
JOURNAL OF FUNCTIONAL ANALYSIS 104, 149-197 (1992) 

A Representation Free Quantum Stochastic Calculus 

L. ACCARDI 

Centro Matemarico V. Volterra, Diparfimento di Matematica, 
Universitci di Roma II, Rome, Italy 

F. FACNOLA 

Dipartimento di Matematica, Vniversild di Trento, Povo, Italy 

AND 

J. QUAEGEBEUR 

Department of Mathemarics, Universiteit Leuven, Louvain, Belgium 

Communicated by L. Gross 

Received January 2; revised March 1, 1991 

We develop a representation free stochastic calculus based on three inequalities 
(semimartingale inequality, scalar forward derivative inequality, scalar conditional 
variance inequality). We prove that our scheme includes all the previously 
developed stochastic calculi and some new examples. The abstract theory is applied 
to prove a Boson Levy martingale representation theorem in bounded form and a 
general existence, uniqueness, and unitarity theorem for quantum stochastic 
differential equations. 0 1992 Academic Press. Inc. 

0. INTRODUCTION 

Stochastic calculus is a powerful tool in classical probability theory. 
Recently various kinds of stochastic calculi have been introduced in quan- 
tum probability [18, 12, 10,211. The common features of these calculi are: 

- One starts from a representation of the canonical commutation 
(or anticommutation) relations (CCR or CAR) over a space of the form 
L2(R+, dr; X) (where 3? is a given Hilbert space). 

- One introduces a family of operator valued measures on R,, 
related to this representation, e.g., expressed in terms of creation or 
annihilation or number or field operators. 

149 
0022-1236192 $3.00 

Copyright 0 1992 by Academic Press, Inc. 
All rights of reproduction in any form reserved. 



150 QUANTUM STOCHASTIC CALCULUS 

-- One shows that it is possible to develop a theory of stochastic 
integration with respect to these operator valued measures sufficiently rich 
to allow one to solve some nontrivial stochastic differential equations. 

- One tries to use the above theory to prove an operator form of the 
It8 formula (usually stated in the form that the weak or strong product of 
two stochastic integrals is a sum of stochastic integrals). 

The basic application of the theory is the construction of unitary 
Markovian cocycles (in the sense of [ 11) as solutions of quantum 
stochastic differential equations, which provides, via the quantum 
FeynmanKac perturbation scheme, a new nontrivial generalization of the 
Schrodinger equation as well as a dilation in the sense of Kiimmerer [24]. 
This stage of development of the theory has been reached up to now only 
by the operator approaches of [ 1 S] for the Boson Fock space on L2(R + ) 
and subsequently of [lo] for the Fermion case, of [19] for the universal 
invariant case, and of [22] for some more general quasi-free case (cf. also 
the kernel approach in [21,27] ). 

The vector approach of [ 11, 121 has the advantage of underlining the 
analogy between the classical and the quantum theory of stochastic 
integration, but pays it with the lack of a satisfactory It6 formula. On the 
other hand, the Hudson-Parthasarathy approach can produce such a 
formula by making heavy use of very specific properties of the particular 
representation chosen and of the operators involved, such as for example: 
the continuous tensor product structure, the factorization property of the 
coherent vectors, the explicit form of the action of the creation, annihila- 
tion or number process on the coherent or number vectors,.... This implies, 
not only that one has to change techniques every time one changes 
representation, but also that one loses the contact with the classical 
stochastic integral, because these properties do not play any role in the 
definition of the classical stochastic integral. In [2] the program of 
constructing a theory of stochastic integration which could unify the classical 
as well as the several different quantum theories developed up to now, was 
formulated. 

The basic motivation of this program, independent of the esthetic 
motivation, related to the unification of the existing theories, was provided 
by the theory of quantum noise [3,4] in which the following two problems 
arise: 

(i) To develop a stochastic calculus for general quantum filtrations 
with sufficiently strong “chaoticity properties” (cf. [3, Sect. 21). In 
particular we do not want our theory to be limited to continuous tensor 
products (or graded tensor products) nor to expected filtrations, nor to 
filtrations commuting or anticommuting with the past. 
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(ii) To classify the basic “quantum noises”, i.e., to look for some 
class of “basic quantum noises” which could play, in the quantum case, the 
role of “fundamental archetypes” played, in the classical case, by the 
Wiener and the Poisson process. 

The solution of Problem (i) above is necessary if we want to apply 
stochastic calculus to quantum field theory, where several important exam- 
ples of non factorizable representations arise. The solution of problem (ii) 
is related to the development of sufficiently powerful “representation 
theorems” (cf. [20, 231 for the classical case and [7,9, 161 for the quantum 
case) whose final goal should be to produce a full classification of all the 
canonical forms of the quantum noises. It is clear that, if we want to 
reconstruct the properties of a quantum noise from some moment and 
martingale requirements, we cannot start from stochastic calculus based on 
some particular property of the representation, but on the contrary, the 
form of the representation should be deduced from the statistical assump- 
tions. 

The realization of this program had to undergo several preliminary steps: 
from the pioneering attempt of [2, $61, to the individuation of the 
Dellacherie-Letta-Protter approach to stochastic integration as the natural 
bridge between the classical and the quantum theory [S, 151, the develop- 
ment of a satisfactory notion of brackets (mutual quadratic variation) and 
the consequent “stochastic integration independent It8 tables” [8,9]. 

The present paper constitutes an attempt to bring this program to a 
conclusion by producing a theory of stochastic integration which: 

(1) includes all the known examples. 

(2) is applicable to examples to which the previous theories were not. 

(3) allows us to prove an It6 formula without the assumption that 
the increments of the basic integrators commute (or anticommute) with the 
past. 

The basic ideas of our approach are the following: In Section (2) we 
introduce an abstract notion of operator semimartingale and the we single 
out a class of semimartingales with particularly good properties (the 
integrators of scalar type). Intuitively a semimartingale is good if the 
stochastic integrals of sufficiently regular processes are still semimar- 
tingales. We single out two easily verifiable conditions which guarantee 
that a semimartingale is an integrator of scalar type: 

(i) the scalar forward derivative inequality (3.9). 

(ii) the scalar conditional variance inequality (Definition (3.5)). 
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We lix then a family of integrators of scalar type, called the “basic 
integrators,” and all the stochastic integrals we consider are meant with 
respect to this family of integrators. 

The inequalities (i) and (ii) depend on the domain on which the basic 
integrators are considered. The known examples of basic integrators are 
creation, annihilation, and number processes with respect to a given quasi- 
free (gaussian) representation of the CCR or of the CAR. The domains on 
which these integrators are usually considered are the linear span of the 
coherent vectors [18] or the n-particle vectors [lo] or the invariant 
domain of [S] which combines both the previous domains, In all these 
domains the inequalities (i) and (ii) are easily verified by direct calculation 
(on the domain of coherent vectors they assume a particularly simple 
form). The verification of these inequalities is purely computational and we 
do not include the lengthy but elementary calculations involved. In 
Section 5 we prove an existence and uniqueness theorem for stochastic 
differential equations, driven by integrators of scalar type, with bounded 
coefficients adapted to the initial space. 

In Section 6 we recall from [S, 93 the notion of Meyer bracket (or 
mutual quadratic variation) of two semimartingales, and in Section 7 we 
prove a weak It6 formula for two integrators of scalar type admitting a 
weak Meyer bracket. 

In order to prove the unitarity condition for the solution of a stochastic 
differential equation (Section 9) we need two additional conditions: 

(iii) a p-commutation condition (cf. Definition (6.2)), 

(iv) the It6 table of the basic integrators (in the sense of (6.5)) has 
scalar structure coefficients. 

Again these two conditions are verified in all the known examples. 
Moreover it is an easy exercise (using the results of [S, 151) to prove that 
the free Euclidean Boson field satisfies all the conditions (i),..., (iv). This 
provides in particular an example of a nonfactorizable space where 
stochastic integration can be developed. Even when restricted to the case 
when the l-particle space is some r (L,(R+, dz; X)), the results of 
Sections 6 and 7 are stronger than the known ones, since they hold on the 
larger invariant domain of [S]. 

In Section 8 we show how the Hermite polynomials arise from iteration 
of quantum stochastic integrals satisfying a Boson commutation relation; 
this extends a well-known result in classical probability theory, but at the 
moment we have no Fermion analogue of this result. 

In Section 9 we prove a Boson type Levy theorem for a single semimar- 
tingale. The previous results in this direction could bypass the problem of 
the nonexistence of a representation free stochastic calculus either using a 
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formulation of the problem which broke the analogy with the classical case 
[7, 161 or by exploiting the very specific properties of the Fermion 
commutation relations [9]. In particular, the present technique allows us 
to obtain the CCR in the Weyl form, while in [6] only the simpler 
unbounded form of the CCR was obtained. 

Finally, in Section 10 we prove that the example recently considered by 
Boukas, and which is not included in the previously considered examples 
can be easily included in our theory. This inclusions allows us, in 
particular, to solve some problems left open in Boukas approach. 

1. SIMPLE STOCHASTIC INTEGRALS 

Throughout the paper we shall use the following notation: 

- X is a complex separable Hilbert space, 

- G?(X) is the algebra of all bounded operators on 2, 

- 9 is a total subset of 2, 

- wJ,dt+ is an increasing family of @‘*-algebras of operators 
on 2, 

- LZ? is a IV*-algebra of operators in Z such that &,, E d for all 
tER+, 

- &‘i, is the cornmutant of &,, in g(X)), 

- for each vector <EB, we define %:,(t) to be the closure of the 
subspace [dr,5] = {at : CI E J$,}, 

- efl is the orthogonal projection onto z,(t), 

- 2’(9; Y?) is the vector space of all linear operators F with domain 
containing 9 such that the adjoint operator F* also has ~2 in its domain. 
So for FE 2’($ Y?) we have that 

(rl, R > = (F+rl, 5 >, for all r, q E 9. (1.1) 

EXAMPLES. The following choices of X and 9 give the most studied 
examples of quantum stochastic calculi. In the Boson Fock space 
quantum stochastic calculus developed in [18], 2 is the Hilbert space 
h 0 T(L’(R+)), where h is a complex separable Hilbert space (the initial 
space) and T(L2(R+ )) the symmetric Fock space over L’(R+) moreover 3 
is the set of vectors u@$(f), where UE h and $(f) is the exponential (or 
coherent) vector with test functionf: In the Fermion Fock space quantum 
stochastic calculus developed in [lo], % is the tensor product of a 
complex separable Hilbert space h with the antisymmetric Fock space 
over L’(R+) and G@ is the set of n-particle vectors. 
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DEFINITION 1.1. A random variable F is an element of Y(9, Z). 

