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Pumping through a Luttinger liquid ring threaded by a time-varying magnetic field
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We consider a quantum ring laterally connected to open one-dimensional leads described within the Luttinger
liquid (LL) model and subject to a time-dependent driving magnetic field φ(t). The closed loop is obtained by
connecting two points of the LL by a weak link, which is treated exactly to lowest order in perturbation theory.
Analytical results for the current across the weak link, as well as in the external circuit and inside the loop, are
obtained. We pay special attention to the case of smooth magnetic pulses such that the response of the system is
approximately adiabatic. We find that the response to the flux φ is linear only if φ is a small fraction of a flux
quantum φ0. By inserting whole quanta, a current goes in the external wires as two bunches, separated by a time
proportional to the length of the loop, and a net pumped current in the external wires is produced. This kind of
pumping is consistent with the predictions of the corresponding tight-binding model in the uncorrelated limit,
but is not destroyed by electron-electron interactions.
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I. INTRODUCTION

The magnetic properties of many kinds of nanoscopic
devices are attracting increasing attention due to the po-
tential applications in several fields such as spintronics,1

optoelectronics,2 quantum pumping, and quantum information
processing.3 A large amount of experimental results have been
obtained since the first small quantum rings were fabricated
by self-assembled growth of InAs on GaAs,4,5 and a complete
description of all contributions goes beyond the scope of a
single paper. In these systems, the nontrivial topology and
the reduced dimensionality are at the origin of a variety of
fascinating phenomena such as the Aharonov-Bohm effect,6

persistent currents,7 Coulomb blockade,8 and Kondo effect.9

From the theoretical side, the general subject of pumping
phenomena in mesoscopic or ballistic conductors has been
already addressed by several authors.10–15 While it is clear
by now that pumping is not per se an interaction effect,
the inclusion of electron-electron interactions in this problem
results in the breakdown of the Fermi liquid, and leads to the
formation of the so-called Luttinger liquid (LL).16 There is
already a considerable literature on the subject of pumping in
a LL.17–19 Finite length effects in the pumping properties of a
LL excited by weak oscillating barriers have been shown20 to
be negligible in the absence of interactions but to grow large
for strong repulsion.

Many properties of the quantum rings can be explained
within one-dimensional (1D) models in presence of a closed
loop; we here focus on those works in which LL rings
coupled to an external circuit have been studied. Symmetric
Mach-Zehnder–type geometries have been considered to show
striking dependencies of the Aharonov-Bohm amplitude on
temperature in the fractional quantum Hall regime,21 to study

the correlated interference pattern of the electric current,22 and
to propose an alternative probe to detect the LL state.23

It has been stressed lately24 that laterally connected rings
have unique properties. By laterally connected we mean
that the external circuit is tangential to the ring. With this
maximally asymmetric connection, a current in the wires
can produce a magnetic moment, which is not obtained by
substituting the quantum current in the semiclassical formula.
It turns out that the circulating current which produces the
magnetic moment is localized and does not shift charge from
one lead to the other. In contrast with the classical prediction,
the linear response current in the ring is always laminar and
produces no magnetic moment.24 By reversing the process
of creating a ring magnetic dipole by a bias-induced current,
it was observed that the failure of the linearity assumption
yields to the possibility of having nonadiabatic one-parameter
pumping.15 In particular, it has been shown that if the ring is
threaded by a time-varying magnetic field, an arbitrary amount
of charge can be transferred from one side to the other, owing
to the above-mentioned nonlinear behavior of the magnetic
moment as a function of the bias.

In this paper, we take our cue from earlier theoretical results
to extend the theory to encompass new systems with ringlike
geometries, including the possibility of weak links and above
all allowing for correlation effects. Indeed, a weak link behaves
like a barrier for the electrons and it is conceivable that such a
strong modification spoils the possibility of pumping current
in the outside circuit by this method. In order to deal with
the interactions, we consider a one-dimensional LL quantum
wire containing a closed loop obtained by a weak link and
threaded by a time-dependent magnetic flux. We calculate the
current generated in the external circuit and across the weak
link by switching on the magnetic field according to different
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protocols. For illustration, we insert the flux as a smooth pulse,
which is long enough to be approximately adiabatic. Analytical
results for the current across the weak link, as well as for the
current in the left and the right arms of the circuit and inside
the loop are obtained in a nonperturbative treatment of the
interaction by bosonizing the fermion operators. The results
of numerical evaluations are presented, aiming at a qualitative
understanding of the main features.

