod_{\alpha=\mu+2}^{\nu-2} p_{j_{\alpha}j_{\alpha+1}} \right) p_{j_{\nu-1}k}$$ $$\equiv \left(P^{\nu-(\mu+1)} \right)_{nk}.$$ This matrix $(P^{\nu-(\mu+1)})$ can be recognized as a transition probability matrix generated by $P=(p_{ij})$ (i.e. a classical ergodic Markov chain). This implies $$tr \rho_{(\mu,\nu]}(n) = \sum_{k} \left(P^{\nu-(\mu+1)} \right)_{nk} = 1.$$ Let denote $\widehat{e}_{(\mu,\nu]}^{n}(k)$ the normalized vector i.e. $$\widehat{e}_{(\mu,\nu]}^{n}\left(k\right) = \frac{1}{\sqrt{\left(P^{\nu-(\mu+1)}\right)_{nk}}} e_{(\mu,\nu]}^{n}\left(k\right).$$ Then $\rho_{(\mu,\nu]}(n)$ is represented by $$\rho_{(\mu,\nu]}(n) = \sum_{k} \left(P^{\nu - (\mu+1)} \right)_{nk} \widehat{e}_{(\mu,\nu]}^{n}(k) \widehat{e}_{(\mu,\nu]}^{n}(k)^{*}$$ (22) which is a Schatten decomposition. # 4 The DEN of EMC generated by unitarily implementable channel We can define the entanglement criterion of EMC φ via the DEN of a localized EMC $\rho_{[0,\nu]}$. According to the definition of DEN one can compute the DEN of $\rho_{[0,\nu]}$ as follows: $$\begin{split} D_{EN}\left(\rho_{[0,\nu]};\rho_{\mu]},\rho_{(\mu}\right) &= \frac{1}{2}\left\{S\left(\rho_{\mu]}\right) + S\left(\rho_{(\mu)}\right)\right\} - I_{\rho_{[0,\nu]}}\left(\rho_{\mu]},\rho_{(\mu)}\right) \\ &= \frac{1}{2}\left\{S\left(\rho_{\mu]}\right) + S\left(\rho_{(\mu)}\right)\right\} - \left\{S\left(\rho_{\mu]}\right) + S\left(\rho_{(\mu)}\right) - S\left(\rho_{[0,\nu]}\right)\right\} \\ &= S\left(\rho_{[0,\nu]}\right) - \frac{1}{2}\left\{S\left(\rho_{\mu]}\right) + S\left(\rho_{(\mu)}\right)\right\}. \end{split}$$ **Definition 6** For a fixed $\mu \in \mathbb{N}$ we define the 2-entangled DEN of EMC φ by $$D_{EN}\left(\varphi;\rho_{\mu},\rho_{(\mu}\right) \equiv \lim_{\nu \to \infty} D_{EN}\left(\rho_{[0,\nu]};\rho_{\mu},\rho_{(\mu)}\right),\tag{23}$$ where $\nu > \mu$. The D_{EN} of EMC φ is defined by the infimum of the 2-entangled DEN. $$D_{EN}\left(\varphi\right) \equiv \inf_{\mu \in \mathbb{N}} D_{EN}\left(\varphi; \rho_{\mu}, \rho_{(\mu)}\right). \tag{24}$$ Then we have the following result [4]. #### Theorem 7 $$D_{EN}(\varphi) = -\frac{1}{2}H(P) < 0 \tag{25}$$ where H(P) is a Shannon entropy of a initial distribution of P. **Proof.** The localized state $\rho_{[0,\nu]}$ is decomposed to (17) and its marginal state ρ_{μ} has a similar decomposition because of (19) which implies $$S\left(\rho_{[0,\nu]}\right) = S\left(\rho_{\mu]}\right) = -\sum_{n=1}^{d} p_n \log p_n = H(P).$$ (26) On the other hand the another marginal state $\rho_{(\mu)}$ is decomposed to (20) which can not be recognized as a orthogonal decomposition in general. However we can estimate the orthogonality of the vectors $e^n_{(\mu,\nu]}(k)$ and $e^m_{(\mu,\nu]}(k)$ ($n \neq m$) asymptotically as follows: $$\begin{split} \left\langle e^{n}_{(\mu,\nu]}\left(k\right), e^{m}_{(\mu,\nu]}\left(k\right) \right\rangle &= \sum_{j_{\mu+1},\cdots,j_{\nu-1}} u^{*}_{nj_{\mu+1}} u_{mj_{\mu+1}} \left(\prod_{\alpha=\mu+1}^{\nu-2} p_{j_{\alpha}j_{\alpha+1}}\right) p_{j_{\nu-1}k} \\ &= \sum_{j_{\mu+1}} u^{*}_{nj_{\mu+1}} u_{mj_{\mu+1}} \sum_{j_{\mu+2},\cdots,j_{\nu-1}} p_{j_{\mu+1}j_{\mu+2}} \left(\prod_{\alpha=\mu+2}^{\nu-2} p_{j_{\alpha}j_{\alpha+1}}\right) p_{j_{\nu-1}k} \\ &= \sum_{j_{\mu+1}} u^{*}_{nj_{\mu+1}} u_{mj_{\mu+1}} \left(P^{\nu-\mu-2}\right)_{j_{\mu+1}k} \end{split}$$ From the ergodic property of $(P^{\nu-\mu-2})$ we have $$\lim_{\nu \to \infty} \left(P^{\nu - \mu - 2} \right)_{j_{\mu + 1}k} = p_k$$ Therefore $$\lim_{\nu \to \infty} \left\langle e^{n}_{(\mu,\nu]}(k), e^{m}_{(\mu,\nu]}(k) \right\rangle = p_{k} \sum_{j_{\mu+1}} u^{*}_{nj_{\mu+1}} u_{mj_{\mu+1}}$$ $$= p_{k} \delta_{n,m}. \tag{27}$$ In large $\nu \gg 0$ we can estimate the orthogonality of $\left\{\rho_{(\mu,\nu]}(n)\right\}_n$ approximately $$\rho_{(\mu,\nu]}(n) \, \rho_{(\mu,\nu]}(m) \simeq 0 \ (n \neq m) \,.