DEFINITION 1.2. A stochastic process in X, indexed by R + , is a family 

(F,),>o of random variables such that for each q E 9 the map t E R + + F, q 
is Bore1 measurable. Alternatively, a stochastic process indexed by R, can 
be looked at as a map t E R + H F(t) = F, E LZ(9; 2) with the above 
mentioned measurability property. In this paper we shall only deal with 
processes indexed by (subintervals of) R + 

We will use indifferently the notation F, or F(t). If each F, is a bounded 
operator and moreover, for each T < +ac: 

SUP llF(ll, < +a 
1s lO,Tl 

then the process F is called locally bounded. If each F, has the form 

F,=f(t).l, 

where f is a complex valued measurable function and 1 is the identity 
operator in a(&‘), then F is called a scalar process. Two processes will be 
considered equivalent if they coincide on 9. Due to (1.1) each stochastic 
process (F,) uniquely defines the adjoint process (F,’ ). 

DEFINITION 1.3. For all t E R + we denote by 9; the linear span of 
d;, 9. We say that an operator F is t-adapted to zJ(, if D(F) = 9;, 
D(F*) 2 9; and if 

Fa;, 5 = a;, F5 and F*ail 5 = alI F*< (1.2) 

for all a:E&i, and (~9. 

Clearly, if F is a t-adapted operator, then it is in 9(9,X) and the 
restriction F* I 9i of F* to 9; is again a t-adapted operator. Moreover, if 
F is a t-adapted operator and s Q t, then FI yI is an s-adapted operator. 

The following proposition clarifies the notion of adaptedness. 

PROPOSITION 1.4. If F is a t-adapted operator then the closure F of F is 
affliated with &,, and there exists a sequence (F’“‘), in dS such that (F’“)), 
and (F(“)*), converge to F and F* respectively strongly on 9. Conversely, if 
(F’“‘), and (Fen)*)” are sequences in d,, strongly convergent on $3, then the 
operator defined by 

D(F) = { 5 E 2 I (Ftn)c), and (F(“‘*<), converge} 

Ft = lim F(“)< 
n-cc 

is a t-adapted operator. 
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ProoJ: Since F is a random variable, it is closable. Let F denote the 
closure of F defined on the domain 9-. We know that d:,9 is contained 
in D(F). Consider x E 9 - and a sequence (r,), in the linear span of 9 such 
that 

lim [,=x, lim Fc, = Fx. 
n-cc n-m 

For all a’ E Sl, the sequence (a’(,), converges strongly to a’x therefore we 
have 

lim Fa’t, = lim a’Ftn = a’Fx. 
n-rm “--too 

So a’x E D(F) and Fa’x = a’Fx. This shows that P is affiliated with d,,. 
The closure F of F can be decomposed as the product UIFJ of a partial 
isometry U in d,, and the positive self-adjoint IFI. Let (E(A)),,, be the 
spectral family of IFI; for all 2 2 0, E(A) is an element of &,,. For each 
integer n put 

Fen)= U 
s 

’ E, dE(A). 
0 

Clearly F(n) is an element of J&, its adjoint is given by 

F(“‘* = 

and F’“) converges strongly to F on the domain 9 E D(lFI) = D(F). 
Moreover we know that F* = (F)* = IFI U* so, for all g E 9, we have 
U*t ~9 (IFI) by the definition of random variable. Therefore F(“)*< 
converges strongly to F*& This completes the proof of the first part of the 
proposition. Conversely let (F’“‘),, and F be as above. We show first that 
F is a random variable. Indeed 9 E D(F) and for any 5 E D(F) we have 

(F& 9) = lim (F’“‘& r) = lim (5, F’“‘*q). 
n-cc n-m 

Hence q is in the domain of the adjoint F* of F and F*q = lim, _ m F(“)*q. 
Now take < E 9 and a’ E LZ? i,. We have 

lim F(“)a’t = lim a’F(“)t = a’F< 
n-cc n-c.2 

lim Fcn)*a’( = lim a’I;(“)*( = a’F*(. 
n-m “+@Z 

This completes the proof. 1 
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A sequence (F,,) of t-adapted operators is said to converge strongly on Y 
if for any vector t ~9 the sequences (F’“‘<), and (F’“‘*[), converge in 
norm in X”. Note that the sequences then also converge on 9:. Denote 
now by F the process given by D(F,) = 9; and F5 = lim, F”“c for 5 E $9;. 
Then one easily checks that F is again t-adapted. Hence the strong limit on 
9; of a sequence of t-adapted operators is a t-adapted operator. 

DEFINITION 1.5. A stochastic process (Fr),>,, is adapted to the filtration 
be,),20 if F, is t-adapted for all t 3 0. We shall denote by Y the vector 
space of all simple adapted processes, i.e., those adapted processes (F,) 
which can be written in the form 

Fr= i xCtk,,k+,)(f)F,k 
k=l 

(1.3) 

for some finite integer n and with 0 d t, < cl < . . < t, + i < 03. 

Remark. Let, in the above notations, X = L’(Q, 9, P), where 
(Q, 8, P) is a probability space with a past filtration (Ft,) and let 
4]= L”(Q, sr,> P) acting by multiplication on S. Let 9 = d . 1 (1 is the 
constant function on Sz equal to 1) and let ej, = e,, . Then, since et3 E &‘i,, 
(1.2) implies that 

Mrer3 = et1 M, on 9 (1.4) 

and, in the classical case, the notion of adaptedness introduced in 
Definition (1.3), is equivalent to the usual one. 

In the following all the processes we shall consider will be adapted to the 
filtration (&<,),,, therefore we call them simply “adapted.” 

DEFINITION 1.6. An additive process is a family M = (M(s, t)),,,, t of 
random variables such that: 

(i) forallsgtinR+, the operator M(s, t) is a t-adapted operator 

(ii) for all r, s, t with r < s < t 

M(r, t) = M(r, s) + M(s, t); M(t, t) =o (1.5) 

on 9 (and hence also on &i, ‘9 = 9;). 

Remark. To every additive process (M(s, t))OGsG I we associate the 
adapted process M(t) = M(0, t) (t > 0). Conversely, to every adapted 
process (M,) we associate the additive process M(s, t) = M(t) - M(s). This 
correspondence characterizes the process M(t) up to the random variable 
M(O) = M,, called the initial value of the process. 
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DEFINITION 1.7. An additive process M is called regular if 

vg E 9, vs 6 t : ST, (5) c D(R”(s, t)) (1.6) 

t/s d t : M”(s, t) 9 c a;, (1.7) 

where A denotes the closure of M and @ stands for either ii;i and M*. 

LEMMA 1.8. Let M be a regular additive process and suppose that 9: is 
a core for M(s, t)* for all s < t. Define 

Mf(s, t)=M(s, t)*l,;. (1.8) 

Then M+ is again a regular additive process. 

Proof: Clearly, since 53 G D(M(s, t)*) for all s6 t, we obtain the 
additivity of M+ from the additivity of M. 

Now choose s < t, 5 E 9 and a: E x2’:, . Then, since M(s, t) is t-adapted, 
we have 

M+(s,t)a:5=M(s,t)*a:5=a:M(s,t)*~=a:M+(s,t)~. (1.9) 

Moreover, as M+(s, t) E M(s, t)*, we have M+(s, t)* 2 M(s, t). Hence, 
9; E D(M+(s, t)*) and 

M+(s, t)* 44 = M(s, t) a:5 = a;M(s, t) 5 = a:M+(s, t)* 5. (1.10) 

We conclude that M+(s, t) is t-adapted. Finally, as 9; is a core 
for M(s, t)*, we know that D(M+(s, t))= D(M(s, t)*)?%,(r) for all 
5 E 9. Since also M+(s, t) 53 = M(s, t)* 53 E gs,,, we obtain the regularity of 
M+. 1 

LEMMA 1.9. Let M be a regular additive process and F an adapted 
process. Then for all s d t we have that 

f’$fM(s, t) and a(~, IV’s I ra; 

are t-adapted processes. 

Proof: It follows immediately from the definitions that D(F,M(s, t)) = 22; 
and that F,M(s, t) ai< = a:F,M(s, t) 5 for a: E G?:, and 5 E ~2. 

Now let 5, q E 9 and a:, bj E &i,. Then, using adaptedness and the fact 
that b:q E 9; E 91 E D(F,*) and F,*q E &, (q) E D(M(s, t)*), we find that 

(FMs, t) 45, b:rl) = <a:<, bW(s, t)* F,*v) 
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which implies that 9; ED((F,,M(~, t))*) and that (F,M(s, t))* h:q = 
b:M(s, t)* F,*q = hi(F,sM(s, t))*q. This proves the t-adaptedness of 
F.Ms, f). 

To show the t-adaptedness of A(s, t) F,yI,;, first note that for a: E &‘~, 
and 5~9 we have that u;~,(~)cD(M(s, t)) and that for VEX,(~) we 
have that &?(s, t) a;~ = a:M(s, t)q = a;M(s, 2)~. Using this, we deduce that 
9; z D(m(s, c)F,~) and n(sj t) F,u:t = a;&?(~, t)F,[ for ai E &‘i, and < E 9. 

Now let 5, q~9 and ai, 6: E&:,. Then, using adaptedness and the fact 
that 9; E D(M(s, t)*) and M(s, t)* n E E 91. E D(FT), we find that 

which implies that 9: c D((H(s, t)F, 1 9;)*) and that (ii;i(s, t)F, I 9d;)* b:q = 
b:F,*M(s, t)* r = b:(M(s, t)F, 1 Q;)* q. This proves the z-adaptedness of 
Mb, WA,;. I 

From this lemma it follows that one can define meaningfully the 
stochastic integral for simple adapted functions with respect to a regular 
additive process. 

DEFINITION 1.10. Let M be a regular additive process and FE S a simple 
adapted process of the form (1.5). We define the left stochastic integral of 
F with respect to A4 over the interval [IO, t] as an operator on 9: by 

i li;i(t, A t, tk+, A t)F&; 
k=l 

The right stochastic integral is given by 

IF, dM, = i F,,M(tk A t, tk+ 1 A t). 
k=l 

Remark. From the additivity of M it follows easily that the left and 
right stochastic integrals are independent of the choice of the representa- 
tion of Fin the form (1.5). 

