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We develop a representation free stochastic calculus based on three inequalities
(semimartingale inequality, scalar forward derivative inequality, scalar conditional
variance inequality). We prove that our scheme includes all the previously
developed stochastic calculi and some new examples. The abstract theory is applied
to prove a Boson Levy martingale representation theorem in bounded form and a
general existence, uniqueness, and unitarity theorem for quantum stochastic
differential equations.  © 1992 Academic Press, Inc.

0. INTRODUCTION

Stochastic calculus is a powerful tool in classical probability theory.
Recently various kinds of stochastic calculi have been introduced in quan-
tum probability [18, 12, 10, 21]. The common features of these calculi are:

— One starts from a representation of the canonical commutation
(or anticommutation) relations (CCR or CAR) over a space of the form
L*(R, ,dt; X) (where & is a given Hilbert space).

— One introduces a family of operator valued measures on R,
related to this representation, e.g., expressed in terms of creation or
annihilation or number or field operators.
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-— One shows that it is possible to develop a theory of stochastic
integration with respect to these operator valued measures sufficiently rich
to allow one to solve some nontrivial stochastic differential equations.

— One tries to use the above theory to prove an operator form of the
It6 formula (usually stated in the form that the weak or strong product of
two stochastic integrals is a sum of stochastic integrals).

The basic application of the theory is the construction of unitary
Markovian cocycles (in the sense of [1]) as solutions of quantum
stochastic differential equations, which provides, via the quantum
Feynman—Kac perturbation scheme, a new nontrivial generalization of the
Schrédinger equation as well as a dilation in the sense of Kiimmerer [24].
This stage of development of the theory has been reached up to now only
by the operator approaches of [18] for the Boson Fock space on L*(R )
and subsequently of [10] for the Fermion case, of [19] for the universal
invariant case, and of [227] for some more general quasi-free case (cf. also
the kernel approach in [21, 27]).

The vector approach of [11,12] has the advantage of underlining the
analogy between the classical and the quantum theory of stochastic
integration, but pays it with the lack of a satisfactory Itd formula. On the
other hand, the Hudson-Parthasarathy approach can produce such a
formula by making heavy use of very specific properties of the particular
representation chosen and of the operators involved, such as for example:
the continuous tensor product structure, the factorization property of the
coherent vectors, the explicit form of the action of the creation, annihila-
tion or number process on the coherent or number vectors,.... This implies,
not only that one has to change techniques every time one changes
representation, but also that one loses the contact with the classical
stochastic integral, because these properties do not play any role in the
definition of the classical stochastic integral. In [2] the program of
constructing a theory of stochastic integration which could unify the classical
as well as the several different quantum theories developed up to now, was
formulated.

The basic motivation of this program, independent of the esthetic
motivation, related to the unification of the existing theories, was provided
by the theory of quantum noise {3, 4] in which the following two problems
arise:

(i) To develop a stochastic calculus for general quantum filtrations
with sufficiently strong “chaoticity properties” (cf. [3, Sect.2]). In
particular we do not want our theory to be limited to continuous tensor
products (or graded tensor products) nor to expected filtrations, nor to
filtrations commuting or anticommuting with the past.
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(ii) To classify the basic “quantum noises”, ie., to look for some
class of “basic quantum noises” which could play, in the quantum case, the
role of “fundamental archetypes” played, in the classical case, by the
Wiener and the Poisson process.

The solution of Problem (i) above is necessary if we want to apply
stochastic calculus to quantum field theory, where several important exam-
ples of non factorizable representations arise. The solution of problem (ii)
is related to the development of sufficiently powerful “representation
theorems” (cf. [20, 23] for the classical case and [7, 9, 16] for the quantum
case) whose final goal should be to produce a full classification of all the
canonical forms of the quantum noises. It is clear that, if we want to
reconstruct the properties of a quantum noise from some moment and
martingale requirements, we cannot start from stochastic calculus based on
some particular property of the representation, but on the contrary, the
form of the representation should be deduced from the statistical assump-
tions.

The realization of this program had to undergo several preliminary steps:
from the pioneering attempt of [2,5,6], to the individuation of the
Dellacherie-Letta-Protter approach to stochastic integration as the natural
bridge between the classical and the quantum theory [5, 157, the develop-
ment of a satisfactory notion of brackets (mutual quadratic variation) and
the consequent “stochastic integration independent Itd tables” [8, 97].

The present paper constitutes an attempt to bring this program to a
conclusion by producing a theory of stochastic integration which:

(1) includes all the known examples.
(2) is applicable to examples to which the previous theories were not.

(3) allows us to prove an It6 formula without the assumption that
the increments of the basic integrators commute (or anticommute) with the
past.

The basic ideas of our approach are the following: In Section (2) we
introduce an abstract notion of operator semimartingale and the we single
out a class of semimartingales with particularly good properties (the
integrators of scalar type). Intuitively a semimartingale is good if the
stochastic integrals of sufficiently regular processes are still semimar-
tingales. We single out two easily verifiable conditions which guarantee
that a semimartingale is an integrator of scalar type:

(i) the scalar forward derivative inequality (3.9).
(ii) the scalar conditional variance inequality (Definition (3.5)).
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We fix then a family of integrators of scalar type, called the “basic
integrators,” and all the stochastic integrals we consider are meant with
respect to this family of integrators.

The inequalities (i) and (ii) depend on the domain on which the basic
integrators are considered. The known examples of basic integrators are
creation, annihilation, and number processes with respect to a given quasi-
free (gaussian) representation of the CCR or of the CAR. The domains on
which these integrators are usually considered are the linear span of the
coherent vectors [187] or the n-particle vectors {10] or the invariant
domain of [8] which combines both the previous domains. In all these
domains the inequalities (i) and (ii) are easily verified by direct calculation
(on the domain of coherent vectors they assume a particularly simple
form). The verification of these inequalities is purely computational and we
do not include the lengthy but elementary calculations involved. In
Section 5 we prove an existence and uniqueness theorem for stochastic
differential equations, driven by integrators of scalar type, with bounded
coefficients adapted to the initial space.

In Section 6 we recall from [8,9] the notion of Meyer bracket (or
mutual quadratic variation) of two semimartingales, and in Section 7 we
prove a weak Itd formula for two integrators of scalar type admitting a
weak Meyer bracket.

In order to prove the unitarity condition for the solution of a stochastic
differential equation (Section 9), we need two additional conditions:

(iii) a p-commutation condition (cf. Definition (6.2)),

(iv) the It6 table of the basic integrators (in the sense of (6.5)) has
scalar structure coefficients.

Again these two conditions are verified in all the known examples.
Moreover it is an easy exercise (using the results of {8, 15]) to prove that
the free Euclidean Boson field satisfies all the conditions (i),..., (iv). This
provides in particular an example of a nonfactorizable space where
stochastic integration can be developed. Even when restricted to the case
when the 1-particle space is some I” (L,(R,,dr; #"), the results of
Sections 6 and 7 are stronger than the known ones, since they hold on the
larger invariant domain of [8].

In Section 8 we show how the Hermite polynomials arise from iteration
of quantum stochastic integrals satisfying a Boson commutation relation;
this extends a well-known result in classical probability theory, but at the
moment we have no Fermion analogue of this result.

In Section 9 we prove a Boson type Lévy theorem for a single semimar-
tingale. The previous results in this direction could bypass the problem of
the nonexistence of a representation free stochastic calculus either using a
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formulation of the problem which broke the analogy with the classical case
[7,16] or by exploiting the very specific properties of the Fermion
commutation relations [9]. In particular, the present technique allows us
to obtain the CCR in the Weyl form, while in [6] only the simpler
unbounded form of the CCR was obtained.

Finally, in Section 10 we prove that the example recently considered by
Boukas, and which is not included in the previously considered examples
can be easily included in our theory. This inclusions allows us, in
particular, to solve some problems left open in Boukas approach.

1. SIMPLE STOCHASTIC INTEGRALS

Throughout the paper we shall use the following notation:

— J is a complex separable Hilbert space,
— %(5#) is the algebra of all bounded operators on #,
— 9 is a total subset of #,

— (#H7),er, 18 an increasing family of W*-algebras of operators
on 3%,

— &/ is a W*-algebra of operators in 3 such that o/, < .o/ for all
teR .,

— &/ ;7 is the commutant of .«7,; in #(X),

— for each vector (e 2, we define #/1({) to be the closure of the
subspace [,£]= {al :ae o},

— eél is the orthogonal projection onto #;(¢),

— Z(2; #) is the vector space of all linear operators F with domain
containing 2 such that the adjoint operator F* also has £ in its domain.
So for Fe £(2; #) we have that

{n, FE>=(F*n, &>, forall & ne@. (1.1)

ExampLes. The following choices of # and 2 give the most studied
examples of quantum stochastic calculi. In the Boson Fock space
quantum stochastic calculus developed in [18], s is the Hilbert space
h® I'(L*(R,)), where h is a complex separable Hilbert space (the initial
space) and I'(L*(R,)) the symmetric Fock space over L*(R , ) moreover &
is the set of vectors u® y(f), where ueh and W(f) is the exponential (or
coherent) vector with test function f. In the Fermion Fock space quantum
stochastic calculus developed in [10], # is the tensor product of a
complex separable Hilbert space 4 with the antisymmetric Fock space
over L*(R, ) and 2 is the set of n-particle vectors.
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DEerINITION 1.1. A random variable F is an element of £ (%, #).

DEFINITION 1.2. A stochastic process in ', indexed by R _, is a family
(F,),s o of random variables such that for each n € % the map teR, —» F,n
is Borel measurable. Alternatively, a stochastic process indexed by R, can
be looked at as a map teR, — F(t)=F,e Z(2;#) with the above
mentioned measurability property. In this paper we shall only deal with
processes indexed by (subintervals of) R .

We will use indifferently the notation F, or F(t). If each F, is a bounded
operator and moreover, for each T'< +oc

sup [ F]l, < 400
re[0,T]

then the process F is called locally bounded. 1f each F, has the form
FI =f(t) : 1,

where f is a complex valued measurable function and 1 is the identity
operator in B(H'), then F is called a scalar process. Two processes will be
considered equivalent if they coincide on £. Due to (1.1) each stochastic
process (F,) uniquely defines the adjoint process (F,*).