The case of smooth magnetic pulses, such that the response
of the system is approximately adiabatic, is considered in great
detail. We find that the response to the flux is linear only if
it is a small fraction of a flux quantum. By inserting whole
quanta, the current goes in the external wires as two bunches,
separated by a time proportional to the length of the loop, and a
net pumped current in the external wires is thus produced. We
find also that for weak correlations, this behavior is consistent
with the predictions of the corresponding tight-binding model.
Electron-electron interactions do not modify the trend unless
they are very intense.

The plan of the paper goes as follows. In the next section, we
outline the model obtained by introducing a weak link joining
two sites of an interacting one-dimensional quantum wire. In
Sec. III, we show how to calculate the current generated in
the external circuit and across the weak link by switching on
a magnetic field. The analysis of the results obtained applying
the formalism of the previous section is the object of Sec. IV.
Finally, in the last section, we provide a summary of our
treatment and draw conclusions.

II. MODEL

A. Hamiltonian and current operator

Keeping in mind the geometry depicted in Fig. 1, we start
by an interacting one-dimensional quantum wire described by
the Tomonaga-Luttinger Hamiltonian

HL = −
∑

α

iεαvF

∫
dx ψ†

α(x)∂xψα(x)

+ 1

2

∫
dx

{
2g2 ρR(x)ρL(x) + g4

[
ρ2

R(x) + ρ2
L(x)

]}
, (1)

where εα = ±1 for R and L electrons moving with velocity vF ,
ρR/L ≡ : ψ

†
R/LψR/L : is (in standard notation) the fermionic

density operator relative to the Fermi sea, and g2/4 are the
forward scattering couplings corresponding to interchirality
and intrachirality interactions, respectively. The closed loop
of radius R (see Fig. 1) is formed by bending the wire and by
connecting the sites at positions x = 0 ≡ A and x = 2πR ≡ B

with a weak link. The perturbation changes the topology. The
Hamiltonian describing the weak link is

Hλ = λeiϕ(t)
∑
α,β

ψ†
α(A)ψβ(B) + H.c., (2)

where the phase ϕ(t) represents the time-dependent magnetic
flux threading the ring.

The aim of this work is to calculate the current generated
in the external circuit and across the weak link by switching
on the magnetic field. The current operator across the link is

ϕ(t)

FIG. 1. (Color online) Top: Schematic illustration of the setup
geometry. Luttinger liquid wire (solid line) containing a closed loop
of radius R generated by a weak link λ (dashed line) joining the
sites at position 0 and 2πR. Bottom: The loop is threaded by a
time-dependent magnetic flux ϕ(t) given in Eq. (25) that is shown here
for nφ0 = 1. The electromoving force begins smoothly, is maximum
for t = 5t0, and ends smoothly after a duration 10t0.

given by

Jλ = iλeiϕ(t)
∑
α,β

ψ†
α(A)ψβ(B) + H.c. ≡

∑
α,β

Jαβ(A,B), (3)

while the current operator at a given position r in the wire
reads as

Jr = vF [ρR(r) − ρL(r)] ≡
∑

α

Jαr . (4)

For a nonperturbative treatment of the interaction, we bosonize
the fermion operators25,26

ψα(x) = η√
2πa

e−2
√

π iεαφα(x) eiεαkF x, (5)

where η is the anticommuting Klein factor, kF is the Fermi
momentum, and a a short-distance cutoff.