THEOREM 1.11. Let M be a regular additive process and FE S a simple 
adapted process. Then fh dM,F, and 1; F, dM, as defined above on 9: are 
t-adapted operators. Moreover the mappings 

FESH *dM,F,&‘(9,%) s and FESH ‘F,dM,@Z(&@, 2) 
0 s 0 
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are linear. Finally, if for all s < t 9; is a core for M(s, t)*, we have that 

(j,)KF,)*~9;= j;F,‘dW 

(f~F~dM’)‘(,;=j~dM~F~, 

where F: = F,* Is; and M+(s, t) = (M(s, t))*19;. 

Proof The result follows straightforwardly from Lemmas 1.9 and 1.10. 
We omit the details. 

2. SEMIMARTINGALES AND INTEGRATORS 

We shall denote ,4”:, the subspace of Y consisting of all simple process 
F such that 

Fu=O if u > t. (2.1) 

The following definition extends in a natural way the notion of semi- 
martingale as introduced in [23] or [30]. 

DEFINITION 2.1. Let 6 be a topology on Y and Yz be a topology on 
S(g,; 2). A regular additive process M is called a (T , F2))-semimartingale 
if for each t E R + the maps 

F&‘:p I F, dM, E cY(9; X) (2.3) 

are continuous with respect to the topologies %, Yz. 

For any positive nonatomic measure p on R + , for any 5 E 9, and for 
any stochastic process F we denote 

IIFII ;,,,, = 5 ’ llFs3,5112 44s). 
0 

(2.4) 

The topologies YI on Y one usually considers are induced by seminorms 
of the form (2.4) while the topologies Fz on Z(g; X) are those given by 
the strong or weak convergence on 9. 
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An additive regular process M such that for each 5 E 9, there exists a 
positive locally finite nonatomic measure p5 on R + such that for each t 3 0 
the maps 

are continuous from S with the 11 . I/,,,,,,-seminorm to SP with the norm 
topology, has been called a regular semimartingale in [S] and there it was 
shown to include all the examples of “basic integrators” considered up to 
now in the literature. The regular semimartingale condition is equivalent to 
the existence, for each 5 E 9 of a positive, locally finite, ‘non atomic 
measure pt and for each t 3 0 of a constant c,,< > 0 such that, for all 
elements F of S, 

(2.7) 

However, for the purposes of the present paper the class of regular semi- 
martingales is too narrow because of its dependence on the domain 9. For 
example, the creation process on the Fock space on L2(R+) is a regular 
semimartingales on the (noninvariant) domain of coherent vectors 
(cf. [S]), but not on the (invariant) domain of the polynomial of the fields 
applied to the coherent vectors [8]. On this larger domain it satisfies the 
following condition: for each 5 E C3 there exists a finite subset J(t) z 53 such 
that for each simple process F and for each 0 < T < +co one has 

c 11~~~11’. (2.9) 
tleJ(S) 

Moreover, for each q E J(t), one has 

J(v) G 45). (2.10) 

We can always suppose that r E J(t) and, because of (2.9), we can suppose 
that, for each v E J(c), we have also 
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The same condition is satisfied by the annihilation and the number 
processes on the same space. As discussed in Section 6 if we want that at 
least the simple processes with respect to a certain family (Ma), of basic 
integrators form an algebra, then the domain 9 has to be invariant under 
the action of all the M”(s, t). Under this requirement, if we want to include 
the simplest examples, then the semimartingale inequalities (2.6), (2.7) 
must be replaced by the more general conditions (2.8), (2.9). These 
considerations motivate the following: 

DEFINITION 2.2. An additive regular process A4 is called an integrator of 
scalar type if, for each, < E 9 there exists a finite set J(5) c LB such that the 
conditions (2.8), (2.9), (2.10) (hence also (2.11)) are satisfied. 

In the following for each 5 E 9 and t z 0 we shall fix a choice of the non- 
atomic measure pr and of the constant c,,~ >O so that the inequalities 
(2.11) are satisfied and, from now on, these symbols will be referred to this 
choice. 

Remarks. (1) In this paper we are interested only in one-sided (left or 
right) stochastic integrals. The above conditions, however, could be 
generalized to deal with some two sided stochastic integrals. 

(2) In [17] it has been shown that the basic techniques and ideas of 
the present paper can be applied to include in our theory the stochastic 
integration with respect to the free noise developed in [32]. The increments 
of the free noises satisfy a generalized p-commutation relation (cf. Delini- 
tion (6.2)) which implies some slight modifications in the proof of unitarity 
conditions. 

(3) Taking in (2.8), (2.9) the process F to be the characteristic 
function of an interval (a, b) E (0, t) times the identity operator, we deduce 
in particular that 

maX~lI(~b--~,)~11*, II(~b+-~,f)5112}~c~,r~r(a,b) 1 llglj* (2.12) 
v~J(t) 

which, because of our assumption of the nonatomicity of pLg, implies that 
every integrator of scalar type is strongly* continuous on 9. 

The conditions (2.8), (2.9) imply that, if F(“) is a sequence in S and F is 
a stochastic process such that F(“) + F in the II./I,,,,,t-seminorm for all 
~EJ(Z~), i.e., for each I]E$$ and tER+, 
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then the sequences 

j ‘dM,F:“‘i’, 
0 

j-‘Fl”)+ dM,? 5 
0 

are Cauchy in X and their limits are the same for any sequence satisfying 
(2.13). Thus we can define 

j’ dM,F,5:= lim j’ dM,Fy’<; 
0 n-z 0 

1’ F,’ dM,f t:= lim j’ Fy)+ dMf 5. 
0 n-a, 0 

(2.14) 

Let M be an integrator of scalar type and let us denote LF,,(R + ; dM) the 
space of all the adapted processes F with the topology given by the semi- 
norms /l~ll’1.1,p5 such that, for all 4~9, VEJ(~) and all Odt< +cc 

i (: (llFs’,1112 + IIF: VII’) d/+(s) < ~0, (2.15) 

where pe is as in Definition (2.2). 

THEOREM 2.3. Let M be a integrator of scalar type and suppose that, for 
any r E 9, the measures uC in the inequalities (2.8), (2.9) are absolutely con- 
tinuous with respect to the Lebesgue measure. Then the stochastic integral 
with respect to M can be extended by continuity from S to Lk,(R + , dM) 
and the inequalities (2.14) hold. 

Proof: We have only to show that S is dense in LF,,(R + ; dM) for the 
topology given by the seminorms (2.15). Suppose first that F and F+ are 
strongly continuous on 9 and consider then the sequence of elements of S 

Fj”‘=CXCk,n,(k+,),n)(t)Fk,n. 
k 

Then F@) converges to F in Lk,(R + ; dM). In fact for all 5 E 9, all t 20 
and all E > 0 there exists a 6 > 0 such that, if 

jr-s1 <6; O<r,sdt 

then 

IlFrr --F~5ll <E/t, llC+ 5 -K+ 511 < E/t. 
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Thus for all n such that l/n < 6 we have 

llF.~n’5-~~511 <E/t, IIF.?)+ 5 -F; 511 <e/t 

from which the required convergence property easily follows. Now let 
(F,)r>o be an adapted process and let ($n)na, be the sequence of positive 
measurable functions 

d,(t) = wo,l,n)(t). 

Let us consider the processes 

F’“‘= ’ 
s J 

hz(u) I;,-u dz.4 o 

which is strongly continuous on 9 and adapted. Then, for all 11 E J(C), 

IIFj”‘rl-F,vI12= jr(,wr~swvW A 
II II 

2 

0 

and therefore 

by Fubini’s theorem this is equal to 

which tends to zero as n -+ cc by the absolute continuity of pr. Since F is 
arbitrary, the same argument applies to F’, and this ends the proof. 1 

Note that the proof of the fact that any process F, strongly continuous 
on 9, is in L*(R+ , dM) and is integrable with respect to A4 does not 
depend on the absolute continuity of pc with respect to the Lebesgue 
measure. Moreover, for FE L2 (R + ; dA4), we have defined by the above 
approximation method right and left stochastic integrals as operators 
on 9; 
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PROPOSITION 2.4. Let M be us in Theorem (2.3). For all FE L& (R + ; dM) 

(i) the maps (s, t) -+ i: dM,F,;(s, t) + i,t F, dM, are additive adapted 
processes strongly continuous on 9. 

(ii) ZfF,GcL~:,,(R,dM) then F+GEL~,,(R,~M) and 

j’dMK+G,)= j’dM&+ j’dM,G., 
0 0 0 

j’ (F, + G,)dM, = j; F,VdM,+ j; G,dM, 
0 

on the domain 9;. 

Proof It is easy to see, from the delintion of regular additive process 
that (i) and (ii) hold for all FE S. The extension to FE L&,(R; dM) follows 
approximating F with a sequence of elements of S. 

It is clear from the definition that any finite linear combination of 
integrators is still an integrator. A scalar, locally bounded, additive process 
(i.e., a process of the form M(s, t) = a(s, t) 1, with o a positive, real valued, 
locally bounded measure) is clearly an integrator. If FE Lf,,(R + ; dM), its 
stochastic integral might not be an integrator (not even a regular process). 
The following is a simple and easily applicable sufficient condition which 
assures that an additive process is an integrator of scalar type. 

PROPOSITION 2.5. Let M be a regular additive process with the following 
properties: 

(i) for all 5, n E 9 there exists finite subsets J(& n), J(t) of 9 such 
that J(t,t)cJ(t) and, for all <,, t2~J([,n) we have 

J(5,)z J(t), J(tz) c J(v) (2.16) 

(ii) for all 5, n E 9 and all 5,) l2 E J(<, 9) there exist locally bounded 
non atomic measures v5L,52 and crr,,52 on R + such that, for all 0 <s < t and 
any pair of s-adapted operators F, G one has 

I(M(s, t)Ftl, %>I G c vg,,& t) I<Ft,> (%,)I (2.17) 
51.52~45.q) 

max{I(Ws~t)F~,~M(s~ t)GL)L I(FM+(s, t)51y GM(s, t)‘L>l) 

G c ids t) l(F51, Wz>l. (2.18) 
51.5z~J(<.d 

Then M is an integrator of scalar type. 
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Remark. It will be clear from Section 3 that a sufficient condition for 
(2.17) is that M has a scalar forward derivative and for (2.18) that M has 
a scalar conditional variance on 9. This justifies the term “integrator of 
scalar type.” 

Proof: We only have to check the semimartingale inequalities 
(2.8), (2.9). To this goal we introduce a notation, which shall be used 
throughout the paper. If t and dt are positive numbers, for any additive 
process A4, we write 

d&f(t) := dM, := M(t, t + dt). (2.19) 

With these notations, if F,, F2 are simple processes, for each t, dt 3 0, with 
dt small enough so that both F,, F2 are constant in any interval of width 
dt not containing points of discontinuity, we define 

dNj(t):=dM(t)F,(t)=M(t,t+dt)Fj(t); j= 1, 2. 