DerINITION 1.3, For all teR, we denote by 2, the linear span of
12. We say that an operator F is t-adapted to <4 if D(F)=9,,
D(F*)22; and if

Faé=a, FE and F*a, ¢=a, F*¢ (1.2)
for all ;e &/, and (e .

Clearly, if F is a t-adapted operator, then it is in £(2, #) and the
restriction F*| . of F* to 2/ is again a r-adapted operator. Moreover, if
F is a t-adapted operator and s <, then F|,, is an s-adapted operator.

The following proposition clarifies the notion of adaptedness.

ProPOSITION 1.4.  If F is a t-adapted operator then the closure F of F is
affliated with <f ;1 and there exists a sequence (F"), in o/ such that (F™),
and (F"*), converge to F and F* respectively strongly on 9. Conversely, if
(F™), and (F™*), are sequences in o/ ; strongly convergent on 9, then the
operator defined by

D(F)={¢leH# | (F™E), and (F"*E), converge )
FE= lim F"¢

n— xC

is a t-adapted operator.
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Proof. Since F is a random variable, it is closable. Let F denote the
closure of F defined on the domain 2 ~. We know that &/ ;2 is contained
in D(F). Consider xe 2~ and a sequence (¢,), in the linear span of £ such
that

lim &, =x, lim F¢,=Fx.

n-— o n-— o

For all a’ € o/ ;4 the sequence (a’¢,), converges strongly to a’x therefore we
have

lim Fa'é,= lim a'F¢,=a'Fx.
So a'xe D(F) and Fa'x=a'Fx. This shows that F is affiliated with ;.
The closure F of F can be decomposed as the product U|F| of a partial
isometry U in o/,; and the positive self-adjoint |F|. Let (E(1)),5, be the
spectral family of |F|; for all A>0, E(4) is an element of /. For each
integer n put

Fo = Uf" 1 dE().
0

Clearly F(n) is an element of </, its adjoint is given by
Foox= " 7 dE()U*
0

and F" converges strongly to F on the domain 2 < D(|F|)= D(F).
Moreover we know that F*=(F)*=|F|U* so, for all {€%, we have
U*¢e9 (|F|) by the definition of random variable. Therefore F*¢
converges strongly to F*£. This completes the proof of the first part of the
proposition. Conversely let (F™), and F be as above. We show first that
F is a random variable. Indeed 2 = D(F) and for any & € D(F) we have

CFE,n) = lim (F¢ q) = lim (& F"'* ).

Hence 7 is in the domain of the adjoint F* of F and F*n=1lim, ,  F™*y,
Now take {€ 2 and a’ € o/ ;;. We have

lim FPa’é= lim a'F™¢=a'FE

n— 0 n— oc
lim FW*g'é = lim a'F"W*E=a F*E
n-— oo n— o

This completes the proof. ||
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A sequence (F,) of t-adapted operators is said to converge strongly on &
if for any vector £e€ 2 the sequences (F"¢), and (F"'*&), converge in
norm in #. Note that the sequences then also converge on ;. Denote
now by F the process given by D(F,)= 2, and F¢=1lim, F"¢ for E€ 2,
Then one easily checks that F is again t-adapted. Hence the strong limit on
2, of a sequence of t-adapted operators is a t-adapted operator.

DEFINITION 1.5. A stochastic process (F,), . is adapted to the filtration
(1) 50 if F, is t-adapted for all 1>0. We shall denote by & the vector
space of all simple adapted processes, i.c., those adapted processes (F,)
which can be written in the form

Fi= 3 Arnnn(DF, (1.3)
k=1

for some finite integer n and with 0< 1<, < --- <t,, , < o0.

Remark. Let, in the above notations, # =L*Q, %, P), where
(2, #, P) is a probability space with a past filtration (% ,) and let
= L*(Q, F 5, P) acting by multiplication on #. Let 2 =/ -1 (1 is the
constant function on Q equal to 1) and let e:] =e,y. Then, since e,; € oy,
(1.2) implies that

M. =e M, on % (14)
and, in the classical case, the notion of adaptedness introduced in
Definition (1.3), is equivalent to the usual one.

In the following all the processes we shall consider will be adapted to the
filtration (), therefore we call them simply “adapted.”
DEFINITION 1.6.  An additive process is a family M = (M(s, t))o<,<, of
random variables such that:
(i) for all s<tin R_, the operator M(s, t) is a r-adapted operator
(i) forall r,s, t with r<s<t

M(r, t)=M(r,s)+ M(s, t); M(t, t)=0 (1.5)

on Z (and hence also on .&/;;-2 = %).

Remark. To every additive process (M(s, f))o<;<, We associate the
adapted process M(t)= M(0,t) (¢>0). Conversely, to every adapted
process (M,) we associate the additive process M(s, t) = M (1) — M(s). This
correspondence characterizes the process M(¢) up to the random variable
M(0)= M, called the initial value of the process.
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DEerINITION 1.7.  An additive process M is called regular if

VEe D, Vs<1: H,1(E) S D(MH(s, 1)) (1.6)
Vs<t:M¥s, 1) 2 <9, (1.7)

where M denotes the closure of M and M¥ stands for either M and M*.

LEmMMA 1.8. Let M be a regular additive process and suppose that 2, is
a core for M(s, t)* for all s<t. Define

M™*(s, )= M(s, 1)*| g, (1.8)

Then M™ is again a regular additive process.

Proof. Clearly, since 2 <D(M(s, t)*) for all s<t, we obtain the
additivity of M * from the additivity of M.

Now choose s<t, {2 and a;€ .o/;. Then, since M(s, t) is t-adapted,
we have

M*(s, al=Ms, ) al=aM(, D) é=a,M* (s, )£, (1.9)

Moreover, as M ™* (s, 1)< M(s, t)*, we have M *(s, 1)* 2 M(s, t). Hence,
2,2 D(M™ (s, t)*) and

M* (s, 0)* a;l=M(s, ) ai=a;M(s, ) E=a;M* (s, t)* & (1.10)

We conclude that M™*(s,¢) is t-adapted. Finally, as &, is a core
for M(s, t)*, we know that D(M*(s, t))=D(M(s, 1)*) 2 #,,(¢) for all
e 9. Since also M *(s, t) 9 = M(s, t)* @ < 9,, we obtain the regularity of
Mo

LEMMA 19. Let M be a regular additive process and F an adapted
process. Then for all s <t we have that

F.M(s, 1) and  M(s, F, g

are t-adapted processes.

Proof. It follows immediately from the definitions that D(F, M(s, t)) = 2,
and that F. M(s, t) a;&=a,F, M(s, t) £ for a;e o/} and E€ D.

Now let {,n€ 2 and a,, b; € o/ ,;. Then, using adaptedness and the fact
that bine 2, = 9,< D(F}) and F}ne #,;(n) = D(M(s, t)*), we find that

CFM(s, t) a8, biny = <aé, biM(s, 1)* F¥n)
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which implies that 2,< D((F,M(s, t))*) and that (F,M(s,t)*b,n=
bM(s, )* F¥n=»5b,(F,M(s, t))*n. This proves the rt-adaptedness of
F M(s, t).

To show the t-adaptedness of M(s, t) F, lors first note that for a; e &/},
and €% we have that a, #, (é)CD(M(s t)) and that for ne ](é) we
have that M(s, 1) a,n=a, M(s t)n=a, M(s, t)n. Using this, we deduce that
P, D(M(s, t)F,) and M(s, 1) Fya;é=a;M(s, t)F.¢ for aje o,y and £ € 2.

Now let £, 1€ Z and a;, b; € o/;y. Then, using adaptedness and the fact
that 2, < D(M(s, 1)*) and M(s, t)* ne €92,< D(F¥), we find that

(M(s, t)Fya; &, biny =<a;é, b FF M(s, 1)* n)

which implies that Q’ED((M(S HF, |J)*) and that (M(s, t)F, |j)* bn=
b, F*M(s, t)* n=">b,(M(s, t)F,| J) 7. This proves the t-adaptedness of

M(S,I)FSIQI. i
From this lemma it follows that one can define meaningfully the

stochastic integral for simple adapted functions with respect to a regular
additive process.

DermNvITION 1.10.  Let M be a regular additive process and Fe S a simple
adapted process of the form (1.5). We define the left stochastic integral of
F with respect to M over the interval [0, ¢] as an operator on &, by

j Z (te At tisy A D Fel g, (1.11)

The right stochastic integral is given by

t n
j FodM,= S F Mty At tys, A1), (1.12)
Y k=1

Remark. From the additivity of M it follows easily that the left and
right stochastic integrals are independent of the choice of the representa-
tion of F in the form (1.5).

THEOREM 1.11. Let M be a regular additive process and Fe S a simple
adapted process. Then [y dM F, and [\ F,dM as defined above on 9, are
t-adapted operators. Moreover the mappings

Fest dM,F.c (2, #) and FeSHj F,dM,c L (D, #)
0 0
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are linear. Finally, if for all s<t 9@, is a core for M(s, t)*, we have that

< L dMSFS)* - L’ FrdM?*
t * !
( fo F, dM:) = L AMF F*

where F = F¥|, and M7 (s, t) = (M(s, 1))*| 5,

Proof. The result follows straightforwardly from Lemmas 1.9 and 1.10.
We omit the details.

2. SEMIMARTINGALES AND INTEGRATORS

We shall denote #7; the subspace of ¥ consisting of all simple process
F such that

F,=0 if u>t (2.1)

u

The following definition extends in a natural way the notion of semi-
martingale as introduced in [23] or [30].

DEerINITION 2.1, Let 7] be a topology on & and 7, be a topology on

L(2; H). A regular additive process M is called a (7, F,)-semimartingale
if for each re R, the maps

Fes? - f dM F.c 9(9; #) (2.2)
Fe 9~ | F.dM,c (%; X) (2.3)
are continuous with respect to the topologies 7, 7.
For any positive nonatomic measure u on R, for any é €9, and for
any stochastic process F we denote

P13, = [ IEE1° duto) (24)

The topologies 7, on &% one usually considers are induced by seminorms
of the form (2.4) while the topologies Z; on Z(2; #) are those given by
the strong or weak convergence on 2.

