Random variables and positive definite kernels associated with the Schrödinger algebra Luigi Accardi
Centro Vito Volterra, Università di Roma Tor Vergata via Columbia 2, 00133 Roma, Italy accardi@volterra.mat.uniroma2.it
http://volterra.mat.uniroma2.it
Andreas Boukas
Department of Mathematics, The American College of Greece
Aghia Paraskevi, Athens 15342, Greece
andreasboukas@acg.edu

Abstract We show that the Feinsilver-Kocik-Schott (FKS) kernel for the Schrödinger algebra is not positive definite. We show how the FKS Schrödinger kernel can be reduced to a positive definite one through a restriction of the defining parameters of the exponential vectors. We define the Fock space associated with the reduced FKS Schrödinger kernel. We compute the characteristic functions of quantum random variables naturally associated with the FKS Schrödinger kernel and expressed in terms of the renormalized higher powers of white noise (or RHPWN) Lie algebra generators.

1. The Schrödinger and RHPWN Algebras

The quantum white noise functionals b_{t}^{\dagger} (creation density) and b_{t} (annihilation density) satisfy the Boson commutation relations

$$
\begin{equation*}
\left[b_{t}, b_{s}^{\dagger}\right]=\delta(t-s) ;\left[b_{t}^{\dagger}, b_{s}^{\dagger}\right]=\left[b_{t}, b_{s}\right]=0 \tag{1.1}
\end{equation*}
$$

where $t, s \in \mathbb{R}$ and δ is the Dirac delta function, as well as the duality relation

$$
\begin{equation*}
\left(b_{s}\right)^{*}=b_{s}^{\dagger} \tag{1.2}
\end{equation*}
$$

In order to consider the smeared fields defined by the higher powers of b_{t} and b_{t}^{\dagger}, for a test function f and $n, k \in\{0,1,2, \ldots\}$ we define the sesquilinear form

$$
\begin{equation*}
B_{k}^{n}(f)=\int_{\mathbb{R}} f(t) b_{t}^{\dagger^{n}} b_{t}^{k} d t \tag{1.3}
\end{equation*}
$$

with involution

$$
\begin{equation*}
\left(B_{k}^{n}(f)\right)^{*}=B_{n}^{k}(\bar{f}) \tag{1.4}
\end{equation*}
$$

In [?] and [?] we introduced the convolution type renormalization

$$
\begin{equation*}
\delta^{l}(t-s)=\delta(s) \delta(t-s) ; \quad l=2,3, \ldots \tag{1.5}
\end{equation*}
$$

of the higher powers of the Dirac delta function, and by restricting to test functions $f(t)$ such that $f(0)=0$ we obtained the renormalized higher powers of white noise (or RHPWN) *-Lie algebra commutation relations

$$
\begin{equation*}
\left[B_{k}^{n}(f), B_{K}^{N}(g)\right]_{R H P W N}=(k N-K n) B_{k+K-1}^{n+N-1}(f g) \tag{1.6}
\end{equation*}
$$

Let $I \subset \mathbb{R}$ be a set of finite positive measure $\mu(I)$. In the notation of [?], the operators $M:=B_{0}^{0}\left(\chi_{I}\right)=\mu(I) I, K:=2 B_{0}^{2}\left(\chi_{I}\right), G:=2 B_{0}^{1}\left(\chi_{I}\right), D:=B_{1}^{1}\left(\chi_{I}\right), P_{x}:=\frac{1}{2} B_{1}^{0}\left(\chi_{I}\right)$, and $P_{t}:=\frac{1}{8} B_{2}^{0}\left(\chi_{I}\right)$, satisfy the commutation relations of the Schrödinger algebra \mathcal{S} given in the table

	M	K	G	D	P_{x}	P_{t}
M	0	0	0	0	0	0
K	0	0	0	$-2 K$	$-G$	$-D$
G	0	0	0	$-G$	$-M$	$-P_{x}$
D	0	$2 K$	G	0	$-P_{x}$	$-2 P_{t}$
P_{x}	0	G	M	P_{x}	0	0
P_{t}	0	D	P_{x}	$2 P_{t}$	0	0

The Feinsilver-Kocik-Schott (FKS) kernel (or Leibniz function), i.e. the inner product of the exponential vectors

$$
\begin{equation*}
\psi_{a, b}\left(\chi_{I}\right):=e^{a B_{0}^{2}\left(\chi_{I}\right)} e^{b B_{0}^{1}\left(\chi_{I}\right)} \Phi=e^{\frac{a}{2} K} e^{\frac{b}{2} G} \Phi \tag{1.8}
\end{equation*}
$$

where $a, b \in \mathbb{C}$ with $|a|<2$ and Φ is the Fock vacuum such that $B_{2}^{0}\left(\chi_{I}\right) \Phi=B_{1}^{0}\left(\chi_{I}\right) \Phi=0$, is given by (see Proposition 6.1 of [?] for $c=\mu(I) / 2, m=\mu(I)$ and $a, b \in \mathbb{R}$; a detailed proof can be found in [?])

$$
\begin{align*}
\left\langle\psi_{a, b}\left(\chi_{I}\right), \psi_{A, B}\left(\chi_{I}\right)\right\rangle & =\left(1-\frac{\bar{a} A}{4}\right)^{-\frac{\mu(I)}{2}} e^{\frac{\mu(I)}{4}\left(\frac{\overline{\bar{a}} B^{2}+4 \bar{b} B+\bar{b}^{2} A}{4-\bar{a} A}\right)} \tag{1.9}\\
& =e^{-\frac{\mu(I)}{2} \ln \left(1-\frac{\bar{a} A}{4}\right)} e^{\frac{\mu(I)}{4}\left(\frac{\bar{a} B^{2}+4 \bar{b} B+\bar{b}^{2} A}{4-\bar{a} A}\right)}
\end{align*}
$$

For $a=A=0(? ?)$ reduces to the usual inner product of the Heisenberg algebra exponential vectors, and for $b=B=0$ it reduces to the inner product of the $s l(2)$ (Square of White Noise Lie algebra) exponential vectors.