Then, for any pair of vectors 5 i, t2 E J(& q), we have the identity 

&N,(t) <I, N,(f) 52) 
= (dN,(t) (1, NAf) 52) + (N,(t) 51, dN,(t) 52) 

+ (dN,(t) 5,) dN,(t) tz > 
= (dMtF,(t) 51, Nz(f) t2) + <N,(t) (19 dM,FAt) 52) 

+ (dMrF,(t) (I 9 dM,E;(r) 52 >. (2.20) 

Applying (2.17) and (2.18) to (2.20) we obtain 

G c <,stl e2) Cdv,At) (l(F,(t) L NAf) &)I 

;‘I<N,ttI L f’,(f) L)l) 

+ da,&t) I (F,(f) L f-z(t) <b>ll. (2.21) 

Choosing t1 = t2 E J(c), and F, = F, = F, so that N, = N, = N, (2.21) 
becomes 

dllN(t) t,ll’d 1 d/+(t) (I (F(f) to N(t) &)I + IlFt’(t) Ll12) 
Sor5b~JCt1) 

with 
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Summing on 5, E J(4) this inequality and denoting 

I/2 
v(t):= 

( 
1 IIN(~)5”1l’ > Q(t):= 

S,eJ(t) 

one obtains the inequality 

where c = c(t) is an easily estimated constant. From this the following 
estimate on @j(t) := SUP,~ E Co,r, q(s), 

6; 4% +; c* ( 
J’ d/Q(s) s(s)) + c J’ d&s) e’(s), 

0 0 

i.e., 

This gives the inequality (2.7). In a similar way one proves (2.8). [ 

PROPOSITION 2.6. Let M be an integrator of scalar type and let f be a 
continuous function. Then 

N, := j-‘f(s) dA4, 
0 

is an integrator of scalar type. Moreover, for all 5 E 9 

J”(5) = J”(<); Pp=P$ c;c= IlfX(o,r,llm. (2.22) 

Proof. Iff=Cjfttj) X(t,,t,+,) is a step function and F a simple adapted 
process, then 

4Ct.J fd,w&) c IIf Fsvll’ 
0 vs.05) 

d c,,< IlfxV-4 t)ll m j-; &,(s) 1 IliF,~l12. 
veJ(5) 
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The inequality (2.14) allows to complete the proof by density arguments. In 
a similar way one proves th inequality for the adjoint process N+. 

3. FORWARD DERIVATIVES AND MARTINGALE? 

An important case when condition (2.17) of Lemma (2.5) is satisfied is 
when the process associated to M admits a scalar forward derivative. 

DEFINITION 3.1. A regular additive process M admits a (locally 
bounded) forward derivative if for any t,, t2 ~9 there exist a positive 
locally bounded nonatomic measure Q~,,~~ such that, for all adapted 
processes F, G and for each s 2 0 the complex valued measure 

is absolutely continuous with respect to ~~~~~~ for all s E R, and an adapted 
bounded operator valued process D$%r2M such that 

= (F,[,, Dt1.[2M(t) G 5 ) 
+ I 2 . (3.2) 

If 5, = l2 = 5, we simply write 0: M(t). The additive adapted process 
fi D?rt2M(r) dp5,,<,(r), where the integral is meant weakly on the domain 
of all the vectors of the form F,{ for some adapted process F and some 
5 E 9, is also called the (tl, t2)-drijI (or the (5, , (,)-bounded variation part) 
of M. 

The fundamental theorem of calculus states that, if a function f has a 
continuous derivative then the increments of the function fare the integrals 
of its derivative. The fundamental theorem of stochastic calculus states 
that, if a process F has a continuous forward derivative, then the 
increments of F are the integrals of its forward derivative plus a martingale. 

DEFINITION 3.2. A regular additive process M is called a (<,, c2)- 
martingale if, for all 0 d s < t < u < + co, and all adapted processes F, G one 
has 

If <i = t2 = 5, then we call M a r-martingale. 

THEOREM 3.3. Let M be a regular additive process such that for all 
5,) t2 E 9 and for all t > 0 the forward derivative D:*“M( t) exists and is 
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strongly continuous on 9. Then there exists a (<, , 4:2)-martingale MS’.” such 
that 

M(s, t) = ?” Di;l.i’M(r) dpt,.c2+ M~‘.“?(s, t). (3.4) 
., 

Proqf: Let F, G be adapted processes and 0 <s < t. The real measures 

(a,b)-‘Re<F,r,,A(a,b)GJ52), (a, b) + Im(F,t,, A(a, 6) G,t,) 

are absolutely continuous with respect to Q~,,~~. By [23, Theorem (4.42)] 
the existence of the limit (3.2) implies that for any interval [s, t] E R one 
has 

<n(s, 0 Fs<,, G,(z) = j’ (D ?‘5*M(r) F,J1, G,A2> dpS,.c2(r) 
.s 

Therefore the additive process 

M~S, t) := ~(5, t) - I’ Dt-:XCZM(r) dpt,,C2(r) 
s 

has the desired properties. 

PROPOSITION 3.4. Let tl, tze 9 and let M be a (tl, <,)-martingale. 
Then for all s > 0 and for all adapted processes F, G the maps 

(t, ul c (s, +a1 --* (n(t, u) Fstl, a(4 ~1 Gst,) 

(t, ul E (s, +ml --) (FsM+(t, u) 41, GsM+(t, u) 52) 
(3.5) 

are complex measures. If M, M+ are strongly continuous, then these 
measures is nonatomic. 

Proof: Clear. 

DEFINITION 3.5. If there exists an additive adapted process denoted 
by ((M+, M)) and a *-linear map p mapping adapted processes into 
themselves such that, for all 5 i, r2 E 9 and all s < t < u 

(H(t, u) Fstl, m(t, u) Gs51) = (F,t,, CM+, M> (t, u) GA) 

and 

<FM+(t, ~)51,G,M+(t,u)52)=<~(Fs)51,<(M+, M>* (cu)dG,) 52). 
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The additive process ((M+, M)) is called the oblique (or Watanabe) 
bracket of M or simply the conditional couariunce of M. If the oblique 
bracket of A4 is a scalar process, then A4 is said to have a scalar conditional 
variance. 

Remark. Note that, if M has a scalar conditional variance or,,52 then 
the inequality (2.18) is satisfied. 

COROLLARY 3.6. Any additive process with a continuous forward 
derivative and a locally bounded conditional variance is an integrator in the 
sense of Definition (1.3). 

Proof: Such a process satisfies all the conditions of Proposition (2.5). 

Additive processes with scalar forward derivatives on 9, i.e., for which, 
for any tl, t2~9 

D5’,52M(t) 

DPt,.,2 

= (P5,.52(f) (3.6) 

for some function (P<,,<~ in L:,,,(R, dpC,,e2) are important for the applica- 
tions. Denoting ve,.52 the measure 

VC,,C~(S~ t) =J’ cPt,,c,(r) dPr,,i;2(r) 
s 

(3.7) 

the relation (3.4) implies that 

<Fst~, Way 6) GsL) =v<,,& t) (Fdsrl, Gs5,) (3.8) 

for all adapted processes F, G, strongly continuous on 9. From this it 
follows that any additive process M with a scalar forward derivative enjoys 
the following property: 

For all 5, q E 9 there exists a measure vy,, on R, finite on bounded 
intervals such that, for all adapted processes A, B, C, D strongly 
continuous on 9 and all s < t 

I <A(s) t, a@> t) B(s) rl> - <C(s) t, n(s, t) D(s) rl >I 
Gvr,,l(s, t) I(&) 5, B(s) v> - (C(s) t, D(s) rl)l. 

(3.9) 

Condition (3.9) will be called the scalar forward derivative inequality. It 
will play an important role in the proof of the unitarity conditions 
(cf. Theorem 9.2). 
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4. THE O( &)-NOTATION 

Let R< denote the set 

R’, := {(s, ~)ER~ :.r<t} (4.1) 

DEFINITION 4.1, Let q: Ri -+ C be a function. We say that cp is of order 
o(dt) if for every bounded interval (s, t) in R, 

lim 
IP(.s,1)l -0 c cPttj, tj+ 1) = O. 

5=1,< ... <rk=r 
(4.2) 

If q, $: R: --t C are two functions such that cp - Ic/ is of order o(dt), we 
write 

dcp=d$ (4.3) 

or also 

cpk t) = w, t). 

A map 5: R + + 2’ is said to be adapted if there exists q E 63 such that 
l(s) E e, (q) for all s E R + . 

Let 9,) 4 be two families of X-valued adapted functions and let 
F: R: + 9(9,X’) be a strongly measurable map. We say that F is of 
order o(dt) weakly on (F,, 4) (respectively strongly on 64) if for each 
tiff,, t2~F2, the scalar map 

(s, t)++ <t,(s), F(s, t) 52(s)) respectively (s, t) H IIF(s, t) 51(s)[l 

is well defined and is of order o(dt) in the sense of Definition (4.1) 
We shall denote 9% the family of Z-valued functions 

9% := {s H A,< : A is an adapted strongly continuous process; 5 E &2}, 

(4.4) 

9 itself is identified in the obvious way to a subset of 99. If 
F, G : R$ -+ .Y(9,%‘) are maps such that F-G is of order o(dt) weakly 
on (Fi, 4) (resp. strongly on Fi). We write 

dF- dG weakly on (F,, 4) (resp. strongly on Fi). (4.5) 

Sometimes we also shall use the notation 

F(s, t) = G(s, t). (4.6) 
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PROPOSITION 4.2. Suppose that M is an integrator of scalar type. Then, 
defining for any adapted process F, strongly continuous on 9 

Y,= YO+lrdM,F, (4.7) 
0 

one has 

dY, 3 dM, F, strongly on 9. (4.8) 

Proof: For any 0 < t, dt d T-C +CC using the integrator of scalar type 
inequality one has 

I + dz 

II 

2 

dM,F,t - dM,Ft’,5 

6 cT,t 1 J(t)i suP SUP IICFs-F,l d12,& t+dt) 
st[r,r+dr] qsJ(t) 

and the result follows from the strong continuity of F on 9. 

5. STOCHASTIC DIFFERENTIAL EQUATIONS 

Our goal in this section is to prove an existence and uniqueness theorem 
for stochastic differential equations sufficiently powerful: 

(i) to include all the known existence and uniqueness theorems for 
quantum stochastic differential equations with bounded coefficients, 

(ii) to prove an existence uniqueness and unitarity theorem in our 
more general framework, 

(iii) to include some of the equations deduced in [3,4]. 