580/104/1-11
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An additive regular process M such that for each ¢ e 2, there exists a
positive locally finite nonatomic measure p, on R, such that for each 1 >0
the maps

FeS—»J dM.F. & F*eS—»J FrdM:+ ¢ (2.5)
0 0

are continuous from S with the | .|, -seminorm to # with the norm
topology, has been called a regular semimartingale in [5] and there it was
shown to include all the examples of “basic integrators” considered up to
now in the literature. The regular semimartingale condition is equivalent to
the existence, for each £e€% of a positive, locally finite, r-non atomic
measure y, and for each 1>0 of a constant ¢, >0 such that, for all
elements F of S,

2

[ amre

<eue [ IEE dulo) (26)

2
<o FyINFFEN7 dugls). (2.7)

J, Frame

However, for the purposes of the present paper the class of regular semi-
martingales is too narrow because of its dependence on the domain %. For
example, the creation process on the Fock space on L*(R.) is a regular
semimartingales on the (noninvariant) domain of coherent vectors
(cf. [5]), but not on the (invariant) domain of the polynomial of the fields
applied to the coherent vectors [8]. On this larger domain it satisfies the
following condition: for each ¢ € @ there exists a finite subset J(£) € & such
that for each simple process F and for each 0 < T< +c0 one has

T 2 T
[Fam.Fe| <cre| dur) ¥ IFmI (28)
0 0 neJ(&)
T 2 T
[(Framre| <cre| dur T 1ETnIR (29)
0 0 ne (&)

Moreover, for each ne J(£), one has
J(n) = J(&). (2.10)

We can always suppose that £ € J(£) and, because of (2.9), we can suppose
that, for each n e J(&), we have also

CraSCrp My S e (2.11)
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The same condition is satisfied by the annihilation and the number
processes on the same space. As discussed in Section 6 if we want that at
least the simple processes with respect to a certain family (M), of basic
integrators form an algebra, then the domain 2 has to be invariant under
the action of all the M*(s, ). Under this requirement, if we want to include
the simplest examples, then the semimartingale inequalities (2.6), (2.7)
must be replaced by the more general conditions (2.8), (2.9). These
considerations motivate the following:

DErFINITION 2.2.  An additive regular process M is called an integrator of
scalar type if, for each, £ € 2 there exists a finite set J(£) = 2 such that the
conditions (2.8), (2.9), (2.10) (hence also (2.11)) are satisfied.

In the following for each £ € 2 and ¢ = 0 we shall fix a choice of the non-
atomic measure y. and of the constant ¢, .>0 so that the inequalities
(2.11) are satisfied and, from now on, these symbols will be referred to this
choice.

Remarks. (1) In this paper we are interested only in one-sided (left or
right) stochastic integrals. The above conditions, however, could be
generalized to deal with some two sided stochastic integrals.

(2) In [17] it has been shown that the basic techniques and ideas of
the present paper can be applied to include in our theory the stochastic
integration with respect to the free noise developed in [32]. The increments
of the free noises satisfy a generalized p-commutation relation (cf. Defini-
tion (6.2)) which implies some slight modifications in the proof of unitarity
conditions.

(3) Taking in (2.8), (2.9) the process F to be the characteristic

function of an interval (a, ) = (0, 1) times the identity operator, we deduce
in particular that

max{[[(M,— M1 1My —MI)E1PY<c ulab) Y IIn)>  (212)

neJ)

which, because of our assumption of the nonatomicity of ue, implies that
every integrator of scalar type is strongly* continuous on 2.

The conditions (2.8), (2.9) imply that, if F" is a sequence in S and F is
a stochastic process such that F" — F in the ||, , ,.-seminorm for all
ned(), ie., for each ne 9 and teR

Nt g

t t
lim [ IFn— Fl? dug(s) = lim | VF = Frnl dus) =0 (213)
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then the sequences

, ,
fo dM F'™E, jo FOt dM* ¢

are Cauchy in s and their limits are the same for any sequence satisfying
(2.13). Thus we can define

t ! t t
[[aM.F.e=tim [ aM,F™e [ Frame=lim [ FOvamye
0 n-— o vQ 0 n— o Yy

Moreover we have

2

[am.Fe| <c[ ¥ 1R du,s)
0 0 nesns)
1 ; [ (2.14)
[ Framye| <c [ ¥ IE: €1 dugs)
0 0 e

Let M be an integrator of scalar type and let us denote L (R ; dM) the
space of all the adapted processes F with the topology given by the semi-
norms ||| such that, for all (€2, neJ(&)and all 0< 1< + 0

LY

| UEA 4 1E7 11%) duels) < oo, (2.15)

where p, is as in Definition (2.2).

THEOREM 2.3. Let M be a integrator of scalar type and suppose that, for
any &€ D, the measures i in the inequalities (2.8), (2.9) are absolutely con-
tinuous with respect to the Lebesgue measure. Then the stochastic integral
with respect to M can be extended by continuity from S to L (R, ,dM)
and the inequalities (2.14) hold.

Proof. We have only to show that S is dense in L._(R, ; dM) for the

loc

topology given by the seminorms (2.15). Suppose first that F and F* are
strongly continuous on & and consider then the sequence of elements of S

F =Z X tksm. ik + Oy () Fgne
X

Then F™ converges to Fin L} (R, ;dM). In fact for all (€2, all 120

loc

and all &> 0 there exists a 6 > 0 such that, if
|r—s| <9; 0<r, s<t
then
IF.§—Fll<e/t, NFFE—FFE|<e/t
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Thus for all » such that 1/n < we have
IF™ME—F | <e/t, |FPTE-FHEl<e/t

from which the required convergence property easily follows. Now let
(F,),>0 be an adapted process and let (¢,),, be the sequence of positive
measurable functions

Ba(1) = nY0 1/m) ().

Let us consider the processes
F= [ () F,_, du
0

which is strongly continuous on & and adapted. Then, for all e J(¢),

t 2
|F = F ol = \] J, #200LF, -~ Fon] di

and therefore

[ IFn— Fonl duets) < | duels) [ #uls =) 1Fun— Fonl du
[ [ 0

= ("dusts) [ o) UF,_m~ Funl® o
0 4]

by Fubini’s theorem this is equal to

= [ dod o) [ 1F = Fnl? disss)

1/n

=n | du| IF,_n—Fonldugs)

0
1/n t

<n [ du [ WF, & FEI? dugs)
0 0

which tends to zero as n — oo by the absolute continuity of u,. Since F is
arbitrary, the same argument applies to F*, and this ends the proof. ||

Note that the proof of the fact that any process F, strongly continuous
on 2, is in L*(R,,dM) and is integrable with respect to M does not
depend on the absolute continuity of u, with respect to the Lebesgue
measure. Moreover, for Fe L? (R, ;dM), we have defined by the above
approximation method right and left stochastic integrals as operators
on 2,
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PROPOSITION 2.4. Let M be as in Theorem (2.3). Forall Fe L} (R, ; dM)

(1) the maps (s, 1) [LdM,F, (s, t) > [' F,dM, are additive adapted

processes strongly continuous on .

(ii) IfF,GeL:_(R,dM) then F+Ge L (R, dM) and

loc loc

jo AM(F,+G )= L dM F, + jo dM .G,

fo (F,+G,)dM, = jo F.dM,+ jo G,dM,

on the domain 2,.

Proof. 1t is easy to see, from the defintion of regular additive process
that (i) and (ii) hold for all Fe S. The extension to Fe L2 _(R; dM) follows
approximating F with a sequence of elements of S.

loc

It is ciear from the definition that any finite linear combination of
integrators is still an integrator. A scalar, locally bounded, additive process
(i.e., a process of the form M(s, 1) =o(s, ¢) - 1, with ¢ a positive, real valued,
locally bounded measure) is clearly an integrator. If Fe LY (R ; dM), its
stochastic integral might not be an integrator (not even a regular process).
The following is a simple and easily applicable sufficient condition which
assures that an additive process is an integrator of scalar type.

PROPOSITION 2.5. Let M be a regular additive process with the following
properties:

(1) for all £,neD there exists finite subsets J(&, n), J(E) of @ such
that J(&, E) = J(&) and, for all &, &5 e J(E, n) we have

JED<IQ), (&)= (2.16)

(i) for all E,me P and all £\, &, € J(&, n) there exist locally bounded
non atomic measures Vg -, and o, ., on R, such that, for all 0<s<t and
any pair of s-adapted operators F, G one has

[KM(s, ) FE,, GEDI< ) veq(s ) [KFEL GED| (217)

EL&2eJ(6n)
max{l(M(s,t)Fé,,M(s,t)G52>|,|<FM+(S,I)€,,GM(s,t)+§2>|}
< Y 0h.u(8 1) IKFE, GEDI (2.18)

SL.é2ed(S,n)

Then M is an integrator of scalar type.
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Remark. It will be clear from Section 3 that a sufficient condition for
(2.17) is that M has a scalar forward derivative and for (2.18) that M has
a scalar conditional variance on £2. This justifies the term “integrator of
scalar type.”