Using the commutativity of the Schrödinger algebra generators on disjoint sets, we may extend the FKS kernel (??) to exponential vectors of the form

$$
\begin{equation*}
\Psi(f, g):=\prod_{i} e^{a_{i} B_{0}^{2}\left(\chi_{I_{i}}\right)} e^{b_{i} B_{0}^{1}\left(\chi_{I_{i}}\right)} \Phi=e^{B_{0}^{2}(f)} e^{B_{0}^{1}(g)} \Phi \tag{1.10}
\end{equation*}
$$

where $f=\sum_{i} a_{i} \chi_{I_{i}}$ and $g=\sum_{i} b_{i} \chi_{I_{i}}$, with $I_{i} \cap I_{j}=\oslash$ for $i \neq j$, are simple functions with $|f|<2$ and we obtain

$$
\begin{equation*}
\left\langle\Psi\left(f_{1}, g_{1}\right), \Psi\left(f_{2}, g_{2}\right)\right\rangle=e^{-\frac{1}{2} \int \ln \left(1-\frac{\bar{f}_{1} f_{2}}{4}\right) d \mu} e^{\frac{1}{4} \int\left(\frac{\bar{f}_{1} g_{2}^{2}+4 \bar{g}_{1} g_{2}+\bar{g}_{1}^{2} f_{2}}{4-f_{1} f_{2}}\right) d \mu} \tag{1.11}
\end{equation*}
$$

Proposition 1. The kernel (??) (and so also (??)) is not positive definite for arbitrary $\mu(I)$. This, in particular, implies the non-positive definiteness of the kernel of Proposition 6.1 of [?] for arbitrary c.

Proof. Denoting $\|\ldots\|^{2}:=\langle\ldots, \ldots\rangle$, we examine the non-negativity of

$$
N_{k}:=\left\|\sum_{i=1}^{k} c_{i} \psi_{a_{i}, b_{i}}\right\|^{2}
$$

where $k \in\{1,2, \ldots\}$ and (for simplicity, as in [?]), $a_{i}, b_{i}, c_{i} \in \mathbb{R}$ with $\left|a_{i}\right|<2$ for all $i \in$ $\{1, \ldots, k\}$.

For $k=1$ we clearly have

$$
N_{1}:=\left|c_{1}\right|^{2}\left\|\psi_{a_{1}, b_{1}}\right\|^{2}=\left|c_{1}\right|^{2} e^{-\frac{\mu(I)}{2} \ln \left(1-\frac{a_{1}^{2}}{4}\right)} e^{\frac{\mu(I)}{4}\left(\frac{a_{1} b_{1}^{2}+4 b_{1}^{2}+b_{1}^{2} a_{1}}{4-a_{1}^{2}}\right)} \geq 0
$$

for all intervals $I \subset \mathbb{R}$.
For $k=2$ we have

$$
\begin{aligned}
N_{2} & =\sum_{i, j=1}^{2} c_{i} c_{j} e^{-\frac{\mu(I)}{2} \ln \left(1-\frac{a_{i} a_{j}}{4}\right)} e^{\frac{\mu(I)}{4}\left(\frac{a_{i} b_{j}^{2}+4 b_{i} b_{j}+b_{i}^{2} a_{j}}{4-a_{i} a_{j}}\right)} \\
& =\left|c_{1}\right|^{2} e^{-\frac{\mu(I)}{2} \ln \left(1-\frac{a_{1}^{2}}{4}\right)} e^{\frac{\mu(I)}{4}\left(\frac{a_{1} b_{1}^{2}+4 b_{1}^{2}+b_{1}^{2} a_{1}}{4-a_{1}^{2}}\right)}+\left|c_{2}\right|^{2} e^{-\frac{\mu(I)}{2} \ln \left(1-\frac{a_{2}^{2}}{4}\right)} e^{\frac{\mu(I)}{4}\left(\frac{a_{2} b_{2}^{2}+4 b_{2}^{2}+b_{2}^{2} a_{2}}{4-a_{2}^{2}}\right)} \\
& +2 c_{1} c_{2} e^{-\frac{\mu(I)}{2} \ln \left(1-\frac{a_{1} a_{2}}{4}\right)} e^{\frac{\mu(I)}{4}\left(\frac{a_{1} b_{2}^{2}+4 b_{1} b_{2}+b_{1}^{2} a_{2}}{4-a_{1} a_{2}}\right)}
\end{aligned}
$$

If $c_{1} c_{2} \geq 0$ then, clearly, $N_{2} \geq 0$. Suppose that $c_{1} c_{2}<0$. The positive definiteness of N_{2} can be studied by checking the non-negativity of the determinants d_{1} and d_{2} of the principal minors of the real symmetric matrix

$$
A_{2}=\left[\begin{array}{cc}
e^{-\frac{\mu(I)}{2} \ln \left(1-\frac{a_{1}^{2}}{4}\right)} e^{\frac{\mu(I)}{4}\left(\frac{a_{1} b_{1}^{2}+4 b_{1}^{2}+b_{1}^{2} a_{1}}{4-a_{1}^{2}}\right)} & e^{-\frac{\mu(I)}{2} \ln \left(1-\frac{a_{1} a_{2}}{4}\right)} e^{\frac{\mu(I)}{4}\left(\frac{a_{1} b_{2}^{2}+4 b_{1} b_{2}+b_{1}^{2} a_{2}}{4-a_{1} a_{2}}\right)} \\
e^{-\frac{\mu(I)}{2} \ln \left(1-\frac{a_{1} a_{2}}{4}\right)} e^{\frac{\mu(I)}{4}\left(\frac{a_{1} b_{2}^{2}+4 b_{1} b_{2}+b_{1}^{2} a_{2}}{4-a_{1} a_{2}}\right)} & e^{-\frac{\mu(I)}{2} \ln \left(1-\frac{a_{2}^{2}}{4}\right)} e^{\frac{\mu(I)}{4}\left(\frac{a_{2} b_{2}^{2}+4 b_{2}^{2}+b_{2}^{2} a_{2}}{4-a_{2}^{2}}\right)}
\end{array}\right]
$$

corresponding to N_{2}. As in the case $k=1$, we have

$$
d_{1}=\left|c_{1}\right|^{2} e^{-\frac{\mu(I)}{2} \ln \left(1-\frac{a_{1}^{2}}{4}\right)} e^{\frac{\mu(I)}{4}\left(\frac{a_{1} b_{1}^{2}+4 b_{1}^{2}+b_{1}^{2} a_{1}}{4-a_{1}^{2}}\right)} \geq 0
$$