Some of our proofs are based on essentially new techniques which have 
led us to consider equations which are of more general type than those 
considered up to now (cf., for example, the proof of the unitarity condition 
in Theorem 9.2). 

In this section Z denotes a finite set, 111 the number of its elements and 
(Ma’? aSe ,X I a set of integrators of scalar type. Summation over repeated 
greek indices will be understood. The coefficients of the stochastic 
differential equations we consider come from families (F,(t)),, R + ,aE ,, 
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(G,(tH,,,+,fi~, of locally bounded adapted processes, leaving the domain 
9 invariant, with the following property: for all c(, fi E Z, and all adapted 
process H, integrable with respect to the M”“, and all continuous functions 
U, u on R + satisfying U(S) <s, u(s) d s for all s E R + , the family of operators 
on X 

s H F,(u(s)) H(s) G,(~T)) (5.1) 

is an adapted process integrable with respect to M”“. This is a technical 
assumption we need in order for our stochastic differential equations to 
make sense. It is verified in all the examples considered up to now (for 
example, when FJt)=F,f,(t) (PER,) G,(t)=G,gp(t) (TER,), where 
F,, G, are constant operators in do, leaving the domain 9 invariant and 
f, g, bounded measurable functions). 

Let K, = sups E ro, rl max,,/, tI I/ F,(s)11 ‘, We want to solve the stochastic 
differential equation 

Y(t) = Y, + J; dk@(s) F,(s) Y(s) CD(s), 

where Y. is an element of do,; we will use also the notation 

dY( t) = dM”“( t) F,(t) Y(t) FB( t) 
(5.2) 

For all 5 E 9 let 

Y(0) = Y,. 

where c r,ag,e, pFB and .Zaa(&j) are the constant, the measure, and the subset 
of 9 corresponding to ME0 in Definition 2.2. 

THEOREM 5.1. Zf the M@ are integrators of scalar type and the processes 
F,, G, satisfy (5.1), then, for all Y, E do,, there exists a solution of (5.2). 

Proof: Define by induction Y(‘)(t) = Y,, Y(‘)+(t)= Y,+, and 

Yen+ l’(t) = j; dM;” I;,(s) Y’“‘(s) CD(s). 

The sequence is well defined. In fact Y (‘) is an additive adapted process 
strongly continuous on 9. Suppose Y (n) is an additive adapted process. 
Because of (5.1), for all CI, PEZ, (F,(t) Y’“‘(t) GB(t))16R+ is an adapted 
process integrable with respect to Map, then by Proposition 2.4 (i), Y(“+‘) 
is an additive adapted process strongly continuous on 9. It follows by 
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induction that Y@) is an additive adapted process strongly continuous on 
9 for all n EN. 

We will prove now the basic estimate 

II Y’“‘(t) 5112Gy& l11/12. II YOl12~ IJ(4)I”~;c;,&(o, I))“-$ (5.3) 

For all n E N and all t < T, using the integrator of scalar type inequality 
(2.8), we have 

11 Y’“‘(t) (112= j’dM;~FJf,) Ycn-l)(tl) G,(t,) 5 
!I 0 ~1 

2 

x sup 
BlEI 

dA4;;“‘Fx2(t2) Y(“-‘) (fd G&2)) Gdtl) 51 ‘I2 

because of (5.1) and the fact that Gg,(tl) leaves 9 invariant for all 
t, E IX, Tl 

= cT,rK, 1 j’ r+(dt,) 
SIEJ(~;) ’ 

” dW;B’R,M Y(n-2)(t,) G&J G,,(t,)) 51 
II 

2 

. 

Using again the inequality (2.8) 

G c;,&1J(5)1 c j-’ ,q(dtl) j;’ i+(4) 
tz~J(t) ’ 

x sup II y (“-*)(tJ G&J G,,(t,) 52ll*. 
81.826I 

An n-fold iteration of the same arguments gives us the estimate 

IIY’“‘(t) tll*~c”,,K; IJ(Ol”-’ 1 I’Ir,(dt,)~~‘lL,(dt,)... j-;-l p&d&J 
CncJ(t) 0 

sup IIYoCp,(t,)...Gp,(t,) Gg,(t,) &II2 
81,82.....PneI 

d max 11~112~ II Yol12 s IJ(Ol”G-~t-,~ h#A t))” -$. (5.4) 
tlsJ(S) 



174 QUANTUM STOCHASTIC CALCULUS 

The same estimate holds for /I Y(“‘+ (t) (11’; therefore the series C,:= o Y’“‘, 
C,:EO Y(“)+ converge in the strong topology on 9 uniformly on bounded 
intervals of R + This implies that they define adapted processes Y, Y ’ 
strongly continuous on 9. We show now that Y is a solution of (5.2). By 
the integrator of scalar type estimate we have, for all HEN, 

The same argument that led us to (5.4) can be used to prove that, for all 
SE CO, Tl, HEN, SEL ~~45) 

II Yck)(s) G,As) ~11~6 max IIvI12. II Yol12. 145)l” Kk,+’ ck,&(O, T))“&. 
aeJ(S) 

Then the series I,“= O supBE , I/ Yck)(s) G,(s) rll12 converges in the strong 
topology on 9 uniformly on bounded intervals of R,. It follows from 
Lebesgue’s theorem that the right-hand side of (5.5) converges to zero as 
n goes to infinity and therefore 

F,(s) 
k=O 

= j-’ dM:“F,(s) Y(s) Go(s) 
0 

strongly on 9. This, together with the identity 

?I+1 
1 Yck)(t) 5 = Y,< + j; dM:“F,(s) i Yck’(s) G,(s) ( 

k=O k=O 

implies that Y verifies the stochastic differential equation (5.2). 

The following propositions give two uniqueness results. 

PROPOSITION 5.2. The stochastic differential equation (5.2) has a unique 
locally hounded solution. 

Proof. Clearly it will be sufficient to prove that all bounded processes 

(at)),,FL satisfying the stochastic differential equation 

Z(r) = j”’ dM:8F,(s) Z(s) G@(s) 
0 



ACCARDI,FAGNOLA, ANDQUAEGEBEUR 175 

must be zero. In fact, for all 5~9, applying the integrator of scalar type 
inequality (2.8) we have 

IlZ(t) 5112 G Cr,e K, qE;i, 1; P&~s) “r”‘: 11-3~) G,(s) VII’ 
E 

applying again (2.8) to the integral in the right-hand side ‘n - 1 times and 
computing the iterated integral as we did to prove the estimate (5.3) we 
obtain 

IMt) 5112Qw ll-%)llk max lltl12. 15(5)l”K’;c;i(r~(o,r))~~. 
s < , rltJ(4J 

Since this is true for all n E N it follows that Z(t) 5 = 0 for all t E [0, T]. 

PROPOSITION 5.3. Suppose that the integrators of scalar type Ma8 verify 
the condition (2.17). Then the solution of (5.2) is unique. 

Proof: We prove that all adapted processes (Z(t)),, R+ satisfying (5.2) 
with Z(0) = 0 must be zero. In fact, for all 5, q E 9, applying (2.17) we have 

I <% Z(t) 5>1 G 1 ~‘v,,(dr)~~~~,l(F,:(s)rl,,Z(s)G~I(S)e,,l, 
al.tl~J(5.v) ’ 

where vrls denotes the measure C’l,,s,GJCs,~J Iv,,~,~. The same argument 
repeated n-times gives the inequality 

for all t E [0, T], where c’ is an easily computable constant and n E N. Then 
(q, Z(t) <) = 0 for all t E [0, T]; since T is arbitrary Z(t) = 0 for all t E R +. 

In the proof of the unitarity conditions for the Fermion case we shall 
need to solve an equation of the form 

dY(t) = dM@(t) F,(~)P,B( Y(t)) G,(t) 
Y(O) = yo, (5.6) 

where pap are automorphisms of d. 

THEOREM 5.4. Let the MSB be as in Theorem 5.1 and suppose that for 
each tl, B, y, 6 there exists a complex number u$ with lu$l < 1 such that, for 
every interval (s, t) 

p,s(M’6(s, t)) = u’I”8 MY6(s, t). (5.7) 

5R0'104'1-12 



176 QUANTUM STOCHASTIC CALCULUS 

Then (5.6) has a solution and, under the same conditions of‘ Propositions 5.2 
and 5.3 the solution is unique. 

Proof Using condition (5.7) one can reproduce the first part of the 
proof of Theorem 5.1 with simple modifications due to the presence of the 
pzp’s. Using the fact that 

lIP,~(m cc G lIJ4 n; 

for any XE G?(X), one sees that the inequality (5.4) holds also in this case. 
This is sufficient to prove the existence and uniqueness result. 

6. ALGEBRAS OF STOCHASTIC INTEGRALS 

Ito’s formula is a rule which allows us to write a (sufficiently regular) 
function of a finite set of stochastic integrals, as a sum of stochastic 
integrals. A consequence of Itb’s formula is that the linear space generated 
by the stochastic integrals with “smooth” coefficients relative to a set of 
basic integrators is in fact an algebra. In this section we briefly discuss the 
analogue situation in the present context. 

Let I be a set, and let 3 = {M” : u E Z} be a self-adjoint family of regular 
integrators of scalar type. We would like to associate to 3 a vector space 
C?(3) of adapted processes with the following properties: 

(I) All the elements of P(3) are sums of stochastic integrals with 
respect to integrators of the family 3. 

(II) P(3) contains all the stochastic integrals of simple locally 
bounded adapted processes with respect to the elements of 3 (thus, in 
particular all the processes MT = M”(0, t)). 

(III) P(3) is closed under multiplication in the sense that, for each 
X, YE P’(3) and for each t 3 0, (X. Y)(t) := X, Y, is a stochastic process in 
the sense of Definition (1.2) and belongs to P(3). 

(IV) P(3) is minimal with respect to the above properties. 

From (II) it follows in particular that 9 must be an invariant domain for 
all the operators M,(s, t) (a E 1, (s, t) G R-bounded). In this section we shall 
assume that this is the case and we shall restrict the term “process” to those 
processes which leave the domain 9 invariant. These processes form a 
*-algebra denoted 9’. 