Proof. We only have to check the semimartingale inequalities
(2.8), (2.9). To this goal we introduce a notation, which shall be used
throughout the paper. If ¢ and dt are positive numbers, for any additive
process M, we write

dM(t) :==dM, = M(t, t + dt). (2.19)

With these notations, if F,, F, are simple processes, for each ¢, dt =0, with
dt small enough so that both F,, F, are constant in any interval of width
dt not containing points of discontinuity, we define

dN;(t) :=dM(t) F;(t)=M(t, t+dt) Fi(t); j=1,2.
Then, for any pair of vectors &,, &, € J(&, n), we have the identity

d{N(t) $1, No(1) &2
= (dN (1) &1, No(1) &5 + (N (1) &, dNy(1) £5)
+ CdN,(2) &y, dNo(1) &5
=AM F\(1) &1, No(1) &5 + (NW(1) &1, M Fy(1) &)
+ (dM F (1) &,,dM F,(t) &), (2.20)
Applying (2.17) and (2.18) to (2.20) we obtain
|d{N(1) &1, No(2) £
<Y [ () (R0 & No(1) &)

¢a,Spe (81, 62)

+ [{Ny(1) &y Fo(1) E401)
+dog, 5 (1) |[<F (1) Eoy Fo(1) €01 (2.21)

Choosing ¢,=¢,€J(¢é), and F,=F,=F, so that N;=N,=N, (221)
becomes
dINMENPS Y dug(t) (IKF@) Ea, N(Y ED |+ IF(8) E.117)
EarEpeJ(E1)
with

He=2 Y Ve +0c,
ZunEye J(E)
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Summing on £, € J(&) this inequality and denoting

q)(t):=( 5 ||N<t)éu|2> e(z):=< 5 |1F(s)ca||2> "

Eae J(E) Eae J(E)

one obtains the inequality

() <e [ dugls) 0() 0(5) +e | diels) 6(s).
0 0

where c¢=c(&) is an easily estimated constant. From this the following
estimate on @(f):=sup,. o1 0(s),

P <h(0)- [ duels) 005)+ [ diae(s) 636)

0

<380+ 3¢ ([ ducts) 0050 )+ [ duts) 0%,

ie.,
(1) < (0.1 +20) | dpels) 0%(s)
This gives the inequality (2.7). In a similar way one proves (2.8). |

PROPOSITION 2.6. Let M be an integrator of scalar type and let [ be a
continuous function. Then

N, = fo f(s)dM,

is an integrator of scalar type. Moreover, for all € D

JNO=IMQ);  wi=pls =100l (2.22)

Proof. W f=3%,f(¢;) %, is a step function and F a simple adapted
process, then

2

“'dN,F,c - zj'”‘dM,f(tj)F,f =IU'dM,(f(r)F,)é
0 j & o
<eoe [ ducls) T 1) Fanl?
0 ne J(E)

e OO [ dus) T 1FI

neJg)
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The inequality (2.14) allows to complete the proof by density arguments. In
a similar way one proves th inequality for the adjoint process N ™.

3. FORWARD DERIVATIVES AND MARTINGALES

An important case when condition (2.17) of Lemma (2.5) is satisfied is
when the process associated to M admits a scalar forward derivative.

DEFINITION 3.1. A regular additive process M admits a (locally
bounded) forward derivative if for any &,,¢,€ % there exist a positive
locally bounded nenatomic measure g ., such that, for all adapted
processes F, G and for each s> 0 the complex valued measure

(a,b)< [s, 0) = (F,¢, M(a, b) G,¢) (3.1)

is absolutely continuous with respect to g, ., for all se R, and an adapted
bounded operator valued process D°"*>M such that

im CFE, M(t,t+¢)G,E5)
10 Qs 50t t+¢)

=(F &, DYEM(NG.E).  (32)

If & =¢&,=¢ we simply write D M(¢). The additive adapted process
{E D2 M(r) dp,, ,(r), where the integral is meant weakly on the domain
of all the vectors of the form F, ¢ for some adapted process F and some
Ee 9, is also called the (£, &,)-drift (or the (&,, &,)-bounded variation part)
of M.

The fundamental theorem of calculus states that, if a function f has a
continuous derivative then the increments of the function f are the integrals
of its derivative. The fundamental theorem of stochastic calculus states
that, if a process F has a continuous forward derivative, then the
increments of F are the integrals of its forward derivative plus a martingale.

DerFINITION 3.2. A regular additive process M is called a (&, &,)-
martingale if, for all 0 < s <t <u< +0o0, and all adapted processes F, G one
has

<M(t’ u)Fsél,Gs§2>=0' (33)

If £, =¢&,=¢, then we call M a é-martingale.

THEOREM 3.3. Let M be a regular additive process such that for all
&1, 66D and for all t>0 the forward derivative D% M(t) exists and is
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strongly continuous on %. Then there exists a (¢, &,)-martingale M such
that

Mis.1)= [ DIMr) dp., oot M5, 1), (3.4)

Proof. Let F, G be adapted processes and 0 <s< . The real measures
(as b) s Re <Fséls M(a’ b) Goé2>s ((1, b) g Im<Fs€1’ M(a» b) Gsé2>

are absolutely continuous with respect to g, ;,- By [23, Theorem (4.42)]
the existence of the limit (3.2) implies that for any interval [s, ] <R one
has

(s, 1) F.&1, G 8 = [ (DR2M) Fi&1 Gl dpg, 1)

= ([ DM s P21 G )
Therefore the additive process

MO%(s 1) = M(s, 1) — | D2 M(rydpg, &(r)
U ¢.é2

has the desired properties.

PROPOSITION 3.4. Let &,,¢,€9 and let M be a (&, &,)-martingale.
Then for all s >0 and for all adapted processes F, G the maps

(t, u]l (s, +0] - (M(t,u) F,&;, M(t,u) G,&,)

(3.5)
(Luls(s,+0] > FMY (Lu)é,, GM¥(tu)és)

are complex measures. If M, M™* are strongly continuous, then these
measures is nonatomic.

Proof. Ciear.

DerFINITION 3.5. If there exists an additive adapted process denoted
by { M*,M» and a *-linear map p mapping adapted processes into
themselves such that, for all &,,{,e2 and all s<t<u

CM(t,u) F&, M(t,u) GEo D= (F.E, MY, MY (6, u) 682

and

CFMY(,u} &, G MY (4, u) E)=p(F) &1, KM ™, MB* (1, u) p{G,) &)
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The additive process { M™*, M) is called the oblique (or Watanabe)
bracket of M or simply the conditional covariance of M. If the oblique
bracket of M is a scalar process, then M is said to have a scalar conditional
variance.

Remark. Note that, if M has a scalar conditional variance o, ,, then
the inequality (2.18) is satisfied.

COROLLARY 3.6. Any additive process with a continuous forward
derivative and a locally bounded conditional variance is an integrator in the
sense of Definition (1.3).

Proof. Such a process satisfies all the conditions of Proposition (2.5).

Additive processes with scalar forward derivatives on 2, i.e., for which,
for any &,,¢,€ 9
Dél,éz M( ! )

=@ .5(1) (3.6)
Doy, ., e

for some function ¢, ., in L (R, dp,, ;) are important for the applica-
tions. Denoting v,, ., the measure

!
Vel 0= 04000 dog, 1) (3.7)

the relation (3.4) implies that

CFE, M(a,b) G8s) = v, g5, 1) CFEy, GGy (3.8)

for all adapted processes F, G, strongly continuous on %. From this it
follows that any additive process M with a scalar forward derivative enjoys
the following property:

For all {,ne 2 there exists a measure v., on R finite on bounded
intervals such that, for all adapted processes 4, B, C, D strongly
continuous on 2 and all s<¢

[CA(s) & M(s, t) B(s)n )y — (C(s) & M(s, 1) D(s) )|
SV (8, 1) [<A(s) &, Bs) ) — (C(s) & D(s)n|.
Condition (3.9) will be called the scalar forward derivative inequality. Tt

will play an important role in the proof of the unitarity conditions
(cf. Theorem 9.2).
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4. THE 0(dt)-NOTATION

Let RZ denote the set

RL :={(s,1)eR*:5<1} (4.1)

DEFINITION 4.1. Let ¢: R% — C be a function. We say that ¢ is of order
o(dt) if for every bounded interval (s, #) in R,

lim y ot 1,4 1)=0. (4.2)

[P0l =0 (e cpy=1

If ¢, y:R%L - C are two functions such that ¢ —y is of order o(dr), we
write

do=dy (4.3)
or also

(s, ty=y(s, ).

A map &:R, - # is said to be adapted if there exists ne 2 such that
E(s)e Hq(n) for all seR .

Let %, %, be two families of #-valued adapted functions and let
F:R%L > £(Z, #) be a strongly measurable map. We say that F is of
order o(dr) weakly on (£, %) (respectively strongly on #) if for each
¢ e #, &€ %, the scalar map

(s, 1) > <&i(s), F(s, 1) &5(s) > respectively (s, 1) = || F(s, #) &1(s)]

is well defined and is of order o(dr) in the sense of Definition (4.1)
We shall denote 22 the family of #-valued functions

PP = {s+> A, : A is an adapted strongly continuous process; (€ Z },
(4.4)

2 itself is identified in the obvious way to a subset of 2#%. If
F,G:R%L - L(9, #) are maps such that F—G is of order o(dr) weakly
on (£, %) (resp. strongly on %#). We write

dF=dG weakly on (#,, %) (resp. strongly on & ). 4.5)
Sometimes we also shall use the notation

F(s, 1)=d(s, 1) (4.6)
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PROPOSITION 4.2. Suppose that M is an integrator of scalar type. Then,
defining for any adapted process F, strongly continuous on 9

Y,= Yo+ f dM.F, 4.7)
0
one has
dY,=dM,F, strongly on 9. (4.8)

Proof. For any 0<1¢, dt < T< +oo using the integrator of scalar type
inequality one has

2

t+dt
| am Fe—am,Fe
!

2

1+ dt
[ am F—F

t+dt

<ere ¥ | dufo) IF.—Fnl?

ne &) !

ScrlJE) sup  sup |[Fo—F1nl? pe(t, t+dr)

selt,t+di] ne (&)

and the result follows from the strong continuity of F on %.

5. STOCHASTIC DIFFERENTIAL EQUATIONS

Our goal in this section is to prove an existence and uniqueness theorem
for stochastic differential equations sufficiently powerful:

(i) to include all the known existence and uniqueness theorems for
quantum stochastic differential equations with bounded coefficients,

(i1) to prove an existence uniqueness and unitarity theorem in our
more general framework,

(iii) to include some of the equations deduced in [3, 4].

Some of our proofs are based on essentially new techniques which have
led us to consider equations which are of more general type than those
considered up to now (cf,, for example, the proof of the unitarity condition
in Theorem 9.2).