Moreover, since the case $\mu(I)=0$ is trivial, we may divide out $\mu(I)>0$ and proving $d_{2} \geq 0$ is equivalent to showing that

$$
-\frac{1}{2} \ln \left(1-\frac{a_{1}^{2}}{4}\right)+\frac{1}{4}\left(\frac{a_{1} b_{1}^{2}+4 b_{1}^{2}+b_{1}^{2} a_{1}}{4-a_{1}^{2}}\right)-\frac{1}{2} \ln \left(1-\frac{a_{2}^{2}}{4}\right)+\frac{1}{4}\left(\frac{a_{2} b_{2}^{2}+4 b_{2}^{2}+b_{2}^{2} a_{2}}{4-a_{2}^{2}}\right)
$$

$$
\geq-\ln \left(1-\frac{a_{1} a_{2}}{4}\right)+\frac{1}{2}\left(\frac{a_{1} b_{2}^{2}+4 b_{1} b_{2}+b_{1}^{2} a_{2}}{4-a_{1} a_{2}}\right)
$$

which is equivalent to showing that

$$
\ln \left(\frac{4-a_{1} a_{2}}{\sqrt{\left(a_{1}^{2}-4\right)\left(a_{2}^{2}-4\right)}}\right) \geq \frac{\left(\left(a_{2}-2\right) b_{1}-\left(a_{1}-2\right) b_{2}\right)^{2}}{\left(a_{1}-2\right)\left(a_{2}-2\right)\left(a_{1} a_{2}-2\right)}
$$

which is true since

$$
\frac{\left(\left(a_{2}-2\right) b_{1}-\left(a_{1}-2\right) b_{2}\right)^{2}}{\left(a_{1}-2\right)\left(a_{2}-2\right)\left(a_{1} a_{2}-2\right)} \leq 0
$$

and

$$
\frac{4-a_{1} a_{2}}{\sqrt{\left(a_{1}^{2}-4\right)\left(a_{2}^{2}-4\right)}} \geq 1 \Leftrightarrow 4\left(a_{1}-a_{2}\right)^{2} \geq 0
$$

Thus $N_{1} \geq 0$ and $N_{2} \geq 0$. However, for $k=3$ the situation is different. We have

$$
\begin{equation*}
N_{3}=\sum_{i, j=1}^{3} c_{i} c_{j} e^{-\frac{\mu(I)}{2} \ln \left(1-\frac{a_{i} a_{j}}{4}\right)} e^{\frac{\mu(I)}{4}\left(\frac{a_{i} b_{j}^{2}+4 b_{i} b_{j}+b_{i}^{2} a_{j}}{4-a_{i} a_{j}}\right)} \tag{1.12}
\end{equation*}
$$

with associated real symmetric matrix

$$
A_{3}=\left[\begin{array}{ccc}
\left\langle\psi_{a_{1}, b_{1}}\left(\chi_{I}\right), \psi_{a_{1}, b_{1}}\left(\chi_{I}\right)\right\rangle & \left\langle\psi_{a_{1}, b_{1}}\left(\chi_{I}\right), \psi_{a_{2}, b_{2}}\left(\chi_{I}\right)\right\rangle & \left\langle\psi_{a_{1}, b_{1}}\left(\chi_{I}\right), \psi_{a_{3}, b_{3}}\left(\chi_{I}\right)\right\rangle \\
\left\langle\psi_{a_{2}, b_{2}}\left(\chi_{I}\right), \psi_{a_{1}, b_{1}}\left(\chi_{I}\right)\right\rangle & \left\langle\psi_{a_{2}, b_{2}}\left(\chi_{I}\right), \psi_{a_{2}, b_{2}}\left(\chi_{I}\right)\right\rangle & \left\langle\psi_{a_{2}, b_{2}}\left(\chi_{I}\right), \psi_{a_{3}, b_{3}}\left(\chi_{I}\right)\right\rangle \\
\left\langle\psi_{a_{3}, b_{3}}\left(\chi_{I}\right), \psi_{a_{1}, b_{1}}\left(\chi_{I}\right)\right\rangle & \left\langle\psi_{a_{3}, b_{3}}\left(\chi_{I}\right), \psi_{a_{2}, b_{2}}\left(\chi_{I}\right)\right\rangle & \left\langle\psi_{a_{3}, b_{3}}\left(\chi_{I}\right), \psi_{a_{3}, b_{3}}\left(\chi_{I}\right)\right\rangle
\end{array}\right]
$$

As before, $d_{1} \geq 0$ and $d_{2} \geq 0$. However, for $\mu(I) \approx 0.21,\left(a_{1}, a_{2}, a_{3}\right)=(1,-1,-1)$ and $\left(b_{1}, b_{2}, b_{3}\right)=(0,10,0)$ we find that $d_{3} \approx-3.4<0$ and, for $\left(c_{1}, c_{2}, c_{3}\right)=(3,-0.1,-2.82)$, we have $N_{3} \approx-0.29<0$. In fact, for this choice of $\left(a_{1}, a_{2}, a_{3}\right)$, $\left(b_{1}, b_{2}, b_{3}\right)$ and $\left(c_{1}, c_{2}, c_{3}\right)$ we find that $d_{3}, N_{3}<0$ for $0<\mu(I)<m_{0}$, and $d_{3}, N_{3} \geq 0$ for $\mu(I) \geq m_{0}$, where $m_{0} \approx 0.275$. This is in analogy with the no-go theorems of [?]-[?] and [?] for the impossibility of a Fock representation of $R H P W N$, where the existence of negative-norm (or "ghost") vectors was proved for $\mu(I)$ below a certain threshold.