$$ (28) It is known (see [12]) that, if a density operator ρ is a convex combination of densities ρ_n , $$\rho = \sum_{n} \lambda_n \rho_n \quad , \quad \lambda_n \ge 0 \quad , \quad \sum_{n} \lambda_n = 1$$ then the following inequality holds: $$S(\rho) \le \sum_{n} \lambda_{n} S(\rho_{n}) - \sum_{n} \lambda_{n} \log \lambda_{n}$$ (29) and the equality holds if $\rho_n \perp \rho_m$ for $n \neq m$. Thanks to (28) we can apply the equality of (29) to $\rho_{(\mu} = \sum_n p_n \rho_{(\mu,\nu]}(n)$. $$\lim_{\nu \to \infty} S\left(\rho_{(\mu)}\right) = \lim_{\nu \to \infty} S\left(\sum_{n} p_{n} \rho_{(\mu,\nu)}(n)\right)$$ $$= -\sum_{n=1}^{d} p_{n} \sum_{k=1}^{d} p_{k} \log p_{k} - \sum_{n=1}^{d} p_{n} \log p_{n}$$ $$= 2H(P). \tag{30}$$ From the above arguments we have $$\lim_{\nu \to \infty} D_{EN} \left(\rho_{[0,\nu]}; \rho_{\mu]}, \rho_{(\mu)} \right) = H(P) - \frac{1}{2} \left\{ H(P) + 2H(P) \right\}$$ $$= -\frac{1}{2} H(P). \tag{31}$$ It is clear that the equation (31) holds for any $\mu \in \mathbb{N}$. This fact shows that the equation (25) holds. \blacksquare This theorem says that the unitary implementable EMC is entangled state in the sense of definition 6. On the base of theorem 7 we can compute another entropic criteria, introduced in [6, 7], for EMC. As a result of such computations we can conclude that EMC gives an example of maximal entangled state on infinite multiple algebras. The detailed discussion will appear in a forthcoming paper [4]. ## References - [1] L. Accardi, "Non commutative Markov Chain", Proc. Int. School of Math. Phys. Camerino, 268-295 (1974). - [2] L. Accardi, F. Fidaleo, "Entangled Markov Chains", Annali di Matematijca Pura ed Applicata (2004). - [3] L. Accardi, T. Matsuoka, M. Ohya, "Entangled Markov chains are indeed entangled", Infinite Dimensional Analysis, Quantum Probability and Related Topics 9, 379-390 (2006). - [4] L. Accardi, T. Matsuoka, M. Ohya, "Entropic Type Criteria of Entanglement on Entangled Markov Chains" in preparation - [5] H. Araki, "Relative entropy for states of von Nuemann algebras", Publ. RIMS Kyoto Univ. 11, 809-833 (1976). - [6] V. P. Belavkin, M. Ohya, "Quantum Entropy and Information in Discrete Entangled State", Infinite Dimensional Analysis, Quantum Probability and Related Topics, 4, No.2, 137-160 (2001). - [7] V. P. Belavkin, M. Ohya, "Entanglement, quantum entropy and mutual information", Proc. R. Soc. Lond. A. 458, 209-231 (2002). - [8] M. Horodecki, P. Horodecki, R. Horodecki, "Separability of mixed states: necessary and sufficient condition", Phys. Lett., A 223, 1-8 (1996). - [9] T. Miyadera, "Entangled Markov Chains generated by Symmetric Channels", Infinite Dimensional Analysis, Quantum Probability and Related Topics, 8. No.3, 497-504 (2005). - [10] M. Ohya, "Some aspects of quantum information theory and their applications to irreversible process "Rep. Math, Phys. 27. 19-47 (1989). - [11] M. Ohya, T. Matsuoka, "Quantum Entangled State and Its Characterization", Foundation and Probability and Physics-3, AIP, 750, 298-306 (2005). - [12] M. Ohya, V. D. Petz, Quantum Entropy and Its Use, Springer (1993). - [13] A. Peres, "Separability Criterion for Density Matrices", Phys. Rev. Lett., 77, 1413-1415 (1996).