In this section I denotes a finite set, |/| the number of its elements and
(M) .51, @ set of integrators of scalar type. Summation over repeated
greek indices will be understood. The coefficients of the stochastic
differential equations we consider come from families (F,(¢)),cr, 4
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(Gs(1)),cr, ge, Of locally bounded adapted processes, leaving the domain
% invariant, with the following property: for all «,f€ I, and all adapted
process H, integrable with respect to the M*, and all continuous functions
u, von R, satisfying u(s)<s, v(s)<s for all se R, , the family of operators
on #

s> F(u(s)) H(s) Gg(v(s)) (5.1)

is an adapted process integrable with respect to M*’. This is a technical
assumption we need in order for our stochastic differential equations to
make sense. It is verified in all the examples considered up to now (for
example, when F,(t)=F,f(t) (teR,) Gut)=Gzg4(t) (reR ), where
F,, G, are constant operators in .4 leaving the domain 2 invariant and
/. g bounded measurable functions).

Let K, =Sup,.o,.r] MaX, sc, | F,(s)|% . We want to solve the stochastic
differential equation

Y(1)= Yo+ | dM™(5) F(5) Y(5) Gylo)

where Y, is an element of .%; we will use also the notation
dY(t)=dM**(t) F(t) Y(1) Fg(1)
Y(0)=Y,.

(5.2)

For all (e 2 let

Cog= ~MaX  Cropy  He= ) wh, IO = U J8)
affeIxIneJ(&) aBelIxine (&) afelxl

where ¢, 5 ¢, u’gﬁ and J,z(&) are the constant, the measure, and the subset

of @ corresponding to M** in Definition 2.2.

THEOREM 5.1.  If the M*? are integrators of scalar type and the processes
F,, Gg satisfy (5.1), then, for all Y€ o4, there exists a solution of (5.2).

Proof. Define by induction Y Or)=7Y,, YO*(1)=7Y7, and
Y‘"*”(t)=f dM* F (5) Y ")(s) G4(s).
0

The sequence is well defined. In fact Y@ is an additive adapted process
strongly continuous on %. Suppose Y™ is an additive adapted process.
Because of (5.1), for all o, Bel, (F(t) Y™(¢t) Gy(?)),cr, is an adapted
process integrable with respect to M*#, then by Proposition 2.4 (i), Y+
is an additive adapted process strongly continuous on . It follows by
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induction that Y™ is an additive adapted process strongly continuous on
2 for all neN.
We will prove now the basic estimate

1
1Y) €17 < max finll”- | Vol " Kreo (w0, ) 5. (53)

For all neN and all 1< T, using the integrator of scalar type inequality
(2.8), we have
2

YO &= [ MPE) Y ) Gytn) ¢

<creKr ¥ [ maldn)sup [YO (1) Gp(1) 4112

&1ed&) "0 Prel

=creky Y| pdan)
&ese)”0
([ btz Pt Y 20) Gile)) Gy (1) &

2

X sup
Brel

because of (5.1) and the fact that G, (t,) leaves 2 invariant for all
t,e[0,T]

I3
=cr:Ky z Jﬂé(dtl)
el ™o
2
X sup
Brel

[ My (1) ¥ 2(03) Gl1) G(1) &,

0

Using again the inequality (2.8)

n
< KON T [ uedn) [ eldry)
&red(&)

x sup (Y~ 2)(t2)Gﬁz(tz)Gﬁ1(t1)52”2-
fr.prel

An n-fold iteration of the same arguments gives us the estimate

1Y) I < eh e K7 IO X fug(dt fug dty).. ftn*lug(dtn)
EneJ(&)

sup || ¥oGp, (1) Gp(ta) G (1)) Eull?
B1.B2sBnel

1
< max 1?11 Yol 1IN K7 ((O, ny - (5.4)
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The same estimate holds for | Y (¢) &||?; therefore the series 3./_, Y,

* o Y7 converge in the strong topology on 2 uniformly on bounded
intervals of R, . This implies that they define adapted processes ¥, Y *
strongly continuous on 2. We show now that Y 1s a solution of (5.2). By
the integrator of scalar type estimate we have, for all ne N,

’“[def”Fu(s) Y(s)G,,(s)cf—J’dM:ﬁFa(s) i Y""(S)G/;(«Y)fH—
0 o k=0

I3 o

Sereky T E sup YR Galo) i pylds). (55)

neJ(&) O fepn+1 Beil

The same argument that led us to (5.4) can be used to prove that, for all
s€[0,T), keN, Bel, neJ(&)

1
1Y 9s) Gyl(s) mll” < max fnli*- | Yol IO KT ¢f (0, T -

Then the series ¥ ;o supge; | ¥ *(s) Gyls) nll> converges in the strong
topology on 2 uniformly on bounded intervals of R, . It follows from
Lebesgue’s theorem that the right-hand side of (5.5) converges to zero as
n goes to infinity and therefore

n-—+ 0

im |/ a# (£.69) ¥ ¥ Gyf5)) = || M E,(5) Y15) Gl
0 o 0

strongly on 2. This, together with the identity

n+1

Y YO = Yob+ [ dMPE(s) T YNUs) Gyls) €
k=0 k=0

Q

implies that Y verifies the stochastic differential equation (5.2).

The following propositions give two uniqueness results.

PROPOSITION 5.2. The stochastic differential equation (5.2) has a unique
locally bounded solution.

Proof. Clearly it will be sufficient to prove that all bounded processes
(Z(1)),cr, satisfying the stochastic differential equation

Z(1)= fo dM* F(5) Z(5) G (s)
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must be zero. In fact, for all e @, applying the integrator of scalar type
inequality (2.8) we have

1Z(6) EIP < creKr Y fug(ds)wp 1Z(s) Gyls) nll?
nesg) "0 pel

applying again (2.8) to the integral in the right-hand side » — | times and
computing the iterated integral as we did to prove the estimate (5.3) we
obtain

1
I1Z() €012 < sup [ Z(s)|1Z, max [1€]1%-|J(E)]" K5 o (1:(0,1))" Pt
st neJ(é) :
Since this is true for all ne N it follows that Z(¢) ¢ =0 for all 1€ [0, T].
PROPOSITION 5.3. Suppose that the integrators of scalar type M** verify
the condition (2.17). Then the solution of (5.2) is unique.

Proof. We prove that all adapted processes (Z(r)), g, satisfying (5.2)
with Z(0) =0 must be zero. In fact, for all £, n € 2, applying (2.17) we have

IKnm Z( &< ) I’vni(ds) sup |<F; (s)n, Z(s) Gy (s) &,
m.&red(&n) "0 ap frel

where v, Qenoteg the measure .Z,“vgle s Voe). The same argument
repeated n-times gives the inequality

L,
[<n, Z(1) &) < (c7pe(0, 1))
for all 1€ [0, T'], where ¢’ is an easily computable constant and » € N. Then
{n, Z(t) ) =0 for all te [0, T]; since T is arbitrary Z(¢)=0 for all teR ..

In the proof of the unitarity conditions for the Fermion case we shall
need to solve an equation of the form

dY(1)=dM*P(1) F,(1)p,s(¥(1)) Gy(t) (56)
Y(0)= Y., '

where p,, are automorphisms of </.

THEOREM 5.4. Lei the M*f be as in Theorem 5.1 and suppose that for
each o, B, 7, 6 there exists a complex number uz‘; with |uZ‘;| < 1 such that, for
every interval (s, t)

Pup(M7(s, 1)) = uly M7(s, 1). (5.7)

580,/104/1-12
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Then (5.6) has a solution and, under the same conditions of Propositions 5.2
and 5.3 the solution is unique.

Proof.  Using condition (5.7) one can reproduce the first part of the
proof of Theorem 5.1 with simple modifications due to the presence of the
p.p's. Using the fact that

1pap(X o < X1

for any X € #(J ), one sees that the inequality (5.4) holds also in this case.
This is sufficient to prove the existence and uniqueness result.

6. ALGEBRAS OF STOCHASTIC INTEGRALS

It6’s formula is a rule which allows us to write a (sufficiently regular)
function of a finite set of stochastic integrals, as a sum of stochastic
integrals. A consequence of 1t6’s formula is that the linear space generated
by the stochastic integrals with “smooth” coefficients relative to a set of
basic integrators is in fact an algebra. In this section we briefly discuss the
analogue situation in the present context.

Let 7 be a set, and let 3= {M*:ael} be a self-adjoint family of regular
integrators of scalar type. We would like to associate to 3 a vector space
2(3J) of adapted processes with the following properties:

(I} All the elements of 2(3J) are sums of stochastic integrals with
respect to integrators of the family 3.

(II) 2(3) contains all the stochastic integrals of simple locally
bounded adapted processes with respect to the elements of J (thus, in
particular all the processes M7= M*(0, 1)).

(IIT) 2(3) is closed under multiplication in the sense that, for each
X, Ye#(3) and for each 1 20, (X - Y)(t) := X, Y, is a stochastic process in
the sense of Definition (1.2) and belongs to 2(3).

(IV) 2(3J) is minimal with respect to the above properties.

From (II) it follows in particular that 2 must be an invariant domain for
all the operators M,(s, t) (x€ 1, (s, t) = R-bounded). In this section we shall
assume that this is the case and we shall restrict the term “process” to those
processes which leave the domain 2 invariant. These processes form a
*.algebra denoted 2.

PrROPOSITION 6.1. Let {M*:a€l} be a self-adjoint family of regular
integrators of scalar type and let us suppose that foralla, Bel, all E€ D, all
s,teR ., s<t and all adapted process F

D(MP%(s, t))2 M*(s, t) F,C. (6.0)
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Then the limit
[M?, M*T (s, 1) F,&:= lim Y MP(t,_\, 1,) M*(t, |, t,) F,¢ (6.1)

|Pl—0
exists in norm for any £ € 9 and any adapted process F, and is an additive
adapted process [M*, M*] satisfying the following equality
MPB(s, t) M*(s, t) F,&

{j AMP(r) M*(s, r)+'[ dM*(r) M%(s, r) + [M*®, M*] (s, z)}m
(6.2)

Proof. Summing the algebraic identity
dMPM*)t)=dM? -M* + MP .dM? + dM? . dM* (6.3)

over all the intervals of a partition P= {r,}7_, of [s, r] we find

MP(s, 1) M*(s, t) Z B(sy ty ) Mty ty) F.E

n

+ Y MUty ) M*(s, 1) F.&
k=1

n

+ 3 MUty 0) M1 1)

k=1

By Remark 3 after Definition 2.2 the functions r € [s, t] = M*(s, r) F.&(ae 1)
are continuous for any £ € & so that, by Theorem 2.3, as |P| — 0, the first
and second sum converge respectively to

[y Mis ) Fe [ aMP )M nEE (64)

Therefore also the third sum converges and this proves (6.1). It is clear that
(6.2) holds

The additive process [M*, M*] is called the bracket of M*# and M* (or
the square bracket, or the Meyer bracket, or the mutual quadratic variation

(cf. [81).