2. Random variables associated with the Schrödinger algebra

For a fixed interval I, we will compute the vacuum characteristic function $\left\langle\Phi, e^{i s X} \Phi\right\rangle$ of the self-adjoint operator

$$
\begin{equation*}
X:=x B_{0}^{2}\left(\chi_{I}\right)+\bar{x} B_{2}^{0}\left(\chi_{I}\right)+y B_{0}^{1}\left(\chi_{I}\right)+\bar{y} B_{1}^{0}\left(\chi_{I}\right) \tag{2.1}
\end{equation*}
$$

where $x, y \in \mathbb{C}$ with $x \neq 0$.
For reasons explained in [?] we define the action of the RHPWN generators $B_{k}^{n}(f)$ on the Fock vacuum vector Φ by

$$
B_{k}^{n}(f) \Phi:= \begin{cases}0 & \text { if } n<k \text { or } n \cdot k<0 \tag{2.2}\\ B_{0}^{n-k}(f) \Phi & \text { if } n>k \geq 0 \\ \frac{1}{n+1} \int_{\mathbb{R}} f(t) d t \Phi & \text { if } n=k\end{cases}
$$

Thus, in particular, $B_{2}^{0}\left(\chi_{I}\right) \Phi=B_{1}^{0}\left(\chi_{I}\right) \Phi=0$ and $B_{1}^{1}\left(\chi_{I}\right) \Phi=\mu(I) \Phi$.
Lemma 1. (i) If x, d, N and h satisfy the oscillator algebra commutation relations

$$
\begin{equation*}
[d, x]=h ;[d, h]=[x, h]=0 ;[N, x]=x ;[d, N]=d \tag{2.3}
\end{equation*}
$$

then for all analytic functions f and for all $a \in \mathbb{C}$

$$
\begin{equation*}
[N, f(x)]=x f^{\prime}(x) ; a^{N} f(x)=f(a x) a^{N} \tag{2.4}
\end{equation*}
$$

Moreover, for all $n, m \in \mathbb{N}$

$$
\begin{equation*}
d^{n} x^{m}=\sum_{j=0}^{n \wedge m}\binom{n, m}{j} x^{m-j} d^{n-j} h^{j} \tag{2.5}
\end{equation*}
$$

where

$$
\begin{equation*}
\binom{n, m}{j}=\binom{n}{j}\binom{m}{j} j! \tag{2.6}
\end{equation*}
$$

(ii) If Δ, R and ρ satisfy the sl(2) algebra commutation relations

$$
\begin{equation*}
[\Delta, R]=\rho ;[\rho, R]=2 R ;[\Delta, \rho]=2 \Delta \tag{2.7}
\end{equation*}
$$

then

$$
\begin{equation*}
e^{t \Delta} e^{a R}=e^{\frac{a R}{1-a t}}(1-a t)^{-\rho} e^{\frac{t \Delta}{1-a t}} \tag{2.8}
\end{equation*}
$$

Proof. The proofs of (i) and (ii) can be found in [?].

In the context of the $R H P W N$ generators, in a manner consistent with the RHPWN representation of the Schrödinger algebra generators M, K, G, D, P_{x}, P_{t} given in the previous section,

$$
\begin{equation*}
R=K=2 B_{0}^{2}\left(\chi_{I}\right) ; \Delta=P_{t}=\frac{1}{8} B_{2}^{0}\left(\chi_{I}\right) ; \rho=D=B_{1}^{1}\left(\chi_{I}\right) \tag{2.9}
\end{equation*}
$$

and

$$
\begin{equation*}
x=G=2 B_{0}^{1}\left(\chi_{I}\right) ; d=P_{x}=\frac{1}{2} B_{1}^{0}\left(\chi_{I}\right) ; N=D=B_{1}^{1}\left(\chi_{I}\right) ; h=M=B_{0}^{0}\left(\chi_{I}\right) \tag{2.10}
\end{equation*}
$$

Lemma 2. For all $a, b \in \mathbb{C}$

$$
\begin{align*}
B_{2}^{0}\left(\chi_{I}\right) e^{a B_{0}^{2}\left(\chi_{I}\right)}= & 4 a^{2} B_{0}^{2}\left(\chi_{I}\right) e^{a B_{0}^{2}\left(\chi_{I}\right)}+ \tag{2.11}\\
& 4 a e^{a B_{0}^{2}\left(\chi_{I}\right)} B_{1}^{1}\left(\chi_{I}\right)+e^{a B_{0}^{2}\left(\chi_{I}\right)} B_{2}^{0}\left(\chi_{I}\right)
\end{align*}
$$

(ii)

$$
\begin{equation*}
B_{1}^{1}\left(\chi_{I}\right) e^{b B_{0}^{1}\left(\chi_{I}\right)} \Phi=\left(b B_{0}^{1}\left(\chi_{I}\right)+\frac{\mu(I)}{2}\right) e^{b B_{0}^{1}\left(\chi_{I}\right)} \Phi \tag{2.12}
\end{equation*}
$$

(iii) For all $n \geq 0$

$$
\begin{equation*}
B_{2}^{0}\left(\chi_{I}\right)\left(B_{0}^{1}\left(\chi_{I}\right)\right)^{n} \Phi=n(n-1) \mu(I)\left(B_{0}^{1}\left(\chi_{I}\right)\right)^{n-2} \Phi \tag{2.13}
\end{equation*}
$$

$$
\begin{equation*}
B_{2}^{0}\left(\chi_{I}\right) e^{b B_{0}^{1}\left(\chi_{I}\right)} \Phi=b^{2} \mu(I) e^{b B_{0}^{1}\left(\chi_{I}\right)} \Phi \tag{iv}
\end{equation*}
$$

(v) For all $n \geq 0$

$$
\begin{equation*}
B_{1}^{0}\left(\chi_{I}\right)\left(B_{0}^{2}\left(\chi_{I}\right)\right)^{n}=2 n B_{0}^{1}\left(\chi_{I}\right)\left(B_{0}^{2}\left(\chi_{I}\right)\right)^{n-1}+\left(B_{0}^{2}\left(\chi_{I}\right)\right)^{n} B_{1}^{0}\left(\chi_{I}\right) \tag{2.15}
\end{equation*}
$$

$$
\begin{equation*}
B_{1}^{0}\left(\chi_{I}\right) e^{a B_{0}^{2}\left(\chi_{I}\right)}=2 a B_{0}^{1}\left(\chi_{I}\right) e^{a B_{0}^{2}\left(\chi_{I}\right)}+e^{a B_{0}^{2}\left(\chi_{I}\right)} B_{1}^{0}\left(\chi_{I}\right) \tag{vi}
\end{equation*}
$$