PROPOSITION 6.1. Let {M” : c1 E I} be a self-adjoint family of regular 
integrators of scalar type and let US suppose that for all c(, fi E I, all 5 E 9, all 

s, tER+, s < t and all adapted process F 

D(MB(s, t)) z M=(s, t) F,<. (6.0) 
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Then the limit 

[MD, Mali (s, t) F,t := ,$mox M”(t,- ,, tk) Mz(tk-,, fk) F,< (6.1) 

exists in norm for any 5 E 9 and any adapted process F, and is an additive 
adapted process [MB, M”j satisfying the following equality 

M”(s, t) M”(s, t) F,{ 

= ’ dMB(r) M”(s, r) + 1’ dM”(r) Mp(s, r) + [M”, M”4 (s, t) F,t. 
5 

(6.2) 

Proof Summing the algebraic identity 

d(M”M”)(t)=dM;.M:+M{.dM;+dMf.dM; 

over all the intervals of a partition P = { tk};=,, of [s, t] we find 

(6.3) 

M”(s, t)M’(s, t)F,<= i Mp(s, tk-,)Mz(tk-l,tk)F.,4: 
k=l 

+ i M’(t,-,, tk)M’(S, t,-,)F,‘t 
&=I 

+ i MS(tk-1,tk)M'(tk-,,tk)Fs5. 

&=I 

By Remark 3 after Definition 2.2 the functions r E [s, t] + M’(s, r) F,<(or E I) 
are continuous for any 4 E 9 so that, by Theorem 2.3, as 1 PI + 0, the first 
and second sum converge respectively to 

I ’ dM”(r) M’(s, r) F,<, i’ dMB(r) M”(s, r) F,t. (6.4) 
0 s 

Therefore also the third sum converges and this proves (6.1). It is clear that 
(6.2) holds 

The additive process [MB, M”] is called the bracket of MB and M” (or 
the square bracket, or the Meyer bracket, or the mutual quadratic variation 

(cf. L-81). 
Thus, if we want the product MB(s, t) M’(s, t) to be expressible as a 

linear combination of stochastic integrals with respect to the MYs, we must 
have that 

[MB, M”lj (s, t) = j: c!‘(r) dM’(r), (6.5) 
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where summation over repeated indices is understood and the cf” are 
adapted processes which, for any pair cr., fl E Z, are zero for all but a finite 
number of indices y~l. Thus condition (6.5) is a necessary condition for 
the solution of our problem. Such a condition is called an It8 table for the 
set of basic integrators 3 and the processes c?(s) are called the structure 
processes of the Ito table. If the c? are locally bounded continuous scalar 
functions, then, from Proposition 2.6, it follows that [[MD, Ma] is also an 
integrator of scalar type. 

Without any further assumptions, not much more can be said, since we 
cannot control terms of the form 

W’(s, t) F,y. Ma+, t) . G,s (6.6) 

with F, G locally bounded adapted processes. However, if we assume that 
the integrators Ma are such that their increments in the future of any times 
S, p-commute with any operator adapted to the past of S, i.e. (all com- 
mutators being meant on 9), 

Mats, t) F, = P(F,) M%, t); VclEI,vs<t (6.7) 

M”(t, 24) M@(r, s) = pa(MD(r, 3)) M”(t, 24); Vcc,fifzZ;r<s<t<u (6.8) 

then expressions like (6.6) become tractable. If p,(M”) = (MB), then we 
have the commutation of M”, MB (Boson case); if p,(MB) = - (MB), then 
we have the anticommutation of Ma, MB (Fermion case). 

DEFINITION 6.2. The integrators M” are said to satisfy a p-commutation 
relation if, for all cr~Z, there exists an automorphism pr of 9’ with the 
following properties: 

pz=id (6.9) 

pal maps adapted processes into adapted processes, and 

M*(st t) 5 E ~(~,(l;,)) (6.10) 

M”(s, t) Fs5 = p,(Fs) WS, t) t, FsWs, t) 5 = WS, t) p,V’s;,) 5 

for every 5 E 9, s < t, and any adapted process 1$. 
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7. THE WEAK 1~6 FORMULA 

LEMMA 7.1. Let M, N be integrators of scalar type and H, K be strongly 
continuous adapted processes. Define 

X,=s*dM,H,; Y,= ‘dN,K,. 
s s s 

Then, in the notations (2.19) and (4.5) 

(dX5, dY,v) = (dM,H,t, dN,H,q). 

(7.1) 

(7.2) 

Proof For each T > 0 and each t E [0, T] one has 

(dx,t, dY,rl) - (dMtHt5, dN,Krl) 

= ( Cdx, - dM, fftl 5, dY,r > + (dM,H,t, CdY, - dN,K,l rl> 

= dM,CHs-H,l t, dO)+( dM,H,r, j:;+drdNS[KS-K,, Y$. 

(7.3) 

Now 

t + dr 

and by the integrator of scalar type inequality this is majorized by 

112 
CT.< d$‘(s) II CH, - H,l 51 II * 

I + dt 112 
d/$‘(s) IlKsrl, II 2 

G IJ(T)I . IJ(v)I max sup IICHs-Htl 5111 
~IEJ(~).~I~J(v) seCt.r+drl 

. IIKsrl~ll ~w(tr t + dt), 

where 
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Since a similar estimate holds for the second term in the right-hand side of 
(7.3), one finds the majorization 

I (dX,5, dY,rl) - (dM,H,L dN,H,rl)l 

d c(M N 5, rl> T, 6 K) A Adf) ~,+,.,v(t, t + dt) 

with A, satisfying 

lim sup A,(d) = 0. 
dr-0 [t,r+dt]r[O,T] 

Clearly this inequality implies (7.2). 

DEFINITION 7.2. An integrator R is called the weak It6 product of two 
integrators M, N if 

<dM: H,t, dN,Kvl) = <H,t, dR,K,r) (7.4) 

for any <, q E 9 and any pair H, K of strongly continuous adapted 
processes. 

Coherently with the notation introduced in Section 4, the relation (7.4) 
will be written in the symbolic notation 

dMdN = dR weakly on (.99,99). (7.5) 

If for any 5 E 9 and any strongly continuous adapted process K one has 

dN,K,< E D(dM,) (7.6) 

then the relation (7.5) is not symbolic and it is equivalent to (7.4). The 
following is the weak ZtB formula for left stochastic integrals. 

THEOREM 7.3. Let M, N be integrators which satisfy the scalar forward 
derivative inequality (3.9) and whose weak It8 product is an integrator R. For 
any pair of strongly continuous adapted processes H, K, let 

X,=/‘dMj+H,; Y,= ‘dN,K,. 
0 s 0 

(7.7) 

Then for any 5, q E 9 

4X,5, Y,rl) = (ff,t, dM, Ytv) + (Xtc;, dN,rl) + (H,t, dR,Jh). (7.8) 
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Proof From the algebraic identity 

d<X,L Y,?) = (dX,5, Y,?) + (X,5, dY,q) + (dX,L dY,q) 

and the scalar forward derivative inequality (3.9) we obtain (Proposi- 
tion 4.2) 

Moreover from Lemma 7.1 we know that 

(dX,t, dY,v) = <dM: H,<, dN,K,rl). 

Hence (7.8) follows from (7.4). 

8. THE HERMITE POLYNOMIALS 

As a first application of the weak It6 formula we extend a known result 
on Hermite polynomials (cf., e.g., [29]). We suppose that the set Z has only 
two elements, denoted 0, 1 and we denote M” and M’ by A and M, respec- 
tively. We also assume that, in the notations of Section 4, 

weakly on (99, 99)). Then the inductive sequence 

H,(A, M) = 1 
(8.2) 

is well defined strongly on 9). 

THEOREM 8.1. Let M and A satisfy the conditions (8.1), (8.2) and assume 
that every polynomial in A(t) and M(t) is a process and moreover that 

(i) M commutes with its own past, i.e., 

CM,, dM,l = 0; VtER,. (8.3) 

Then A, and M, commute for each t E R + . Zf, moreover 

(ii) The domain 9 is invariant under the action of A,, M, for any 
t E R + then H,,(t) = H,(A,, M,) is the n th Hermite polynomial in M, with 
parameter A,. 
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Then, for all n 3 1 we have 

H,,(A, Ml - 5 H,, ,(A> Ml. (8.4) 

Proof: For each t E R + 

dA,.M,-dM,.dM,-M,=M,.dM,.dM,=M,dA,. 

Moreover, because of (8.1) 

d(A,M,)-dA,.M,+A,.dM,; d(M,A,)=dM,.A,+M,.dA, 

it follows that 

d(A,M,-M,A,)=O 

which implies the commutativity of A, and M,. Since A, and M, commute, 
H,,(A,, M,) is well defined on 9 by assumption (ii). From (8.1), (8.2) and 
the weak It8 formula for left stochastic integrals it follows that, for any 
n>,2, tER+ and [,vE~, one has 

=A II<& dM,-H,,(t)) + CM: 5, dM,H,- I(t) q> 

+(5,dA,H,~,(t)?)-(5,dA,H,~,(t)r?)-(A+5,dMH,_,(t)q)] 

=--& (4, dM,Hn(t) v> 

+ & ; CM: 5, dM,Hn-,(t) yI> -; (A+& dM,H,-,(t) rl) 1 
(8.5) 

NOW, for n = 1 (8.4) is true since H, = 1, H, = M. Moreover, since dM 
commutes with its own past 

dH,=dM.M=$(dM.M+M.dM)+d[M*-A] 

hence 

;(MH,-AH,)=;(M*-A)=H* 
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so that (8.4) holds for n = 2. Therefore because of assumption (8.1) and of 
the identity (8.5) 

Assume, by induction, that H,(t) is a polynomial in A, and M, and that 

Then from (8.6) it follows that the right-hand side of (8.5) is equivalent to 

(5, dM,Hn(t) s> = (t> dH,+ l(t) rl) 

by Proposition 4.2. By the induction assumption H,,(t) and H,,- I(t) are 
polynomials in A, and M, hence, by (8..5), it follows that, on $S 

which, due to (8.2) is equivalent to (8.4). 

9. THE UNITARITY CONDITIONS 

As an application of the weak It8 formula (7.8) we will give necessary 
and sufficient conditions on the coefficients of the stochastic differential 
equation 

dX(t)=dW(t)I;,(t)X(t) 

X(0) =x, 
(9.1) 

which guarantee that its solution is a unitary operator on 2. In this 
section we shall assume that the set of basic integrators is self adjoint, i.e., 
that for every index a there is a unique index a + such that (M”) + = M”‘. 
Note that, by definition (a + ) + = a. 