Thus, if we want the product M B(s, 1) M?(s, t) to be expressible as a
linear combination of stochastic integrals with respect to the M’s, we must

have that

[M? M (s, t)= f B (r)dM(r), (6.5)
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where summation over repeated indices is understood and the ¢/* are
adapted processes which, for any pair «, fel, are zero for all but a finite
number of indices y e I. Thus condition (6.5) is a necessary condition for
the solution of our problem. Such a condition is called an Itd table for the
set of basic integrators 3 and the processes cff"(s) are called the structure
processes of the Itd table. If the ¢/~ are locally bounded continuous scalar
functions, then, from Proposition 2.6, it follows that [M#, M*] is also an
integrator of scalar type.

Without any further assumptions, not much more can be said, since we
cannot control terms of the form

M= (s, 1) F - M*(s,1) - G, (6.6)

with F, G locally bounded adapted processes. However, if we assume that
the integrators M* are such that their increments in the future of any times
s, p-commute with any operator adapted to the past of s, ie. (all com-
mutators being meant on 2),

M*(s, 1) F,= p(F,) M*(s, 1),  Vael Vs<t (6.7)
Me(t, u) MP(r, s)=p (MP(r,s)) M*(t,u); Va,Bel;r<s<t<u (6.8)
then expressions like (6.6) become tractable. If p,(M*?)=(M?*), then we

have the commutation of M*, M* (Boson case); if p,(M?)= — (M?), then
we have the anticommutation of M*, M* (Fermion case).

DEeFINITION 6.2. The integrators M~ are said to satisfy a p-commutation
relation if, for all ael, there exists an automorphism p, of # with the
following properties:

p2=id (6.9)

p, maps adapted processes into adapted processes, and
FleD(M(s, 1),  M(s, 1) L€ D(p,(F,)) (6.10)
and

M5, ) F.C=p(F) M*(s, 1) &, FM*(s, 1) E=M%(s, 1) p,(F,) &

for every £ € 9, s <t, and any adapted process F.
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7. THE WEAK IT6 FORMULA

LemMa 7.1. Let M, N be integrators of scalar type and H, K be strongly
continuous adapted processes. Define

X=[ am,H,; Y,=j' dNK,. (7.1)

Then, in the notations (2.19) and (4.5)
dX &, dY ny={dM HZ, dN Hn). (7.2)

Proof. For each T>0 and each re [0, T] one has
<dXIC’ dY,ﬂ> - <thHt€5 dNt K,'l>
= <[dXt_th Ht] C» dYt”>+ <thHréa [dY,—dN,K,] '1>

=([" awrm—my e avn)+ (e [T an k- k).
(7.3)

Now
([ amrr,—m1 6 ax)|

t+dt
< f dN,K.n

and by the integrator of scalar type inequality this is majorized by

| j{'”’ dM,[H,~ H,] :H :

t+dt 1/2
er( T [ aor s - w1 en?)

&eJi@) "t
t+dr N 1/2
( S dus) ||Ksmn2)
nedin) !
<WEI- V) max  sup ([H,—H]&

&reJ(&)meldn) ser,t+d]

MK n || pag a(t, 1+ d),

where

Harw =3 +p)).
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Since a similar estimate holds for the second term in the right-hand side of
(7.3), one finds the majorization

|<dXtéa dY{”) - <thHté’ dN,H,I’]>]
S61(1‘47 N) éa ﬂ, T’ H’ K)AT(dt) uM.N(tv t+dt)
with A4, satisfying

lim sup 4,(dt)=0.

dt—>0 [6,t+dt]1<[0,T]
Clearly this inequality implies (7.2).

DEFINITION 7.2. An integrator R is called the weak It6 product of two
integrators M, N if

KaM[ H.( dN,Kn)={(H/{ dR.Kn> (7.4)

for any &, ne2 and any pair H, K of strongly continuous adapted
processes.

Coherently with the notation introduced in Section 4, the relation (7.4)
will be written in the symbolic notation

dMdN=dR  weakly on (29, ?9). (1.5)

If for any ¢ € 2 and any strongly continuous adapted process K one has

dN,K,& < D(dM) (1.6)

then the relation (7.5) is not symbolic and it is equivalent to (7.4). The
following is the weak Ité6 formula for left stochastic integrals.

THEOREM 7.3. Let M, N be integrators which satisfy the scalar forward
derivative inequality (3.9) and whose weak Ité product is an integrator R. For
any pair of strongly continuous adapted processes H, K, let

X,= fo dM*H,; Y,= L dN, K, (7.7)

Then for any £, ne @

d{X.§, Yny=CH.,dM, Y n)+ (X5, dNn)+ CH S dR Ky (78)
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Proof. From the algebraic identity

d{X,& Y n)=<dX ., Y )+ {(X.dYn)+{dX,, dY.n)

and the scalar forward derivative inequality (3.9) we obtain (Proposi-
tion 4.2)

d{X & Ymy=<dM HE Y )+ X,§dN Kn)+ (dX L, dYm). (19)

Moreover from Lemma 7.1 we know that
dX &, dYmy=<{dM} H{ dN Kn).
Hence (7.8) follows from (7.4).

8. THE HERMITE POLYNOMIALS

As a first application of the weak It6 formula we extend a known result
on Hermite polynomials (cf., e.g., [29]). We suppose that the set I has only
two elements, denoted 0, 1 and we denote M° and M' by 4 and M, respec-
tively. We also assume that, in the notations of Section 4,

M, M]=4; [4,M]=[4,M]=0; [4,4]=0 (8.1)
weakly on (22, 22). Then the inductive sequence

Hy(4, M)=1
o4, M) (82)

Hyo (A, MY(O) = [ dM(s) H (A, M)

is well defined strongly on 2).
THEOREM 8.1. Let M and A satisfy the conditions (8.1), (8.2) and assume
that every polynomial in A(t) and M(t) is a process and moreover that

(i) M commutes with its own past, i.e.,

[M,, dM,]=0; VieR, . (8.3)

Then A, and M, commute for each te R _ . If, moreover

(ii) The domain 9 is invariant under the action of A,, M, for any
teR_ then H,(t)=H, (A,, M,) is the nth Hermite polynomial in M, with
parameter A,.
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Then, for all n21 we have

M A
H, . (A, M)=——H(A, M)—
n+l( ) n+1 ( ) l’l+1

H, (4, M). (8:4)

Proof. For each teR
dA, M,=dM, - dM, M,=M,-dM -dM, =M, dA,.

Moreover, because of (8.1)
dAM)=dA, -M,+A,-dM,; dM,A)=dM,-A,+ M, -dA,
it follows that
dAM,—M,A)=0
which implies the commutativity of 4, and M,. Since 4, and M, commute,
H,(A,, M,) is well defined on 2 by assumption (ii). From (8.1), (8.2) and

the weak It6 formula for left stochastic integrals it follows that, for any
nz2,teR, and & ne 2, one has

1 + 1 +
md<M’ é;Hnn>_n+1d<A1 f,Hn-HT)

1
n+1

+<&dA,H, ((tyn)—<&dAH, ()n)— AT, dMH, »(1)n)]

LS. aM -H (1)) + (M, dM H, _(t)n)

1
=1 (o aMH (D n)

n
n+1

1 1
; [;<M,+c,dM,H,,_l(t)n>—;<A+c,dM,Hn2(z>n>].

(8.5)
Now, for n=1 (8.4) is true since Hy=1, H, =M. Moreover, since dM
commutes with its own past
dH,=dM -M=YdM -M+ M -dM)=3d[M*— A]
hence

3(MH, —~ AH,)=3(M*— 4)=H,
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so that (8.4) holds for n=2. Therefore because of assumption (8.1) and of
the identity (8.5)

1AM EH () — (AT E Ho(t)nd =&, dM H (1) n) = (&, dHL(t) ).

Assume, by induction, that H,(t) is a polynomial in 4, and M, and that

%<M,* ¢, dM,Hn,l(t)n>—% AP L dM H, (1)n) =S dH (1) n).
(8.6)
Then from (8.6) it follows that the right-hand side of (8.5) is equivalent to
& dM H (tyn) = dH, (1) n)

by Proposition 4.2. By the induction assumption H,(:) and H,_ () are
polynomials in 4, and M, hence, by (8.5), it follows that, on &

LM H) - A,H, (1) =dH, (1)
n+1

which, due to (8.2) is equivalent to (8.4).

9. THE UNITARITY CONDITIONS

As an application of the weak It6 formula (7.8) we will give necessary
and sufficient conditions on the coefficients of the stochastic differential
equation

d =dM*(t) F,
X(1) =dM*(1) F(1) X(1) ©.1)

which guarantee that its solution is a unitary operator on . In this
section we shall assume that the set of basic integrators is self adjoint, i.c.,
that for every index « there is a unique index a* such that (M*)* = M*".
Note that, by definition (¢*)* =a.

Let us first note the following obvious criterion:

LEMMA 9.1.  Let (F,),c; and let X, be an element of <4y; and X be the
solution of the stochastic differential equation (9.1). The following conditions
are equivalent:

(a) forall teR_, X(t) can be extended to a unitary operator on H#.
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(b) X, is a unitary operator on ¥ and, for all y, E€ Z and teR |
X FF () dMY n, X &y + (X () n, X () Fr () dM3" &)

+ X (O FF () dME 9, X (1) FF (1) dM7 £y =0 (9.2)
CAM?™ Fyo X(1) 0, X(1) &+ (X(1) n, dM7 F (1) X(2) &)
+ (dMPF,X (1) n, dM?*F,(t) X(1) &) =0. 9.3)

Proof. Applying the weak Itd formula (Theorem (7.3)) we find that
(9.2) is equivalent to the condition {X*(f)n, X" (1) &> =< Xy n, X &>
and (9.3) is equivalent to the condition {X(¢)n, X(2) &> = (Xyn, X, &) for
all rzeR, and all 4, (€ 2. Then the equivalence of items (a) and (b) is
obvious.