B. Mechanical analogy

To better grasp the physics, the analogy of the time-
dependent LL (without weak link) with a vibrating string is
useful. A transversally vibrating string with fixed ends X = 0
and L is the simplest continuous dynamical system.27 The
Lagrangian is

L =
∫ L

0

[
1

2
ρẏ2 − 1

2
T

(
dy

dx

)2
]

, (6)

where ρ is the mass per unit length and T is the tension.
The equation of motion is the wave equation ρÿ = T

d2y

dy2 and

the wave velocity is c =
√

T
ρ

. The canonical momentum is
 = ρẏ and the Hamiltonian reads as

H =
∫ L

0

[
(x)2

2ρ
+ 1

2
T

(
dy

dx

)2]
. (7)
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To see the analogy, we rewrite the Fermion operators (5) in
the form

ψα(x) = η√
2πa

eiβ(x)−iεαα(x) eiεαkF x, (8)

where

α(x) = √
π [φR(x) + φL(x)],

(9)
β(x) = √

π [φL(x) − φR(x)].

Further, we introduce the field

(x) = 1

π

dβ

dx
. (10)

One can show28 that the Luttinger liquid Hamiltonian can be
rewritten as

HL = v

∫
dx

[
πK

2
(x)2 + 1

2πK

(
dα

dx

)2
]

. (11)

In other terms, the interacting Tomonaga-Luttinger model
HL can be written in terms of a transversally vibrating elastic
string with density ρ = 1

πvK
and tension T = v

πK
; the wave

velocity is c = v. The amplitude of vibration is proportional
to the sum of the amplitudes of left and right movers. We
stress that the string vibrations correspond in the Tomonaga-
Luttinger liquid to density excitations with no single-electron
character.

This prompts a mechanical interpretation of the results of
the thought experiment. The flux excites the ring and plucks
the string. The vibration amplitude of the string is related to
the field α and to the density fluctuation of the LL. Indeed, it
is well known28 that

dα

dx
= −π [ρ(x) − ρ0]. (12)

On the other hand, using the continuity equation, one obtains

j (x) = vK(x). (13)

Therefore, the current is not related to the vibration amplitude,
but to the conjugate variable. We must distinguish the direction
of propagation of the disturbance from the direction of the
movers: the wave carrying an excess of right movers can
propagate to the left.

III. FORMALISM

In order to work out the solution, we go back to the
formalism of Sec. IA. In the following, we calculate the
time-dependent average of Jλ and Jr to the lowest order in
Hλ, namely,

jλ(t) = i〈�0|
∫ t

0
ds[Hλ(s),Jλ(t)]|�0〉, (14)

jr (t) = 〈�0|
{
−

∫ t

0
dt1

∫ t1

0
dt2[Hλ(t2)Hλ(t1)Jr (t)

+ Jr (t)Hλ(t1)Hλ(t2)]

+
∫ t

0

∫ t

0
dt1dt2Hλ(t1)Jr (t)Hλ(t2)

}
|�0〉, (15)

where |�0〉 is the ground state of HL and operators are
in the Heisenberg representation with respect to HL. The
above time-dependent averages have the following physical
meaning: since they are evaluated over the uncontacted ground
state of HL, their temporal evolution occurs as the weak
link was switched on at time t = 0. This is the so-called
partitioned approach29–31 to the time-dependent transport.
Since the function ϕ(t) describing the time-varying piercing
magnetic flux is completely arbitrary, we can first evolve the
system with ϕ(t) = 0 under the only effect of closing the ring
and let the system relax. After relaxation, say at time t0, we
switch on the magnetic flux and study the dynamics from
the transient to the steady state. This procedure simulates
with high accuracy the so-called partition-free scheme,29,30 as
demonstrated in Refs. 31–33. At any rate, since we insert the
flux slowly, the system has time to relax and all that happens
after a time much longer than t0 can be understood as taking
place in a partition-free scheme. In the next sections, we use
the bosonization method to calculate explicitly jλ(t) and jr (t).