Let us first note the following obvious criterion: 

LEMMA 9.1. Let (F,),,I and let X0 be an element of A?& and X be the 
solution of the stochastic differential equation (9.1). The following conditions 
are equivalent: 

(a) for all tcR+, X(t) can be extended to a unitary operator on SF. 
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(b) X0 is a unitary operator on Z and, for all v, 5 E 3 and t E R + 

(X+(t)F,+(t)dM:+rl,X+(t)5)+ (X+(t)v, X+(t)F.;(t)dM:+ 5) 

+ (X+(t) F;(t) dA4!- yl, X+(t) F,+(t) dM:+ 4) =O (9.2) 

@MY+ F,+ x(t) r, x(t) 5 > + (x(t) v, dM;’ F,(t) x(f) 4 > 

+ (dM:&X(t) q, dM;F,(t) X(t) 5) = 0. (9.3) 

Prooj Applying the weak It8 formula (Theorem (7.3)) we find that 
(9.2) is equivalent to the condition (X’(t) q, X’(t) 5) = (Xc 9, X,+ 5) 
and (9.3) is equivalent to the condition (X(t) r, X(t) 5) = (X0 ‘1, X0 5) for 
all t E R + and all q, < E 9. Then the equivalence of items (a) and (b) is 
obvious. 

We can give more easily verifiable conditions when the integrators of 
scalar type M” are linearly independent in the sense that the equality 

s 
’ dM,* G,(s) = 0 

0 

for all family (G,(t)),,,+,,,, of adapted processes and for all t E R, 
implies that G, = 0 for all GI E I. 

THEOREM 9.2. Let (F,(t))t~R+,a~Zand (X(t)),eR+ be as in Proposi- 
tion 9.1. Assume that the brackets [MO, M”] exist and are as in (6.5). 
Suppose that the integrators of scalar type M” are linearly independent 
and satisfy a p-commutation relation. Then the following conditions are 
equitlalent: 

(a) for all tER+, X(t) can be extended to a unitary operator on Z. 

(b) X0 is a unitary operator on H and, for aN t E R + and y E I 

F,(t) + P,u$ (t)) + cf@+w Pm+(&3(t) F;,‘(t)) = 0 (9.4) 

F,(t) + P,(q (f)) + c$+“u) Pp+P, (qt)) F,(t) = 0. (9.5) 

Proof: (a)*(b) Let us suppose that, for all tE R,, X(t) can be 
extended to a unitary operator on Z. Then (9.2) can be written in the form 

s ’ dW V,,(s) + P,(&?+ (s)) + c?+(t) p,+(~&) F;(S))) = o 
0 

for all PER,, and (9.4) follows from the linear independence of the MY. 
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Since X is strongly continuous on CS and unitary operator-valued it is 
strongly continuous on SF; then the stochastic processes 

prcx+ F,‘;) x P,(X+) Fy X P. PS+ (X’ F;) FJ 

are integrable with respect to all the MY, therefore (9.3) can be written in 
the form 

s ’ WP,W+(S)) (F,(s) + P,(F,+,W 
0 

+ c;+%, pmpp+ W+(s) F; ($1) F,(s)) X(s) = 0. 
Then we obtain (9.5) from the linear independence of the MY and the 
unitarity of X(S). 

(b)*(a) From (9.5) condition (9.3) follows and then we have 
(X(t) q, X(t) 5 ) = (Q < ) for all rl, t E LB and so X(t) is an isometry for all 
tER+. Since X is strongly continuous on 2, the adapted processes 

FyXX+, P,(XX+ 1 P,(F; ), p,+(F,J P,+W’+) P,+(F,+) 

are integrable with respect to all the MY. Therefore the process Y = XX+ 
is a solution of the stochastic differential equation 

dY=~MY(FyY+~,(Y)~,(F:,)fc~+a~,+(FB)~~+(Y) p,+(F,)) 

Y(0) = 1. 

This is an equation of the type we considered in Section 5 and we know 
from Theorem 5.4 that its solution must be unique. Y(t) = 1 for all t E R + 
is a solution because of (9.4), hence X(t) X+(t) = I and X+(t) is an 
isometry for all t E R + . This completes the proof of the unitarity of X. 

10. THE LEVY THEOREM 

When the Meyer brackets are scalar nonatomic measures a fourth 
moment condition (cf. the inequality (10.2) below) holds. In the classical 
case this condition implies the continuity of the trajectories. In [8] it has 
been shown that, in the classical case, this condition is equivalent to the 
continuity of the trajectories for semimartingales and it has been proposed 
to assume this condition as the definition of the notion of continuity of the 
trajectories for a quantum process. 

PROPOSITION 10.1. Let M”, MB be integrators of scalar type such that 

[MB+ M”] (s 7 > t) =c+“(s , t) (10.1) 
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for some C-valued nonatomic measure with locall,v bounded variation @’ 
(defined on R+). Then for all Obs<r< T< +co and (~9 one has 

)IMD(s, t)Mm(s, t)5112G3max{c,c, l$ [(la”,‘1 +P:+P:)(s, t)]‘. (10.2) 

Proof For all S, t E R + with s < t we have, using (6.2) 

lW%, t) M”(J, t) <II z 

+ 

II 

’ dMB(r) M”(s, r) q * + 
s II II 

1’ dM”(r) MB(s, r) 9 
2 

s II > 

< 3 max(cT,r, 1) C lbll* bP%, t)l* 
vt J(S) ( 

+ 1’ 1IMY.c r) rll* pf(dr) + j’ IIMB(s, r) ql12 &(dr)). 
5 s 

(10.3) 

The conclusion now follows from (2.12). 

DEFINITION 10.2. Let M be an integrator of scalar type satisfying the 
condition (6.0) and let us denote 

d@=dt; dM’ = dM; dM*=dM+. (10.4) 

The pair M, M+ is called a Levy pair if the Meyer brackets fMB’ M”j 
(/I, c1= 1,2) exist and are a C-valued nonatomic measures which are 
absolutely continuous with respect to the Lebesgue measure. The Levy pair 
is called of Boson type if 

[M”(I), MB(J)] = 0 for all Z,JcR+ with In J=@. (10.5) 

For a Levy pair M, M+ we define the bracket matrix 

d([MP+, M”j (t)) =: a(t) dt =: 
a”(t) P(t) dt 
d’(t) u**(t) > . 

(10.6) 

An important consequence of (10.6) is that 

dMf+ .dM; = o@(t) dt strongly on 99. (10.7) 

The matrix valued function t H u(t) is positive definite in the sense that, if 
we define for all complex valued continuous functions f, g 

(LgL:=(f,f).~. ,” 
0 

(10.8) 
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then for all f (f, f ), > 0. Let C,(R + ; C) denote the space of complex valued 
continuous functions on R, with compact support ad let 3 denote the 
symplectic form on C,. (R + ; C) defined by 

XLg), w:=; C(f,g), (t)- kTfL7 (t)l. (10.9) 

THEOREM 10.3. Let M, M+ be a Levy pair of Boson type. The solutions 
of the stochastic differential equations 

dU,(t) = i(f(t) dM+(t) +f ‘(t) dM(t)- i(f,f l,(t) dt) uf(t) (10.10) 

dU;(t)=iU.;(t)(-f(t)dM+(t)-f+(t)dM(t)-~(f,f),(t)dt) (10.11) 

(with the initial condition U,(O) = LJ; (0) = 1) define a unitary representa- 
tion 

of the CCR algebra over C,(R + ; C) associated with the possibly degenerate 
real bilinear symplectic form (cf [25]) 

Moreover the one-parameter unitary group ( U,f)rs R is strongly continuous on 
X and its infinitesimal generator B(f) has the form 

B(f,=jm (f(s)dM+(s)+f+(s)dM(s)) on 9. (10.12) 
0 

Proof We divide the proof into several steps. First note that, due to 
Theorem 5.1, the stochastic differential equations 

qf(‘) = 1 + j’ (if(s) dM+(s) + if+(s) dM(s) - i(f,f Lb) ds) Uf(s) n 
(10.13) 

U;(t)=l+j&f+(s)dM(s)-if(s)dM+(s)-f(f,f),(s)ds) U,‘(s) 
0 

(10.14) 

have unique solutions on the domain 9 satisfying 

<Uf(f) t, rl) = (52 u;(t) v> 
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for all g, u] E 3. Moreover, the unitarity conditions of Theorem 9.2 are 
immediately verified in this case. Therefore UJt) can be extended to a 
unitary operator on A? (that we still denote U,(t)). 

Now note that, because of assumption (10.5), one has [M*(s, t), Uf(s)] 
= 0 for all 0 < s < t (this follows immediately from the expression of U,(t) 
in terms of the iterated series). Using this and the fact that U,(t) is a 
bounded operator for ail f, t and s H U,(s) is strongly continuous on 9 
from the weak It6 formula and (9.6) we have, for all t E R, , 
.Lg~W+;CL5,rl~~ 

= <U; (f) v, C&(t) dM: + k+(f) dM,- tk, g),(t) dtl u,(t) 5) 

+ < C-if+(t) dM, - if(t) dM: - i(M),(t) dtl U; (th u,(f) 5) 

- W;(t) r, CL g),(t) u,(t) 5) dt 

= ( f-J; (t) 11, (U+ g) + dMt + U+ g) dM: 1 u,(t) 5 > 

- (u; (t) rl, u,(t) 5) (lb g),(t) + (f, g),(t) + fWL&N & 

i.e., the process X(t) = U,(t) U,(t) satisfies the stochastic differential 
equation 

X(r)=I+i’(i(f+g)(s)dMf(s)+~(~+g)+(S)dM(s) 
0 

+ C-KU-Lb- $Cs, g),(s)- (f, g),(s)1 ds) x(s). 
Let 

Y(t)=exp -i 
( j 

’ 3(f, g),(s) ds u,+,(f). 
0 > 

Y(t) clearly satisfies the same stochastic differential equation as X(t), hence, 
by the uniqueness theorem 

Ur(t) U,(t)=exp -i3 
( J 

’ (f, g),(s) ds 
0 > 

u/+,(t). (10.15) 

Since f has compact support the limit as t r 00 of U,(t) exists in a trivial 
way. We shall denote this limit by U,. 

LEMMA 10.4. E + U, is a one-parameter strongly continous group of 
unitary operators on 2. 
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ProoJ The group law follows from (10.15). For all E E R, U, satisfies 
the stochastic differential equation 

hence, for all l E 9, by the integrator of scalar type inequality (2.7) 

where c,. is a constant depending only on f: Therefore 

lim U,[ = 5. 
E’O 

And the thesis follows since a one-parameter group U, of unitary 
operators, strongly continuous on a total set is strongly continous on the 
whole space. 

PROPOSITION 10.5. Let B(f) denote the infinitesimal generator of 
E + U,. Then, on the domain 9, B(f) coincides with 

s om (if(s) dM+(s) + if+(s) dM(s)). 