We can give more easily verifiable conditions when the integrators of
scalar type M* are linearly independent in the sense that the equality

jo dM* G (5) =0

for all family (G,(¢)),cg, 4., ©f adapted processes and for all reR,
implies that G, =0 for all a€ /.

THEOREM 9.2. Let (F,(#))teR,,ael and (X(t)), g, be as in Proposi-
tion9.1. Assume that the brackets [MP", M*] exist and are as in (6.5).
Suppose that the integrators of scalar type M* are linearly independent
and satisfy a p-commutation relation. Then the following conditions are
equivalent:

(a) for all teR,, X(t) can be extended to a unitary operator on .
(b) X, is a unitary operator on X and, for all teR, and yel

1)+ p,(F () + ¢ (1) oo (Fy(0) FF (1)) =0 (94)
F(0)+ p,(F} (D) +¢5"*(1) pye po (FF () Fi)=0. (95)

Proof. (a)=(b) Let us suppose that, for all zeR_, X{¢) can be
extended to a unitary operator on 4. Then (9.2) can be written in the form

[, M (F,(5) % p,(F- (9))+ ¢85 (1) po (Fifs) F () =0

for all ze R, and (9.4) follows from the linear independence of the M.
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Since X is strongly continuous on £ and unitary operator-valued it is
strongly continuous on s#; then the stochastic processes

p (X FI)X.  p(X)F,X.  p,pp(XTF})FX

are integrable with respect to all the M7, therefore (9.3) can be written in
the form

[ aM1p,(0 () (F,(5) 4 py(F15)
+ 8 %(5) popyr (X +(5) Fjf (5)) Fofs)) X(s)=0.

Then we obtain (9.5) from the linear independence of the M” and the
unitarity of X(s).

(b)=(a) From (9.5) condition (9.3) follows and then we have
X, X(H) E>=(n, &) for all 4, e D and so X(¢) is an isometry for all
teR .. Since X is strongly continuous on J#, the adapted processes

FXX*, 0 (XX*) p(Ff).  pur(Fy) par(XX ™) pue(FY)

?

are integrable with respect to all the M. Therefore the process Y= XX*
is a solution of the stochastic differential equation

dY = dM(F,Y + p,(Y) p(F) +¢8 %, (Fp) por(Y) p,+(F,))
Y(0)=1.

This is an equation of the type we considered in Section 5 and we know
from Theorem 5.4 that its solution must be unique. Y(¢)=1 for all reR,
1s a solution because of (9.4), hence X(¢) X*(¢)=1 and X*(r) is an
isometry for all teR , . This completes the proof of the unitarity of X.

10. Tue Levy THEOREM

When the Meyer brackets are scalar nonatomic measures a fourth
moment condition (cf. the inequality (10.2) below) holds. In the classical
case this condition implies the continuity of the trajectories. In [8] it has
been shown that, in the classical case, this condition is equivalent to the
continuity of the trajectories for semimartingales and it has been proposed
to assume this condition as the definition of the notion of continuity of the
trajectories for a quantum process.

ProPOSITION 10.1. Let M*, M? be integrators of scalar type such that

IMP+, M®] (s, 1) = 0%(s, 1) (10.1)
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for some C-valued nonatomic measure with locally bounded variation c’*
(defined on R . ). Then for all 0<s<r<T< +00 and E€ P one has

IMP(s, 1) M7(s, 1) E1> < 3max{eqe, 1) [(16"7] +ui+ %) (5, 01% (102)
Proof. For all s, te R, with s <t we have, using (6.2),

1MP%(s, £) M>(s, 1) )12

<3 ) <|l71||2|<7ﬁ°‘(s,1)|2

neJ(&)

2
+ +

[ " AMP(r) M*(s, r)

)

f[ dM*(r) MP(s, r) y

<3max{crg, 1} ) <H11Hzla”°‘(s, Nl

neJ()

+ [ 1yl )+ [ artsn lan) ). (103)

The conclusion now follows from (2.12).
DerFiNiTION 10.2. Let M be an integrator of scalar type satisfying the
condition (6.0) and let us denote
dM° = dt; dM' =dM; dM?*=dM ™. (10.4)
The pair M, M* is called a Levy pair if the Meyer brackets [M*+ M*]
(B,x=1,2) exist and are a C-valued nonatomic measures which are

absolutely continuous with respect to the Lebesgue measure. The Levy pair
is called of Boson type if

[M*(I), M*(J)]=0 forall I,J<R, with InJ=¢. (10.5)

For a Levy pair M, M* we define the bracket matrix

O_ll(t) 0'12(1)
d([MP+, M*] (1)) =: dt =: dt. 10.6
([ T =tod= (Tt 7ot (106)
An important consequence of (10.6).is that
dM’+ .dM?*=c"(t)dt  strongly on 29. (10.7)

The matrix valued function ¢+ o(2) is positive definite in the sense that, if
we define for all complex valued continuous functions f, g

(f.8),:= (ﬂf)-a-(i) (10.8)
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then for all £ (f, f),=0. Let C(R, ; C) denote the space of complex valued
continuous functions on R, with compact support ad let 3 denote the
symplectic form on C. (R ; C) defined by

3/, g)a(t)i=§1;.[(f, 8o () —(8, /), (1)]. (10.9)

THEOREM 10.3. Let M, M be a Levy pair of Boson type. The solutions
of the stochastic differential equations

dUAt)=i(f(1) dM™* (1) + (1) dM(t) — 3£, /), (1) dt) U (1) (10.10)
dUF(0)=iU S ()(—f() dM " (t) = f () dM(t) = 3(f. f),(t)dt)  (10.11)

(with the initial condition U0)= U/ (0)=1) define a unitary representa-
tion

(#, {U/lfeCAR,;C})

of the CCR algebra over C (R, ; C) associated with the possibly degenerate
real bilinear symplectic form (cf. [25])

()~ el

Moreover the one-parameter unitary group (U ;), g is strongly continuous on
H and its infinitesimal generator B([f) has the form

@
0

B(f)=j (f(s)dM ™ (s)+ /™ (s) dM(s)) on 2. (10.12)

Proof. We divide the proof into several steps. First note that, due to
Theorem 5.1, the stochastic differential equations

U0 =1+ [ (s dM* (5)+ 1 *(5) dM(5) ~ 11, ). (5) ds) U ()

(10.13)
Us(t)=1 +f0 (—=if " (s) dM(s) — if(s) AM * (s) — 3(£, f)o (s) ds) U} (s)
(10.14)

have unique solutions on the domain 2 satisfying

UAD) &y =& U () n)
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for all ¢, ne%. Moreover, the unitarity conditions of Theorem 9.2 are
immediately verified in this case. Therefore U /(t) can be extended to a
unitary operator on J# (that we still denote U (¢)).

Now note that, because of assumption (10.5), one has [M*(s, 1), U ((s)]
=0 for all 0 <s <t (this follows immediately from the expression of U /()
in terms of the iterated series). Using this and the fact that U,(¢) is a
bounded operator for all f, ¢ and s+ U (s) is strongly continuous on &
from the weak It6 formula and (9.6) we have, for all teR,,
f,8eCR ;C), ¢ ne2

=dU/ (), U (1) &)

=US (), Lig(t)dM ] +ig* (1) dM,— (8, 8), (£} dt] Uy(1) &>
+([=if () aM,—if() aM [ —5(f£ (1) d1 U (t)n, U(1) &)
—UF (), (f,8)e (1) Ug(t) &) dt

=US(O)n, (i(f+8)" dM,+i(f+g)dM ) Ur) &

— UL ()1, U () &) (3(8,8)o(1) + (£, 8)o() + 3(£, 1)o(1)) b,

ie, the process X(t)=U,(t) U, () satisfies the stochastic differential
equation

X() =1+ [ ((f+2)(s) dM" (5)+ i/ +8)" () dM(s)

+ [ =20 0)e(5)—3(8 8)o(8) = (fs 8)4 (5)] ds) X(s).
Let

Fo)=exp (=i [ S(8), ) s) U0

Y(¢) clearly satisfies the same stochastic differential equation as X(¢), hence,
by the uniqueness theorem

Ugt) Uy(t)=exp (—iS J: (f; £).(s) ds> Ugr, (1) (10.15)

Since f has compact support the limit as t7 oo of U,(r) exists in a trivial
way. We shall denote this limit by U .

LEMMA 104. e U, is a one-parameter strongly continous group of
unitary operators on H.



ACCARDI, FAGNOLA, AND QUAEGEBEUR 189

Proof. The group law follows from (10.15). For all eéeR, U, satisfies
the stochastic differential equation

o} 2 s 0]
U=+ [ ()M 6+ (VM) V)4 [ (111, (5) Uusls)ds

hence, for all £ €9, by the integrator of scalar type inequality (2.7)

Uy e—err<2e( T it )e] [T OR ) +5| [0 d

neJ(&)

.

where ¢, is a constant depending only on f. Therefore

lim U, &=¢.
e—+0

And the thesis follows since a one-parameter group U, of unitary
operators, strongly continuous on a total set is strongly continous on the
whole space.

PrROPOSITION 10.5. Let B(f) denote the infinitesimal generator of
¢ — U, .. Then, on the domain 9, B(f) coincides with

jow (if (s) dM* (5) + if * (5) AM(5)).
Proof. For all €2 we have
L v-11- o) a1 ane (o)
= jo (if *(s) dM(s) + if (s) dM* (5)) [U,/(s) — 11 ¢

A2 [T D)) Uyl s

therefore, by the integrator of scalar type inequality (2.7),

2

H (P [T e an |

o0

2
<2, ¥ [ 1SOPR IV —nl? aelds) +5

neJ&) "0

2
lInll>.