A. Current across the weak link

The great advantage of the bosonization technique is that
the interacting ground state |�0〉 appearing in Eqs. (14) and
(15) is nothing but the vacuum of the boson operators bαq

entering in the mode expansion

φα(x) = iεα

∑
q>0

e−aq/2

√
2Lq

[C+b†αq − C−bᾱq]e−iεaq + H.c.,

(16)

where L is the length of the wire.34 The coefficients C± carry
all the information about the electron-electron interaction and
are given by

C± = 1 ± K

2
√

K
, (17)

with

K =
√

2πvF + g4 − g2

2πvF + g4 + g2

the Luttinger liquid (LL) parameter which measures the
interaction strength.16 Note that 0 < K � 1 for repulsive
interactions; K = 1 corresponds to the noninteracting case,
while small values of K indicate a strongly correlated regime.
It is worth recalling that in the Heisenberg representation
of Eqs. (14) and (15), the explicit time dependence of the
operators is accounted for by using bαq(t) = e−iqvt bαq , with

v =
√

(2πvF + g4)2 − g2
2

2π

the velocity of the interacting quasiparticles.
It is straightforward to verify that the current across

the link can be rewritten as jλ(t) = ∑
αβ jαβ(A,B,t), where

jαβ(A,B,t) is the average obtained by replacing the operator Jλ

in Eq. (14) with the operator Jαβ (A,B). In order to evaluate the
different contributions jαβ(A,B,t), it is convenient to express
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them in terms of the fundamental correlator

gαβγ δ(xyzw,st) = 〈�0|ψ†
α(x,s)ψβ (y,s)ψ†

γ (z,t)ψδ(w,t)|�0〉.
(18)

The explicit evaluation of g requires some lengthy bosoniza-
tion algebra, which we here omit. For instance, the current
jRR(A,B,t) reads as

jRR(A,B,t) = −2λ2
∫ t

0
ds Re{gRRRR(ABAB,st)ei[ϕ(s)+ϕ(t)]

+ gRRRR(BAAB,st)ei[−ϕ(s)+ϕ(t)]

+ gLLRR(ABAB,st)ei[ϕ(s)+ϕ(t)]

+ gLLRR(BAAB,st)ei[−ϕ(s)+ϕ(t)]

− gRRRR(ABBA,st)ei[ϕ(s)−ϕ(t)]

− gRRRR(BABA,st)ei[−ϕ(s)−ϕ(t)]

− gLLRR(ABBA,st)ei[ϕ(s)−ϕ(t)]

− gLLRR(BABA,st)ei[−ϕ(s)−ϕ(t)]}, (19)

while the current jRL(A,B,t) is

jRL(A,B,t) = −2λ2
∫ t

0
ds Re{gRLRL(ABAB,st)ei[ϕ(s)+ϕ(t)]

+ gRLRL(BAAB,st)ei[−ϕ(s)+ϕ(t)]

+ gLRRL(ABAB,st)ei[ϕ(s)+ϕ(t)]

+ gLRRL(BAAB,st)ei[−ϕ(s)+ϕ(t)]

− gRLRL(ABBA,st)ei[ϕ(s)−ϕ(t)]

− gRLRL(BABA,st)ei[−ϕ(s)−ϕ(t)]

− gLRRL(ABBA,st)ei[ϕ(s)−ϕ(t)]

− gLRLR(BABA,st)ei[−ϕ(s)−ϕ(t)]}. (20)

The contributions jLL(A,B,t) and jLR(A,B,t) are obtained by
exchanging L ↔ R in the above expressions.

B. Current in the wires

The evaluation of the current at a given point of the wire
is more involved because there are three different terms in
Eq. (15), and because each correlator involves three one-
particle operators. Let us denote by S, T , and V the averages
in three lines of Eq. (15), and let us evaluate each contribution
separately.