Proof. (i) By (??) and lemma ??(ii)

$$
\begin{aligned}
B_{2}^{0}\left(\chi_{I}\right) e^{a B_{0}^{2}\left(\chi_{I}\right)} & =\left.\frac{\partial}{\partial t}\right|_{t=0}\left(e^{t B_{2}^{0}\left(\chi_{I}\right)} e^{a B_{0}^{2}\left(\chi_{I}\right)}\right) \\
& =\left.\frac{\partial}{\partial t}\right|_{t=0}\left(e^{\frac{a}{1-4 t a} B_{0}^{2}\left(\chi_{I}\right)}(1-4 t a)^{-B_{1}^{1}\left(\chi_{I}\right)} e^{\frac{t}{1-4 t a} B_{2}^{0}\left(\chi_{I}\right)}\right) \\
& =4 a e^{a B_{0}^{2}\left(\chi_{I}\right)} B_{1}^{1}\left(\chi_{I}\right)+e^{a B_{0}^{2}\left(\chi_{I}\right)} B_{2}^{0}\left(\chi_{I}\right)
\end{aligned}
$$

(ii) By (??), (??) and lemma ??(i)

$$
\begin{aligned}
B_{1}^{1}\left(\chi_{I}\right) e^{b B_{0}^{1}\left(\chi_{I}\right)} \Phi & =\left(\left[B_{1}^{1}\left(\chi_{I}\right), e^{b B_{0}^{1}\left(\chi_{I}\right)}\right]+e^{b B_{0}^{1}\left(\chi_{I}\right)} B_{1}^{1}\left(\chi_{I}\right)\right) \Phi \\
& =\left(b B_{0}^{1}\left(\chi_{I}\right)+\frac{\mu(I)}{2}\right) e^{b B_{0}^{1}\left(\chi_{I}\right)} \Phi
\end{aligned}
$$

(iii) For $n=0$, both sides of (??) are zero. For $n=1$, since

$$
B_{2}^{0}\left(\chi_{I}\right) B_{0}^{1}\left(\chi_{I}\right)=2 B_{1}^{0}\left(\chi_{I}\right)+B_{0}^{1}\left(\chi_{I}\right) B_{2}^{0}\left(\chi_{I}\right)
$$

again both sides of (??) are zero. For $n \geq 2$ we have

$$
\begin{aligned}
a_{n} & :=B_{2}^{0}\left(\chi_{I}\right)\left(B_{0}^{1}\left(\chi_{I}\right)\right)^{n} \Phi \\
& =B_{2}^{0}\left(\chi_{I}\right) B_{0}^{1}\left(\chi_{I}\right)\left(B_{0}^{1}\left(\chi_{I}\right)\right)^{n-1} \Phi \\
& =\left(2 B_{1}^{0}\left(\chi_{I}\right)+B_{0}^{1}\left(\chi_{I}\right) B_{2}^{0}\left(\chi_{I}\right)\right)\left(B_{0}^{1}\left(\chi_{I}\right)\right)^{n-1} \Phi \\
& =2 B_{1}^{0}\left(\chi_{I}\right)\left(B_{0}^{1}\left(\chi_{I}\right)\right)^{n-1} \Phi+B_{0}^{1}\left(\chi_{I}\right) a_{n-1}
\end{aligned}
$$

By (??)

$$
B_{1}^{0}\left(\chi_{I}\right)\left(B_{0}^{1}\left(\chi_{I}\right)\right)^{n-1}=(n-1)\left(B_{0}^{1}\left(\chi_{I}\right)\right)^{n-2} B_{0}^{0}\left(\chi_{I}\right)+\left(B_{0}^{1}\left(\chi_{I}\right)\right)^{n-1} B_{1}^{0}\left(\chi_{I}\right)
$$

Thus

$$
\begin{aligned}
a_{n} & =2 \mu(I)(n-1)\left(B_{0}^{1}\left(\chi_{I}\right)\right)^{n-2} \Phi+B_{0}^{1}\left(\chi_{I}\right) a_{n-1} \\
& =2 \mu(I)((n-1)+(n-2))\left(B_{0}^{1}\left(\chi_{I}\right)\right)^{n-2} \Phi+\left(B_{0}^{1}\left(\chi_{I}\right)\right)^{2} a_{n-2} \\
& =2 \mu(I)((n-1)+(n-2)+(n-3))\left(B_{0}^{1}\left(\chi_{I}\right)\right)^{n-2} \Phi+\left(B_{0}^{1}\left(\chi_{I}\right)\right)^{3} a_{n-3} \\
& =\ldots \\
& =2 \mu(I)((n-1)+(n-2)+(n-3)+\ldots+(n-(n-1)))\left(B_{0}^{1}\left(\chi_{I}\right)\right)^{n-2} \Phi+\left(B_{0}^{1}\left(\chi_{I}\right)\right)^{n-1} a_{1} \\
& =2 \mu(I)((n-1)+(n-2)+(n-3)+\ldots+(n-(n-1)))\left(B_{0}^{1}\left(\chi_{I}\right)\right)^{n-2} \Phi \\
& =2 \mu(I)\left(n(n-1)-(1+2+\ldots+(n-1))\left(B_{0}^{1}\left(\chi_{I}\right)\right)^{n-2} \Phi\right. \\
& =2 \mu(I)\left(n(n-1)-\frac{n(n-1)}{2}\right)\left(B_{0}^{1}\left(\chi_{I}\right)\right)^{n-2} \Phi \\
& =\mu(I) n(n-1)\left(B_{0}^{1}\left(\chi_{I}\right)\right)^{n-2} \Phi
\end{aligned}
$$

(iv) Using (iii)

$$
\begin{aligned}
B_{2}^{0}\left(\chi_{I}\right) e^{b B_{0}^{1}\left(\chi_{I}\right) \Phi} & =B_{2}^{0}\left(\chi_{I}\right) \sum_{n=0}^{\infty} \frac{b^{n}}{n!}\left(B_{0}^{1}\left(\chi_{I}\right)\right)^{n} \Phi \\
& =\sum_{n=0}^{\infty} \frac{b^{n}}{n!} B_{2}^{0}\left(\chi_{I}\right)\left(B_{0}^{1}\left(\chi_{I}\right)\right)^{n} \Phi \\
& =\sum_{n=0}^{\infty} \frac{b^{n}}{n!} n(n-1) \mu(I)\left(B_{0}^{1}\left(\chi_{I}\right)\right)^{n-2} \Phi \\
& =\sum_{n=2}^{\infty} \frac{b^{n}}{n!} n(n-1) \mu(I)\left(B_{0}^{1}\left(\chi_{I}\right)\right)^{n-2} \Phi \\
& =b^{2} \mu(I) \sum_{n=2}^{\infty} \frac{b^{n-2}}{(n-2)!}\left(B_{0}^{1}\left(\chi_{I}\right)\right)^{n-2} \Phi \\
& =b^{2} \mu(I) e^{b B_{0}^{1}\left(\chi_{I}\right)} \Phi
\end{aligned}
$$