Proof For all 5 EL@ we have 

~I~,+~~ (rf+(j)dM(s)+if(s)dMt(s))}5 

= s o (if+(s)dM(s)+if(s)dM+(s)) W,(s)- 11 5 

therefore, by the integrator of scalar type inequality (2.7) 

2 

(if+dM+ij-dM+) 
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Since lim, _ 0 U,, q = q and, for all E E R, 

I/~,,Y-9/12~~ll~,.,vll12+~llrllI’=41/rll/2 

it follows from Lebesgue’s dominated convergence theorem that 

lim u,t - 5 = 
i 

lx 
I: - 0 E 

o (if+dM+ifdM+){ 

and this proves the thesis. 

Now let us suppose that the integrators of scalar type M, M+ are mar- 
tingales with respect to a unit vector @E 9, in the sense of Definition 3.2, 
that is, for all s, t E R + with s < t and all adapted processes H, K we have 
(K(s) @, M#(s, t) H(s) @) = 0. 

LEMMA 10.6. If M, M+ are @-martingales then 

(10.16) 

Proof. U, satisfies the stochastic differential equation 

UfW = 1 + j’ (if+(s) dM(s) + if(s) dM+(s)) uf(s) - t .c’ (f,f), (s) uf(s) ds 
0 

and then (@, Uf( t) @) satisfies the ordinary differential equation 

(@, u,(t)@>= 1-i j'(f,f),(s) (@, U.,(s)@) ds 
0 

whose only solution is (10.16) 

We will denote by L2(R + , a) the real Hilbert space obtained by comple- 
tion of the vector space %TJR+, C) with respect to the real prescalar 
product 

<A g>, = jam (.L g),(t) dt. 

Let Qm denote the vacuum vector and Wf(f~ L’(R+ , a)), the Weyl 
operator on the Fock space T(L2(R+, CJ)) with test function f: 

COROLLARY 10.7. Let (M, Mi ) be a Levy pair that is a martingale with 
respect to a unit vector Qi and let X be the closure of the linear span of the 
set {U,@IfEgc(R+,C)}. Themap 

U,@+ Wf@, 

extends to a unitary isomorphism qf X onto r(L’(R+ , 0)). 
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ProoJ: From the above discussion. 

Let (M, M+) be a Levy pair with covariance matrix (T and a, b be two 
functions in %‘(R + , C) such that 

14t)12- lb(t)12+0 

for all t E RI so that the matrix 

a(t) b(t) 
b(t) 4t) > 

is invertible. Let 

B(t) = j-i (a(s) dM(s) + b(s) dM+(s)) 

A simple computation using the weak It6 formula shows that (B, B+) is a 
Levy pair with covariance matrix 

( 

We say that (B, B+) is obtained from (M, M+) by a random time change. 
Clearly random time changes are in one-to-one correspondence with the 
elements of the complex simplectic group of order two Sp(2, C) whose 
entries are continuous complex valued functions. 

Remark. If M is a classical brownian motion with variance 0 > 0 (i.e., 
for all s < t, M, - M, is independent of FS and has law N(0, g( t - 3))) then 
the time change that makes M a standard (i.e., with 0 = 1) brownian 
motion is t + t/A so that (M,,J)~~~ is a standard brownian motion. By 
the self-similarity property of the classical brownian motion this is equiva- 
lent to the multiplication of the random variables M, by A. This justifies 
our definition of random time change. 

The action of 5342, C) on positive definite 2 x 2 matrices has four types 
of orbits that are classified in [8]. These induce equivalence classes on 
Levy pairs. 

DEFINITION 10.8. Two Levy pairs (M”‘, MC’)+ ) in Hilbert spaces JP) 
(i= 1, 2) that are martingales with respect to unit vectors Q(j) are 
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isomorphic if there exists a unitary operator U: X”‘-+ X”’ with 
U(@(“) = @(*I such that the Levy pair in Xy’*‘( (/M”‘U+, UM”‘+ U’) can 
be obtained from (M (2) MC’)+ ) by a random time change. , 

We can now prove the following theorem. 

THEOREM 10.9. Let (M, M+) he a Levy pair in a Hilbert space X that 
is a martingale with respect to a unit vector @ such that, for all t E R + , the 
covariunce matrices o(t) are in the same orbit 0. Then (h4, h4+ ) is 
isomorphic to: 

(i) the classical real brownian motion of G is the orbit of the matrix 

t: 3, 
(ii) the classical complex brownian motion if 0 is the &bit of the 

matrix (A y), 

(iii) the Fock brownian motion on L2(R,) if 0 is the orbit of the 
matrix (A i), 

(iv) the universally invariant brownian motion on L*(R +) with 
parameter l/n (0 < I < 1) if 0 is the orbit of the matrix ( ’ ; ‘. , ti). 

ProoJ: Using (10.7) we can suppose that (M, M+) is a Levy pair in 
r(L*(R + , a)) that is a martingale with respect to the unit vector ‘Do. The 
time continuity of the entries of the elements of Sp(2, C) that reduce the 
matrices o(t) in the orbit 0 to their canonical form follows from 
straightforward computations (cf. [8, Proof of (6.6)]. In case (iv) the 
matrices 

1+1 0 

> ! 

1/n+ 1 0 

0 1-i ’ 0 l/i- 1 > 

are in the same orbit (take a(t) = l/G, b(t) = 0); the simplectic form 
associated with the second is 

(f, g) = i (2 Re fg) + 2i Im fg. 

Therefore A4, MC is isomorphic to the universally invariant brownian 
motion on L’(R+) with parameter l/n. 

11. STOCHASTIC CALCULUS ON THE FINITE DIFFERENCE ALGEBRA 

The following is another example of a Hilbert space in which a quantum 
stochastic calculus can be developed. It was introduced by A. Boukas in his 
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Ph.D. Thesis [ 131. We show that our theory includes also this example 
and moreover it allows us to till some gaps which were left open in [13]. 

Let S be the set of all real simple functions f: (0, co) + (- 1; l), i.e., the 
set of functions that can be written in the form 

f= i a;xA,5 
i=l 

where n E N, a E R with lail < 1 and (A,);=, is a family of disjoint sets of 
(0, co) of finite Lebesgue measure. 

Let X be the Hilbert space obtained by completion of the vector space 
generated by the family 

endowed with the pre-scalar product 

(G(s), Ii/(f)> =ew 
( 

- j(: loid -g(s)f(s)) ds). 

The space &$,, (s, t E R, s < t) is delined as the completion of the vector 
space generated by elements of CS corresponding to test functions f with 
support contained in (s, t). 

It is to be noted that we have the following tensor product factorizations. 

We will denote by d,, = B(qO,,,) lx,,,,, the algebra of operators up to 
time t. 

Let us define the operators on 2 (see [ 13, Definition (1.4)]). 

Q(r)~(f)=~[~(f+&g)+~(e’Y)11 &=O 

P(g) $(f) = jm gf dt + Q(h) Il/(f 1 
0 1 

T(g)$(f)= p(g)+Q(g)+j”~gdf]IL(f). 
I 

For all U, u, g ES we have [13, (1.2.1)] 

(Ii/(u), Q(s) It/(u)> = (P(g) NV), v+(u)> 

<+(u), n?) Ii/(u)> = <nT) $(u), G(u)> 
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[f’(c)> Q(u)1 = T(uu) 

CP(u), T(u)1 = T(uu) 

ILVv), Q(u)1 = T(uu). 

We will also write QJs, t), P&s, t), and 7’,(s, t) to denote respectively 
Qk,,) - Qk,,), P(g,,) - f’k,,), and T( g,,) - 7J g,Y,). It is easy to see that 
CQ,k f))oi.s<tr (P& t))o<<</, and (T&S, t)),,GsGt are additive adapted 
process. 

We can prove also the integrator of scalar type estimates: 

PROPOSITION 11.1. Let f,  g E h and F be a simple adapted process written 
in the form 

where 

o<s, <sz< .” <s,+, < + 03. 

We have then 

11 j; dQ,(s) F(s) W) 11 2 d (1 + fi) j’ l/F(s) IC/(f)ll’ (f F;&)2 ds o 

IIS 
’ dP,(s) F(s) WI 

0 II 
‘d (1 + $, jr IIF Wll’ l;r”;(--s:!’ ds 

0 

dT,(s) J’(s) WI 
II 
‘Q Cl+ $, j’ IIF W)ll 2 I&)l’U +f(sH’ ds 

0 (1 -f’(s))’ . 

Proof. We will prove only the first inequality. The proof of the other 
ones is the same. Let us suppose, for simplicity, s, + 1 = t. 

jl j; de,(s) F(s)) $(f) 11 2 

= 1) j;, Qg(sj, sj+ 1) F(sj) Al/ iJ2 

= i IIQ,(~j~sj+,)F(s,)~(f)l12 
,=I 

+2Re 1 (Qg(sk,sk+l ) F(sk) $(f), Qg(sj, sj+ I) f’(sj) Ii/(f) >. 
l<k<j<n 
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Due to the tensor product factorization of 2 for all j we have 

Qg(sj, Sj+ 1) Jl’(Sj) ti(.f) = F(Sj) $(f,l) 0 Qg(Sj> Si+ 1) Icl(fcx,). 

Then the first sum can be rewritten as 

jc, IIF Wi,,)ll* IIQ&,, ~j+l) W-,s,)ll’ 

and, applying [ 13, Proposition (1.3)(i)] 

Then we consider the second sum 

2Re l,k;,<n (Qg( sk, sk+ 1) F(sk) $(A,]), F(sj(s,) Ic/(f,l)> 

‘. 

X <ll/(f~s,h Qg(sjl sj+ 1) ‘I’(f~s,). 

Applying [ 13, Proposition (1.2) (i)] this is equal to 

and the absolute value of this sum can be majorized by 

Let 

R(t) = sup 
!I 
s’dQ,(r) F(r) W”) 

s<r 0 il 

a(t) = j; IF’(s) W)ll* c1 F;;;fJJ2 ds) 
112 

6= sup Isj+r-sjl. 
l<j<n 

Majorizing IfI by 1 and applying the Schwartz inequality we obtain 

R2(t) Q 2R(t) a(t) + (1 + 6) a2(t) 
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that yields 

R(t)<(l +J2+6)u(r). 

The first inequality follows taking partition finer than the given one and 
letting 6 go to zero. 

So (P,(s, f)hsvC,, (Q&, t)hsss,, and (T&, t))Os.,s, are semimar- 
tingales in the sense of our definition and we can solve stochastic differen- 
tial equations driven by them. However the quadratic variation of two of 
these processes is not a process like (P,(t)),,O, (Q,(c)),,,, or (r,(t))tao 
nor a scalar process and so we cannot give a weak It6 formula and 
unitarity conditions for the solutions of stochastic differential equations. 
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