We first observe that in the bosonization language, the
chiral current operator reads as Jαr = εαvF ∂rφα(r)/

√
π . The

contributions S and T can be expressed in terms of the
fundamental correlator

G
μ
αβγ δ(xyzwr,t1t2t) = 〈�0|ψ†

α(x,t1)ψβ(y,t1)ψ†
γ (w,t2)

×ψδ(w,t2)∂rφμ(r)|�0〉, (21)

the explicit calculation of which is cumbersome and is not
shown here (the same also holds for the correlator F , see
following). Thus, the contribution S reads as

S(r,t) = −λ2vF√
π

∑
αβμ

εμ

∫ t

0
dt1

∫ t1

0
dt2

× {
G

μ
ααββ(ABABr,t1t2t)e

i[ϕ(t1)+ϕ(t2)]

+G
μ
ααββ (ABBAr,t1t2t)e

i[ϕ(t1)−ϕ(t2)]

+G
μ
ααββ (BAABr,t1t2t)e

i[−ϕ(t1)+ϕ(t2)]

+G
μ
ααββ (BABAr,t1t2t)e

i[−ϕ(t1)−ϕ(t2)]

+ δα,βG
μ

αᾱβ̄β
(ABABr,t1t2t)e

i[ϕ(t1)+ϕ(t2)]

+ δα,βG
μ

αᾱβ̄β
(ABBAr,t1t2t)e

i[ϕ(t1)−ϕ(t2)]

+ δα,βG
μ

αᾱβ̄β
(BAABr,t1t2t)e

i[−ϕ(t1)+ϕ(t2)]

+ δα,βG
μ

αᾱβ̄β
(BABAr,t1t2t)e

i[−ϕ(t1)−ϕ(t2)]
}
, (22)

whereas T is simply obtained as T (r,t) = S∗(r,t).
The contribution V instead involves the different correlator

F
μ
αβγ δ(xyzwr,t1t2t) = 〈�0|ψ†

α(x,t1)ψβ(y,t1)∂rφμ(r)

×ψ†
γ (w,t2)ψδ(w,t2)|�0〉, (23)

in terms of which we have

T (r,s) = λ2vF√
π

∑
αβμ

εμ

∫ t

0

∫ t

0
dt1dt2

× {
F

μ
ααββ(ABABr,t1t2t)e

i[ϕ(t1)+ϕ(t2)]

+F
μ
ααββ (ABBAr,t1t2t)e

i[ϕ(t1)−ϕ(t2)]

+F
μ
ααββ (BAABr,t1t2t)e

i[−ϕ(t1)+ϕ(t2)]

+F
μ
ααββ (BABAr,t1t2t)e

i[−ϕ(t1)−ϕ(t2)]

+ δα,βF
μ

αᾱβ̄β
(ABABr,t1t2t)e

i[ϕ(t1)+ϕ(t2)]

+ δα,βF
μ

αᾱβ̄β
(ABBAr,t1t2t)e

i[ϕ(t1)−ϕ(t2)]

+ δα,βF
μ

αᾱβ̄β
(BAABr,t1t2t)e

i[−ϕ(t1)+ϕ(t2)]

+ δα,βF
μ

αᾱβ̄β
(BABAr,t1t2t)e

i[−ϕ(t1)−ϕ(t2)]
}
. (24)

Collecting all contributions together, we finally have jr (t) =
S(r,t) + T (r,t) + V (r,t). We recall that the above functions
allow us to evaluate the current in the left and right arms of the
circuit, as well as inside the loop. To this end, we have to set
r < 0, r > 2πR, and 0 < r < 2πR, respectively (see Fig. 1).

C. Switching protocol

The numerical results presented in the next section are
obtained by choosing the following smooth protocol for
switching nφ0 flux quanta (see Fig. 1):

ϕ(t)

nφ0

=

⎧⎪⎨
⎪⎩

0, t < 0

2π
[
10

(
t
td

)3 − 15
(

t
td

)4 + 6
(

t
td

)5]
, t < td

2π, t > td

(25)

where td is the duration of the switching. The LL has a
characteristic time t0 (see below), and in order to avoid over-
heating the sample we opt for td = 10t0; the switching protocol
is smooth and slow, and we may expect an approximately
adiabatic response of the system.

IV. RESULTS AND DISCUSSION

A. Propagation of the pulse

In this section and in the rest of the paper,35 lengths are
expressed in units of x0 = 10a, time in units of t0 = 10a/vF ,
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current in units of j0 = vF /(10a), the Fermi momentum in
units of k0 = 1/(10a), and the renormalized velocity v in units
of vF . For simplicity, in the numerical results we have assumed
v = vF . The ring circumference is C ≡ 2πR = 20 and the
Fermi momentum is kF = 1, but the results depend weakly on
the latter.