(v) As in the proof of (iii)

$$
\begin{aligned}
b_{n} & :=B_{1}^{0}\left(\chi_{I}\right)\left(B_{0}^{2}\left(\chi_{I}\right)\right)^{n} \\
& =B_{1}^{0}\left(\chi_{I}\right) B_{0}^{2}\left(\chi_{I}\right)\left(B_{0}^{2}\left(\chi_{I}\right)\right)^{n-1} \\
& =\left(2 B_{0}^{1}\left(\chi_{I}\right)+B_{0}^{2}\left(\chi_{I}\right) B_{1}^{0}\left(\chi_{I}\right)\right)\left(B_{0}^{2}\left(\chi_{I}\right)\right)^{n-1} \\
& =2 B_{0}^{1}\left(\chi_{I}\right)\left(B_{0}^{2}\left(\chi_{I}\right)\right)^{n-1}+B_{0}^{2}\left(\chi_{I}\right) b_{n-1} \\
& =4 B_{0}^{1}\left(\chi_{I}\right)\left(B_{0}^{2}\left(\chi_{I}\right)\right)^{n-1}+\left(B_{0}^{2}\left(\chi_{I}\right)\right)^{2} b_{n-2} \\
& =\ldots \\
& =2 n B_{0}^{1}\left(\chi_{I}\right)\left(B_{0}^{2}\left(\chi_{I}\right)\right)^{n-1}+\left(B_{0}^{2}\left(\chi_{I}\right)\right)^{n} b_{0} \\
& =2 n B_{0}^{1}\left(\chi_{I}\right)\left(B_{0}^{2}\left(\chi_{I}\right)\right)^{n-1}+\left(B_{0}^{2}\left(\chi_{I}\right)\right)^{n} B_{1}^{0}\left(\chi_{I}\right)
\end{aligned}
$$

(vi)

$$
\begin{aligned}
B_{1}^{0}\left(\chi_{I}\right) e^{a B_{0}^{2}\left(\chi_{I}\right)} & =B_{1}^{0}\left(\chi_{I}\right) \sum_{n=0}^{\infty} \frac{a^{n}}{n!}\left(B_{0}^{2}\left(\chi_{I}\right)\right)^{n} \\
& =\sum_{n=0}^{\infty} \frac{a^{n}}{n!} B_{1}^{0}\left(\chi_{I}\right)\left(B_{0}^{2}\left(\chi_{I}\right)\right)^{n} \\
& =\sum_{n=0}^{\infty} \frac{a^{n}}{n!}\left(2 n B_{0}^{1}\left(\chi_{I}\right)\left(B_{0}^{2}\left(\chi_{I}\right)\right)^{n-1}+\left(B_{0}^{2}\left(\chi_{I}\right)\right)^{n} B_{1}^{0}\left(\chi_{I}\right)\right) \\
& =2 a B_{0}^{1}\left(\chi_{I}\right) \sum_{n=0}^{\infty} \frac{a^{n-1}}{(n-1)!}\left(B_{0}^{2}\left(\chi_{I}\right)\right)^{n-1}+\sum_{n=0}^{\infty} \frac{a^{n}}{n!}\left(B_{0}^{2}\left(\chi_{I}\right)\right)^{n} B_{1}^{0}\left(\chi_{I}\right) \\
& =2 a B_{0}^{1}\left(\chi_{I}\right) e^{a B_{0}^{2}\left(\chi_{I}\right)}+e^{a B_{0}^{2}\left(\chi_{I}\right)} B_{1}^{0}\left(\chi_{I}\right)
\end{aligned}
$$

Lemma 3. For all $s \in \mathbb{R}$

$$
e^{i s X} \Phi=e^{w_{1}(s) B_{0}^{2}\left(\chi_{I}\right)} e^{w_{2}(s) B_{0}^{1}\left(\chi_{I}\right)} e^{w_{3}(s)} \Phi
$$

where X is as in (??) and

$$
\begin{align*}
& w_{1}(s)=\frac{i}{2} \sqrt{\frac{x}{\bar{x}}} \tanh (2 s|x|) \tag{2.17}\\
& w_{2}(s)=\frac{i}{2} \frac{\bar{y}}{\bar{x}}(1-\operatorname{sech}(2 s|x|))+\frac{y}{2|x|} \tanh (2 s|x|) \tag{2.18}
\end{align*}
$$

and

$$
\begin{equation*}
w_{3}(s)=\left(\frac{|y|^{2}+i s\left(y^{2} \bar{x}+x \bar{y}^{2}\right)}{4|x|^{2}}-\frac{i\left(y^{2} \bar{x}+x \bar{y}^{2}\right)}{8|x|^{3}} \tanh (2 s|x|)-\frac{|y|^{2}}{4|x|^{2}} \operatorname{sech}(2 s|x|)\right) \mu(I) \tag{2.19}
\end{equation*}
$$

Proof. We will show that $w_{1}(s), w_{2}(s)$ and $w_{3}(s)$ satisfy the differential equations

$$
\begin{align*}
& w_{1}^{\prime}(s)=4 i \bar{x} w_{1}(s)^{2}+i x ; w_{1}(0)=0 \text { (Riccati ODE) } \tag{2.20}\\
& w_{2}^{\prime}(s)=4 i \bar{x} w_{1}(s) w_{2}(s)+2 \bar{y} w_{1}(s)+y ; w_{2}(0)=0 \text { (Linear ODE) } \tag{2.21}\\
& w_{3}^{\prime}(s)=\left(i \bar{x} w_{2}(s)^{2}+\bar{y} w_{2}(s)+2 i \bar{x} w_{1}(s)\right) \mu(I) ; w_{3}(0)=0 \tag{2.22}
\end{align*}
$$

whose solutions are given by (??), (??) and (??) respectively.
In so doing, let

$$
\begin{equation*}
E \Phi:=e^{s\left(x B_{0}^{2}\left(\chi_{I}\right)+\bar{x} B_{2}^{0}\left(\chi_{I}\right)+y B_{0}^{1}\left(\chi_{I}\right)+\bar{y} B_{1}^{0}\left(\chi_{I}\right)\right)} \Phi \tag{2.23}
\end{equation*}
$$