J L) ds
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Since lim, ., U, =# and, for all eeR,
1U n—nl><20U, 17+ 2ln)* = 4lnl*

it follows from Lebesgue’s dominated convergence theorem that

lim L‘fé : f%(if+dM+ifdM*)g
0

£—0

and this proves the thesis.

Now let us suppose that the integrators of scalar type M, M* are mar-
tingales with respect to a unit vector @€ %, in the sense of Definition 3.2,
that is, for all s, re R, with s<¢ and all adapted processes H, K we have
{K(s) @, M*(s,t) H(s) @) =0.

Lemma 106. If M, M™ are ®-martingales then
@0, =exp(~4[ (1) ()5} (10.16)
Proof. U, satisfies the stochastic differential equation
U0 =1+ [ (F(5)dM() + (5 M () Ufls) = £ [ (1), (9) U(5)d
and then (&, U/(t) @) satisfies the ordinary differential equation
(@, U @) =1=4 [ (1f)ls) (B, U, (s) @ ds

whose only solution is (10.16)

We will denote by L?(R , , ) the real Hilbert space obtained by comple-
tion of the vector space ¥.(R,,C) with respect to the real prescalar
product

h&re=]" (fe)ln)dr

Let @, denote the vacuum vector and W, (feL*R,,0)), the Weyl
operator on the Fock space I'(L*(R , , ¢)) with test function f.

CorROLLARY 10.7. Let (M, M*) be a Levy pair that is a martingale with
respect to a unit vector @ and let A" be the closure of the linear span of the
set {U,®|fe€ (R, ,C)}. The map

U, d->W, 0,

extends to a unitary isomorphism of A onto I'L*(R ., 6)).
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Proof. From the above discussion.

Let (M, M*) be a Levy pair with covariance matrix ¢ and a, b be two
functions in ¥(R , , C) such that

la(1)]? = |b(1)]>#0

for all re R, so that the matrix

a(e) b(t)
(5(1 ) a(t )>
is invertible. Let

B(1) = (als) dM(s) + b(s) dM* (5))
B+(z)=f (a(s) dM* (s) + B(s) dM(s)).

A simple computation using the weak 1t formula shows that (B, B*)is a
Levy pair with covariance matrix

(a(l) b(t)) (%(t) Glz(t)> (ﬁ(t) b(t)>
b(r) a()) \oxn(t) oxn()) \b(t) a(t))
We say that (B, B*) is obtained from (M, M*) by a random time change.
Clearly random time changes are in one-to-one correspondence with the

elements of the complex simplectic group of order two Sp(2, C) whose
entries are continuous complex valued functions.

Remark. If M is a classical brownian motion with variance ¢ >0 (i.e.,
for all s<t, M,— M, is independent of %, and has law N(0, a(¢t —s))) then
the time change that makes M a standard (ie., with ¢=1) brownian
motion is t - t/\/g so that (M, /7). is a standard brownian motion. By
the self-similarity property of the classical brownian motion this is equiva-
lent to the multiplication of the random variables M, by \/E. This justifies
our definition of random time change.

The action of Sp(2, C) on positive definite 2 x 2 matrices has four types

of orbits that are classified in [8]. These induce equivalence classes on
Levy pairs.

DermNITION 10.8. Two Levy pairs (M®, M®*) in Hilbert spaces s
({=1,2) that are martingales with respect to unit vectors @ are

580/104/1-13
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isomorphic if there exists a unitary operator U:#'" — #'? with
U(@'"V) = @' such that the Levy pair in #2(UMVUY, UMV U™") can
be obtained from (M, M%) by a random time change.

We can now prove the following theorem.

THEOREM 10.9. Let (M, M*) be a Levy pair in a Hilbert space # that
is a martingale with respect to a unit vector ® such that, for all teR _, the
covariance matrices o(t) are in the same orbit ©. Then (M, M?*) is
isomorphic to:

(i) the classical real brownian motion of O is the orbit of the matrix

(1)
(ii) the classical complex brownian motion if O is the orbit of the

matrix ( 9),

(iii) the Fock brownian motion on L*(R,) if O is the orbit of the
matrix (§ 9),

(iv) the universally invariant brownian motion on L*(R,) with
parameter 1/A (0< A< 1) if O is the orbit of the matrix ('}* °)).

Proof. Using (10.7) we can suppose that (M, M*) is a Levy pair in
I'(L*(R ., 0)) that is a martingale with respect to the unit vector @,. The
time continuity of the entries of the elements of Sp(2, C) that reduce the
matrices o(¢) in the orbit ¢ to their canonical form follows from
straightforward computations (cf. [8, Proof of (6.6)]. In case (iv) the

matrices
144 0 1/A+1 0
0 1—4) 0 1/i—1

are in the same orbit (take a(t)=1/\/ft, b(z)=0); the simplectic form
associated with the second is

(f,8)=7 (2Refz)+ 2i1m fg

Therefore M, M* is isomorphic to the universally invariant brownian
motion on L*R, ) with parameter 1/4.
11. STOocHASTIC CALCULUS ON THE FINITE DIFFERENCE ALGEBRA

The following is another example of a Hilbert space in which a quantum
stochastic calculus can be developed. It was introduced by A. Boukas in his
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Ph.D. Thesis [13]. We show that our theory includes also this example
and moreover it allows us to fill some gaps which were left open in [13].

Let S be the set of all real simple functions f: (0, «©) — (—1; 1), ie., the
set of functions that can be written in the form

n
f= Z a; X4
i=1

where neN, aeR with |¢] <1 and (4,)7_, is a family of disjoint sets of
(0, o) of finite Lebesgue measure.

Let # be the Hilbert space obtained by completion of the vector space
generated by the family

2={y(f)feS}

endowed with the pre-scalar product

N> =exp ([ tog(1 —gts)(51) s ).

The space # ,, (s,1€eR, s<¢) is defined as the completion of the vector
space generated by elements of & corresponding to test functions f with
support contained in (s, ¢).

It is to be noted that we have the following tensor product factorizations.
% = ‘%20,1)®‘%1,00) = ‘yﬁo.s) ®‘”?s.t)® '”ft.oo)
‘p(f) = ‘p(fz]) ® lﬁ(f[,) = lp(fs]) ® l/J(fX(s,r)) ® l/’(f(t,oo))’

We will denote by .o/, =B(#{,) 1, the algebra of operators up to
time 7.

Let us define the operators on s (see [13, Definition (1.4)]).

Q(8) Y1) =2 [V (/+ 58) + ¥()]

e=0

P =| [ erde ot [

e w()=| Ple)+ Qo)+ [ g | i)

V]

For all u, v, ge S we have [13, (1.2.1)]

CY(v), Q(g) Y(u)> = CP(g) Y(v), Y(u))
<Y(), T(g)d(u)) = KT () Y (v), Y(u) )



194 QUANTUM STOCHASTIC CALCULUS

and
[P(v), Q(u)] = T(vu)
[P(v), T(w)] = T(vu)
LT(v), Q(u) ] = T{vu).

We will also write Q,(s, 1), P,(s, 1), and T,(s, ) to denote respectively

Q(g1)—0(g4), P(gq)— P(g, ) and T(g,1) — T(g,y)- It is easy to see that
(0,05, No<s<ir (Pglss t))ogsg,, and (T (s, 1))o< <, are additive adapted
process.

We can prove also the integrator of scalar type estimates:

PrOPOSITION 11.1. Let f,geh and F be a simple adapted process written
in the form

n
Fi=3 FiXeyon
i=1
where
0<s <8< - <5, < + 0.

We have then

. ,  lgs)I?
J, d.ds) Fls) v <0+ 1IN TSRO
: 1) 116
jo dPg(s)F(S)II/(f) <(1+/2) f 1E(s) ¥ (Ol (1—12()) ds
[ aro Fsyun| <043 [ s g g,

Proof. We will prove only the first inequality. The proof of the other
ones is the same. Let us suppose, for simplicity, s,,, =t

e

Z 55 8;41) F(s;) y(f)

j

Il
UPﬂ:

IIQg( si+1) Fls)) y(NI?

J

+ 2Re Z <Qg(sk,3k+1)F(sk)¢(f)’ Qg(sj’ sj+l)F(Sj) w(f)>

lsk<jsn
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Due to the tensor product factorization of J# for all j we have

Qg(sj9 S+ 1) F(Sj) Y(f)= F(sj) l//(f:,])® Qg(s_/" Si4 1) l//(f[s,)-
Then the first sum can be rewritten as
'Z IFCs) (LD 1@ 874 0) WS )N
and, applying [13, Proposition (1.3)(i)]
. se f(s) g(s) \* . o lg(s)?
PALCA {(I T—/2) ds) | Trer ds}‘

Then we consider the second sum

Re ) Qs Skw 1) Flsi) Y fi), Fs)¥(f0))

1<k<j<n
X <l/J(f[s,)’ Qg(sj’ sj+1) lp(f[s]'>'
Applying [ 13, Proposition (1.2) (i)] this is equal to

2Re T Qs R R w ) [ EEE o

—re ¥ ([ dou Fowin Fs ) [ ERES g

and the absolute value of this sum can be majorized by

j/* g(s) 1 /()]

, (o)™

2 3 IR WU | [ d0,ts) Fl )

Let

R(t)=sup

s

_(f s _le6) "
a(t)—(j IF&) Y (l_fz(s))zds)

5_ Sup |J+l I

1<j<n

J, a0.r) Fry i)

Majorizing | f| by 1 and applying the Schwartz inequality we obtain
R*(t)<2R(t) a(t) + (1 + 6) a®(v)

195
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that yields

RIS (1 +/2+8) a(r).

The first inequality follows taking partition finer than the given one and
letting & go to zero.

S0 (Py(s, ))ocsers (Qgls, No<ser and (Ty(s, ))oe,w, are semimar-
tingales in the sense of our definition and we can solve stochastic differen-
tial equations driven by them. However the quadratic variation of two of
these processes is not a process like (Py(2)),50, (Q4(#)),50, OF (T,(#)),50
nor a scalar process and so we cannot give a weak Itd formula and
unitarity conditions for the solutions of stochastic differential equations.
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