First of all we note that even in the presence of the weak
link it makes sense to speak of left and right movers (referring
to the limit when the link disappears). In the ring, a clockwise
current means an excess of right movers. By continuity, this
implies that in the weak link a clockwise current means j < 0.

In Fig. 2, we show typical results obtained by evaluating
numerically the functions derived above with nφ0 = 2. The
model is definitely interacting, with LL parameter K = 0.6.
In the top left panel, we see the behavior of the current right at
the weak link. As dictated by the sign of the magnetic field, the
current goes clockwise with a spike-shaped transient behavior.
The shape and width of the peak with a minimum about
t = 5t0 reflect the behavior of − dϕ(t)

dt
. When this response to

the electromotive force (emf) is over the current vanishes until
at time t = 30, at which some excitation is again seen. This
excitation has traveled with unit speed v = 1 as expected from
the string analogy and returns to the weak link at time C/v,
i.e., after completing a tour of the ring. The top-right panel of
Fig. 2 shows the current calculated at x = 5 in the right wire.
Nothing is seen initially for it takes 5t0 for the signal to arrive
there from a source which is apparently located at the weak
link. Then, the negative spike is seen to arrive. This is followed
after a 20t0 = C/v delay by a roughly opposite signal. In
Ref. 15, a flux threading a laterally connected tight-binding

FIG. 2. Current versus time for nφ0 = 2 at various positions in
the system. The emf is nonzero only up to t = 10. A rather strong
repulsive electron-electron interaction is assumed (K = 0.6). The
dark squares indicate the position where the current j (t) is measured
in each panel. Top left: at the weak link. Top right: in the right wire at
x = 5x0. The same j (t) holds in the left wire at x = −5x0 and there
is full left-right symmetry. Middle left: at 1

4 of the ring; the same
result is obtained at 3

4 of the ring. Middle right: in the middle of ring.
Bottom left: 1

8 of the ring. Bottom right: at 99% of ring.

ring was shown to pump current in the external circuit. Here,
the pumped current is largely canceled by the second spike.
The difference is not due to the presence of interactions; the
main reason is that in Ref. 15 a perfectly regular ring was
considered, while here the weak link suppresses the circulating
current. However, in practice the pumping is still possible.
One can delay at will the opposite signal by making C larger
and larger, and at the limit one gets charge pumping. One
can also get the pumping by introducing in the circuit a
nonlinear rectifying element. Remarkably, in the left wire at
the symmetric location x = −5x0, the current j (t) is the same
(we stress, the same, not opposite). The effect of the flux in the
ring is that of producing the same current in both wires, with a
burst of left current followed by a roughly opposite burst after a
time C/v.

Next, let us have a look on what happens inside the ring.
There, an excess of right movers (j > 0) is seen. The wave
propagates symmetrically towards the right and the left in the
external circuit. As noted above, the direction of propagation
of the disturbance does not tell the direction of the movers: the
wave carrying an excess of right movers can propagate to the
left.

In the middle left panel, the current is evaluated at a quarter
of the ring, where an excess of right movers arrives in two
waves. The first maximum arrives at t = 10 = 5t0 + C

4v
. Since

5t0 is the time it takes to the emf to reach the maximum, it
is clear that these right movers started from the weak link
clockwise. The second wave has a maximum at t = 5t0 + 3C

4v
.

They are still right movers. However, they are also roundabout
movers that arrived the other way around. In the same way,
we understand how an identical pattern is obtained at 3

4 of
the ring (not shown). In the middle right panel, the current
is calculated at the center of the ring, where the two waves
arrive together from opposite sides. Now, it is clear that the
burst of right movers that we see arriving at 1

4 ring at t = 10
at half ring at t = 15t0 and at 3

4 ring t = 20t0 are the same
that at t = 30t0 arrive at x = 5x0 and the symmetric burst at
x = −5x0 is formed by the counterpropagating right movers
that we observed in the ring. The bottom-left panel shows that
at 1

8 of the ring, the story is the same as at 1
4 ring, but everything

happens earlier. The last picture of Fig. 2 shows that at the end
of the ring the current is not the same as in the first picture
because some of it ends into the external circuit.