and also

$$
\begin{equation*}
E \Phi:=e^{w_{1}(s) B_{0}^{2}\left(\chi_{I}\right)} e^{w_{2}(s) B_{0}^{1}\left(\chi_{I}\right)} e^{w_{3}(s)} \Phi \tag{2.24}
\end{equation*}
$$

where $w_{i}(0)=0$ for $i \in\{1,2,3\}$. Then, (??) implies that

$$
\begin{equation*}
\frac{\partial}{\partial s} E \Phi=\left(w_{1}^{\prime}(s) B_{0}^{2}\left(\chi_{I}\right)+w_{2}^{\prime}(s) B_{0}^{1}\left(\chi_{I}\right)+w_{3}^{\prime}(s)\right) E \Phi \tag{2.25}
\end{equation*}
$$

and, since by lemma ??,

$$
\begin{align*}
B_{2}^{0}\left(\chi_{I}\right) E \Phi= & \left(4 w_{1}(s)^{2} B_{0}^{2}\left(\chi_{I}\right)+4 w_{1}(s) w_{2}(s) B_{0}^{1}\left(\chi_{I}\right)\right. \tag{2.26}\\
& \left.+\left(2 w_{1}(s)+w_{2}(s)^{2}\right) \mu(I)\right) E \Phi
\end{align*}
$$

and

$$
\begin{equation*}
B_{1}^{0}\left(\chi_{I}\right) E \Phi=\left(2 w_{1}(s) B_{0}^{1}\left(\chi_{I}\right)+\mu(I) w_{2}(s)\right) E \Phi \tag{2.27}
\end{equation*}
$$

from (??) we also obtain

$$
\begin{aligned}
(2.28) \frac{\partial}{\partial s} E \Phi= & \left(\left(4 i \bar{x} w_{1}(s)^{2}+i x\right) B_{0}^{2}\left(\chi_{I}\right)+\left(4 i \bar{x} w_{1}(s) w_{2}(s)+2 \bar{y} w_{1}(s)+y\right) B_{0}^{1}\left(\chi_{I}\right)\right. \\
& \left.+\left(i \bar{x} w_{2}(s)^{2}+\bar{y} w_{2}(s)+2 i \bar{x} w_{1}(s)\right) \mu(I)\right) E \Phi
\end{aligned}
$$

From (??) and (??), by equating coefficients of $B_{0}^{2}\left(\chi_{I}\right), B_{0}^{1}\left(\chi_{I}\right)$ and 1, we obtain (??), (??) and (??) thus completing the proof.

Proposition 2. (Characteristic Function) For all $s \in \mathbb{R}$

$$
\begin{gather*}
\left\langle\Phi, e^{i s X} \Phi\right\rangle= \tag{2.29}\\
e^{\left(\frac{|y|^{2}+i s\left(y^{2} \bar{x}+x \bar{y}^{2}\right)}{4|x|^{2}}-\frac{i\left(y^{2} \bar{x}+x \bar{y}^{2}\right)}{8|x|^{3}} \tanh (2 s|x|)-\frac{|y|^{2}}{4|x|^{2}} \operatorname{sech}(2 s|x|)\right) \mu(I)}
\end{gather*}
$$

Proof. Using lemma ?? and the fact that for any $z \in \mathbb{C}$

$$
\begin{equation*}
e^{z B_{2}^{0}\left(\chi_{I}\right)} \Phi=e^{z B_{1}^{0}\left(\chi_{I}\right)} \Phi=\Phi \tag{2.30}
\end{equation*}
$$

we have

$$
\begin{align*}
\left\langle\Phi, e^{i s X} \Phi\right\rangle & =\left\langle\Phi, e^{w_{1}(s) B_{0}^{2}\left(\chi_{I}\right)} e^{w_{2}(s) B_{0}^{1}\left(\chi_{I}\right)} e^{w_{3}(s)} \Phi\right\rangle \tag{2.31}\\
& =\left\langle e^{\bar{w}_{2}(s) B_{1}^{0}\left(\chi_{I}\right)} e^{\bar{w}_{1}(s) B_{2}^{0}\left(\chi_{I}\right)} \Phi, e^{w_{3}(s)} \Phi\right\rangle \\
& =\left\langle\Phi, e^{w_{3}(s)} \Phi\right\rangle \\
& =e^{w_{3}(s)}\langle\Phi, \Phi\rangle \\
& =e^{w_{3}(s)} \\
& =e^{\left(\frac{|y|^{2}+i s\left(y^{2} \bar{x}+x \bar{y}^{2}\right)}{4|x|^{2}}-\frac{i\left(y^{2} \bar{x}+x \bar{y}^{2}\right)}{8|x|^{3}} \tanh (2 s|x|)-\frac{|y|^{2}}{4|x|^{2}} \operatorname{sech}(2 s|x|)\right) \mu(I)}
\end{align*}
$$

3. Positive definite restrictions of the Schrödinger kernel

To overcome the problem of the non-positive definiteness of the FKS kernel (??) we look for a restriction of the parameters $a, b \in \mathbb{C},|a|<2$, in the definition (??) of the exponential vectors $\psi_{a, b}\left(\chi_{I}\right)$. We notice that if $a, b, A, B \in \mathbb{C}$ are such that

$$
\begin{equation*}
\bar{a} B^{2}+\bar{b}^{2} A=0 \tag{3.1}
\end{equation*}
$$

i.e. if $(a, b),(A, B) \in S_{\lambda}$ where, for given $\lambda \in \mathbb{R}$,

$$
\begin{equation*}
S_{\lambda}:=\left\{(a, b) \in \mathbb{C}^{2} / a=i \lambda b^{2},|\lambda||b|^{2}<2\right\} \tag{3.2}
\end{equation*}
$$

then the FKS kernel (??) reduces to

$$
\begin{align*}
\left\langle\psi_{a, b}\left(\chi_{I}\right), \psi_{A, B}\left(\chi_{I}\right)\right\rangle & =\left(1-\frac{\bar{a} A}{4}\right)^{-\frac{\mu(I)}{2}} e^{\frac{\mu(I)}{4} \frac{\bar{b} B}{1-\frac{\bar{A} A}{4}}} \tag{3.3}\\
& =\left(1-\frac{\bar{a} A}{4}\right)^{-\frac{\mu(I)}{2}} e^{\frac{\mu(I)}{4}(\bar{b} B) \sum_{n=0}^{\infty}\left(\frac{\bar{a} A}{4}\right)^{n}}
\end{align*}
$$