The scheme of the complete evolution is illustrated in
Fig. 3 aiming at an overall understanding of the phenomena.
From the whole of Fig. 2 one can make up a clear picture.
The first negative pulse in Fig. 2 top right (x = 5x0) comes
directly from the right end of weak link, and is represented
by the black arrow in Fig. 3 top pointing to left. The second
positive pulse in the right wire comes from arrow in the ring
arising from the left side of the weak link and arrives after
a tour of the ring still pointing to the right (Fig. 3 bottom).
Similarly, the second positive pulse in the left wire arises from
the arrow close to the right end of the weak link in Fig. 3
top panel.

B. Flux dependence

We now address the question of how the current response
depends on the total flux. In Fig. 4, we show that the
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FIG. 3. (Color online) Pattern of the currents (black arrows) and
of the propagation of the disturbance (block arrows). Upper: the
scheme during or shortly after the flux penetration. Lower: the long-
time propagation of the right movers in the wires. The black arrows
that in the upper panel are in the ring have reached the wires without
crossing the weak link. Here, we have taken K = 0.6.

dependence of the current on nφ0 is linear for nφ0 � 1,
although for nφ0 = 0.2 some deviations can already be noticed,
particularly in the strong suppression of a long-time tail which
follows the initial response to the emf and the feature at
t = C/vF arising from the excitation that runs through all
the ring. At higher nφ0 , the response is less than proportional
to the flux and the general shape of the initial response during
the emf pulse becomes stubby, while the roundabout structure
becomes much more complex.

FIG. 4. Current at the weak link versus time for various nφ0 .
(a) nφ0 = 0.1; (b) nφ0 = 0.2; (c) nφ0 = 1; (d) nφ0 = 2; (e) nφ0 = 5;
(f) nφ0 = 10. Here, we have taken K = 0.6.

FIG. 5. Current at the weak link versus time as obtained using
the parameters given in the text, with nφ0 = 1. Left: K = 1. Right:
K = 0.6.

C. Comparison with the noninteracting case

In Fig. 5, the current at the weak link for K = 1 non-
interacting case (left) is compared to the K = 0.6 response
(right) (moderately strong repulsive interaction). In both cases,
nφ0 = 0.1. The noninteracting system gives an almost three
times stronger response up to t = td when the phase depends on
time, and a strong sharp spike at t = 20 when the carriers arrive
after covering the ring. In the interacting case, the response at
t = 20 is wider and more complex with a change of sign and
a long tail. The different behavior can be rationalized since
the system must take energy from the magnetic field and one
knows that the excited spectrum of the system depends on the
interaction parameter K .

In order to convey an impression of the effects of the
interaction, in Fig. 6 we show the evolution with nφ0 = 1 of the
current at x = 5x0 along the right wire at different K values

FIG. 6. (Color online) Current at x = 5x0 in the right wire versus
time as obtained using the parameters given in the text. Top panel
(note the different scale): heavy line: K = 0.6; light line: K = 1.
Bottom panel: heavy line: K = 0.3; light line: K = 0.4. The current
at x = −5x0 in the left wire is the same.
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(or at at x = −5x0 along the left wire). In the top panel, we
compare the noninteracting case (K = 1) with a repulsive case
(K = 0.6). The first spike of current reaches the observation
point with unit speed from the weak link and is followed by the
now familiar roundabout spike. The (approximately adiabatic)
uptake of one flux quantum ensures that the ring returns
close to the ground state after the disturbance. Although the
difference between the two curves is evident, we may say that
the interactions entail a modest decrease of the current while
the electromoving force is on; one can notice some change
in the structure of the peak around t = 20. No significant
excitation remains after this time.

In the bottom panel, we compare (K = 0.4) with (K =
0.3). Now, the repulsion is quite strong and the decrease in K

progressively reduces both spikes of current. In terms of the
mechanical analogy of Sec. II B, we find that increasing the
tension and the mass density of the string, the amplitude of
the oscillation decreases. Moreover, the system has memory
and the first spike at t = 5x0

v
has a tail that lasts until the

roundabout current arrives at time 2πR+5x0
v

. Nevertheless, there
is pumping until then, and this arrival can be delayed by
increasing R or avoided at all by inserting a switch. The most
significant conclusion is that the effect of the interactions does
not seriously hamper the behavior predicted in Ref. 15. For
very strong interactions (K < 0.5), the results of the present
approach can not perhaps be taken too literally because of
known technical problems,17,19 which are beyond the scope
of this paper. At any rate, the qualitative prediction is still
that a one-parameter pumping is achievable as explained
above.

D. Comparison with the tight-binding model

The LL model differs so much from the tight-binding
description that even in the K = 1 case one can not expect
any quantitative agreement. However, since both theories aim
to describe the same system, it would be worrying if no analogy
existed at all. Therefore, we considered a tight-binding model
with a Na atom ring. All the sides of the polygon correspond
to a hopping integral τ = 1 except one with a weak link τ/100
connected to 200 atom wires. In the wires, we take τ = 1 and
we measure times in 1/τ units. The finite length of the wires
causes a rebound current after a long enough time so that we
can safely forget about it.36 The band is taken as half-filled.
For inserting the flux in the ring, the same protocol as in
Eq. (25) is employed. The results are shown in Fig. 7 and can
be compared to Fig. 4(c). There are obvious differences. The
pattern is complicated by a single discrete excitation frequency
of order 2. The response during the emf is positive but changes
sign while the phase is still increasing. The analogies are a
burst of current during the emf and a feature occurring with a
delay ∼20 corresponding to the times that it takes the carriers
to go around the ring. Moreover, there is a net pumping of
current as discussed in Ref. 15 despite the weak link. This
feature remains true in the Luttinger model too. We then see
that tight-binding and LL approaches describe basically the
same physics, although the two descriptions imply different
excitations and different state densities.

FIG. 7. (Color online) Current at the weak link versus time as
obtained using the tight-binding model with nφ0 = 1.

V. SUMMARY AND CONCLUSIONS

We have considered an interacting quantum ring where
a time-dependent magnetic flux creates a magnetic moment
and through it excites a current in an external circuit. In
order to excite a current in a ballistic circuit by threading an
external magnetic field through a ring, the geometry must not
be symmetric. In this paper, the laterally bonded ring is realized
by twisting an interacting Luttinger liquid wire. The presence
of a weak link allows us to solve the problem in second-order
perturbation theory. The weak link also makes a major physical
difference with respect to a perfect ring because both ends act
as sources of excitations of the elastic string analog of the
Luttinger liquid. In the ring and in the wires, two pulses of
current are observed, coming from both ends of the weak link;
the roundabout current coming from the far end arrives with a
delay proportional to the ring circumference. While the elastic
string description is specific of the Luttinger liquid, at a more
qualitative level, something similar occurs in the tight-binding
model as well, where the pulse coming from the far end of the
weak link is also predicted.

For illustration we have chosen to insert the flux as a smooth
pulse, which is long enough to be approximately adiabatic.
Indeed, when the inserted flux is an integer number of flux
quanta, the ring remains close to the ground state and nothing
happens in the wires when the corresponding current pulses
have passed. On the other hand, when a fraction of a flux
quantum is introduced, the current pulses have a tail due to the
persistent excitations in the ring. The response to the magnetic
flux is linear when the number nφ0 of inserted flux quanta is
much less than unity; otherwise, the response grows less than
linearly and the shape of the current as a function of time is
different at one and two fluxons. There is a general but gradual
decrease of the current with increasing interactions.

We have suggested elsewhere15 by a tight-binding model
that in the ballistic regime one can pump current in a circuit
by exciting a ring by an external time-dependent magnetic
field. The main result of this paper is that the inclusion of
electron-electron interactions and of the weak link modifies
many details but does not hamper this interesting behavior.
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