The kernels $K_{i}: \mathbb{C}^{2} \times \mathbb{C}^{2} \rightarrow \mathbb{C}$ defined for $i \in\{1,2,3\}$ by

$$
\begin{align*}
& K_{1}((a, b),(A, B)):=\left(1-\frac{\bar{a} A}{4}\right)^{-\frac{\mu(I)}{2}} \tag{3.4}\\
& K_{2}((a, b),(A, B)):=\frac{\mu(I)}{4} \bar{b} B \tag{3.5}\\
& K_{3}((a, b),(A, B)):=\lim _{\rho \rightarrow \infty} K_{3, \rho}((a, b),(A, B)) \tag{3.6}
\end{align*}
$$

where, for $\rho \geq 1$,

$$
\begin{equation*}
K_{3, \rho}((a, b),(A, B)):=\sum_{n=0}^{\rho}\left(\frac{\bar{a} A}{4}\right)^{n} \tag{3.7}
\end{equation*}
$$

are positive definite, since K_{1} is the well-known $s l(2)$ kernel, K_{2} and $K_{3, \rho}$ are Heisenberg-type kernels and K_{3} is a limit of positive definite kernels . Therefore $K_{1} e^{K_{2} K_{3}}$, i.e. (??), is also a positive definite kernel.

For given $\lambda \in \mathbb{R}$ and $I \subset \mathbb{R}$ we introduce the notation

$$
\begin{align*}
\psi(b) & :=\psi_{i \lambda b^{2}, b}\left(\chi_{I}\right)=e^{i \lambda b^{2} B_{0}^{2}\left(\chi_{I}\right)} e^{b B_{0}^{1}\left(\chi_{I}\right)} \Phi \tag{3.8}\\
\langle\psi(b), \psi(B)\rangle_{\lambda} & :=\left\langle\psi_{i \lambda b^{2}, b}\left(\chi_{I}\right), \psi_{i \lambda B^{2}, B}\left(\chi_{I}\right)\right\rangle=\left(1-\frac{\lambda^{2}}{4}(\bar{b} B)^{2}\right)^{-\frac{\mu(I)}{2}} e^{\frac{\overline{\bar{b}} B}{4-\lambda^{2}(b B)^{2}} \mu(I)} \tag{3.9}
\end{align*}
$$

and its extension to simple functions $f=\sum_{j} b_{j} \chi_{I_{j}}$

$$
\begin{align*}
\Psi(f) & :=\Psi_{i \lambda f^{2}, f}=\prod_{j} e^{i \lambda b_{j}^{2} B_{0}^{2}\left(\chi_{I_{j}}\right)} e^{b_{j} B_{0}^{1}\left(\chi_{I_{j}}\right)} \Phi=e^{i \lambda B_{0}^{2}\left(f^{2}\right)} e^{B_{0}^{1}(f)} \Phi \tag{3.10}\\
\langle\Psi(f), \Psi(g)\rangle_{\lambda} & :=\left\langle\Psi\left(i \lambda f^{2}, f\right), \Psi\left(i \lambda g^{2}, g\right)\right\rangle=e^{-\frac{1}{2} \int \ln \left(1-\frac{\lambda^{2}(\bar{f} g)^{2}}{4}\right) d \mu} e^{\int \frac{\bar{f} g}{4-\lambda^{2}(f g)^{2}} d \mu} \tag{3.11}
\end{align*}
$$

If $f=b \chi_{I}$ then $\Psi(f)=\psi(b)$.

For $\lambda \in \mathbb{R}$ we define the (restricted) Schrödinger Fock space $\mathcal{F}_{\mathcal{S}}(\lambda)$ as the closure of the linear span of the exponential vectors $\Psi(f)$ defined in (??) with respect to the inner product $\langle\Psi(f), \Psi(g)\rangle_{\lambda}$ defined in (??).

The study of $\mathcal{F}_{\mathcal{S}}(\lambda)$ and the random variables that can be defined on it, is in progress.

References

[1] Accardi, L., Boukas, A.: Renormalized higher powers of white noise (RHPWN) and conformal field theory, Infinite Dimensional Analysis, Quantum Probability, and Related Topics 9, No. 3, (2006) 353-360.
[2] \qquad : The emergence of the Virasoro and w_{∞} Lie algebras through the renormalized higher powers of quantum white noise, International Journal of Mathematics and Computer Science, 1, No.3, (2006) 315-342.
[3] _ Fock representation of the renormalized higher powers of white noise and the Virasoro-Zamolodchikov- w_{∞} *-Lie algebra, J. Phys. A: Math. Theor., 41 (2008).
[4] _ Cohomology of the Virasoro-Zamolodchikov and Renormalized Higher Powers of White Noise *-Lie algebras, Infinite Dimensional Anal. Quantum Probab. Related Topics, Vol. 12, No. 2 (2009) 120.
[5] _ : Quantum probability, renormalization and infinite dimensional *-Lie algebras, SIGMA (Symmetry, Integrability and Geometry: Methods and Applications), 5 (2009), 056, 31 pages.
[6] Accardi, L., Boukas, A., Franz, U.: Renormalized powers of quantum white noise, Infinite Dimensional Analysis, Quantum Probability, and Related Topics, (1) (2006) 129-147.
[7] Accardi L., Lu Y. G., Volovich I. V.: White noise approach to classical and quantum stochastic calculi, Lecture Notes of the Volterra International School of the same title, Trento, Italy (1999), Volterra Center preprint 375, Università di Roma Torvergata.
[8] Feinsilver, P. J., Schott, R.: Algebraic structures and operator calculus. Volumes I and III, Kluwer, 1993.
[9] \qquad : Differential relations and recurrence formulas for representations of Lie groups, Stud. Appl. Math., 96 (1996), no. 4, 387-406.
[10] Feinsilver, P. J., Kocik, J., Schott, R.: Representations of the Schroedinger algebra and Appell systems, Fortschr. Phys. 52 (2004), no. 4, 343-359.
[11] _ Berezin quantization of the Schrödinger algebra, Infinite Dimensional Analysis, Quantum Probability, and Related Topics, Vol. 6, No. 1 (2003), 57-71.

